JPH0814818A - Measurement method and device for installation state of parts using bidirectional optical beam - Google Patents

Measurement method and device for installation state of parts using bidirectional optical beam

Info

Publication number
JPH0814818A
JPH0814818A JP14438594A JP14438594A JPH0814818A JP H0814818 A JPH0814818 A JP H0814818A JP 14438594 A JP14438594 A JP 14438594A JP 14438594 A JP14438594 A JP 14438594A JP H0814818 A JPH0814818 A JP H0814818A
Authority
JP
Japan
Prior art keywords
light beam
bidirectional
light
lens
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14438594A
Other languages
Japanese (ja)
Other versions
JP3289865B2 (en
Inventor
Kunio Koyabu
国夫 小薮
Masahito Mizukami
雅人 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14438594A priority Critical patent/JP3289865B2/en
Publication of JPH0814818A publication Critical patent/JPH0814818A/en
Application granted granted Critical
Publication of JP3289865B2 publication Critical patent/JP3289865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To discriminate an error cause by measuring a distance from an optical beam advancing unidirectionally after transmission through a measurement object part and an optical beam advancing in an opposite direction as a component of a bidirectional beam before the transmission. CONSTITUTION:An optical beam 2A straight advances from the center of a lens 3A to the center of a lens 3B. This beam 2A, however, turns into an optical beam 2AT diffracted by such an angle alpha as corresponding to the inclination angle DELTAtheta of the lens 3B, and advances in a rightward direction without being superposed on an optical beam 2B. Furthermore, the beam 2B incident on the center of the lens 3B from the right side turns into an optical beam 2BT inclined in the opposite direction of the beam 2AT by an angle alpha and comes to be incident on the lens 3A at a position of the off center thereof. Thus, the beam 2B is not superposed on the beam 2A. Regarding judgement about whether the dislocation of the two optical beams is attributable to the deviation of a lens angle or to the deviation of a lens position, the appearance of the beams 2AT and 2BT at opposite sides relative to a bidirectional optical beam reference position is judged as an angular deviation, while the appearance of the beams 2AT and 2BT at the same side is judged as a positional deviation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光部品や機械部品等の
位置や角度すなわち設置状態を測定する方法及びその測
定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the position and angle of optical parts, mechanical parts, etc., that is, the installation state, and a measuring apparatus therefor.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】光部品や
機械部品等の位置や角度である設置状態の測定では、こ
れまでにいろいろな原理に基づいた多くの方法が実用化
され、測定の目的に応じて使い分けられている。そのう
ちの一方法として、1本の光ビームによる測定法があ
る。図4は1本の光ビームによる2枚レンズの相対精度
の測定法を示している。基準線1に対して2枚のレンズ
3A,3Bが理想的(誤差無し)に配置されている場合
には、左から右に進む光ビーム2はレンズ3A,3Bを
透過してもその方向は変わらず基準線1の上を直進し、
基準線1がスクリーン4と交差する点Oと同じ位置に到
達する。
2. Description of the Related Art Many methods based on various principles have been put to practical use in the measurement of the installation state such as the position and angle of optical parts and mechanical parts. It is used properly according to the purpose. As one of them, there is a measuring method using one light beam. FIG. 4 shows a method of measuring the relative accuracy of two lenses with one light beam. When the two lenses 3A and 3B are arranged ideally (without error) with respect to the reference line 1, the direction of the light beam 2 traveling from left to right is the same even if it passes through the lenses 3A and 3B. Continue straight on the reference line 1,
The reference line 1 reaches the same position as the point O intersecting the screen 4.

【0003】いま、図4(a)のようにレンズ3Aと3
Bの中心は基準線1上にあって、レンズ3BがΔθだけ
傾斜しているとすれば、光ビーム2はレンズ3Bに入る
までは基準線1上を直進してくるが、レンズ3Bを出た
光ビーム2は基準線1から外れてスクリーン4上のO点
とは異なる点P1 の位置に達する。
Now, as shown in FIG. 4A, the lenses 3A and 3
If the center of B is on the reference line 1 and the lens 3B is inclined by Δθ, the light beam 2 travels straight on the reference line 1 until it enters the lens 3B, but exits the lens 3B. The emitted light beam 2 deviates from the reference line 1 and reaches the position of the point P 1 on the screen 4 which is different from the point O.

【0004】一方、図4(b)のようにレンズ3Aと3
Bはともに基準線1と直交しているがレンズ3Bの中心
が距離dだけ基準線1から離れているとすると、レンズ
3Aを出た光ビーム2はレンズの光軸とは違う位置でレ
ンズ3Bに入るため、ここで進行方向が変えられスクリ
ーン4上の点P2 に到達する。この方法ではスクリーン
上での光ビームの位置ずれ距離OP1 やOP2 を測定す
ることでレンズの傾斜角Δθあるいは位置ずれ量dを求
めることはできるが、光ビームの位置ずれが傾斜角と位
置ずれのどちらの原因によるものか区別することはでき
ない。
On the other hand, as shown in FIG. 4B, the lenses 3A and 3
Both B are orthogonal to the reference line 1, but if the center of the lens 3B is separated from the reference line 1 by a distance d, the light beam 2 emitted from the lens 3A is located at a position different from the optical axis of the lens 3B. In order to enter, the traveling direction is changed here and the point P 2 on the screen 4 is reached. In this method, the lens tilt angle Δθ or the position shift amount d can be obtained by measuring the position shift distances OP 1 and OP 2 of the light beam on the screen. It is impossible to distinguish which is the cause of the shift.

【0005】図5は傾斜面を有する機械部品の傾斜角の
測定法を示している。基準線1に対して機械部品5の平
坦面Bが直交している場合、左からきた光ビーム2が傾
斜面Aで反射するとき入射光と反射光の角度がθA と測
定されると平坦面Bに対する傾斜面Aの角度θ0 は角度
θA の半分として求められる。もし平坦面BがΔθだけ
傾斜していると図5の方法で測定された角度θA はθA
=2(θ0 +Δθ)となりΔθが誤差として測定値に含
まれる。ここでΔθの影響を除くには機械部品の平坦面
Bが基準線1と直交するように部品を設置することが必
要不可欠となり、この場合、その操作に時間がかかると
いう問題が起きる。
FIG. 5 shows a method for measuring the inclination angle of a mechanical component having an inclined surface. When the flat surface B of the mechanical component 5 is orthogonal to the reference line 1, when the light beam 2 coming from the left is reflected by the inclined surface A, the angle between the incident light and the reflected light is measured as θ A, and the angle is flat. The angle θ 0 of the inclined surface A with respect to the surface B is obtained as half of the angle θ A. If the flat surface B are inclined by Δθ is measured angle theta A in the method of FIG. 5 theta A
= 2 (θ 0 + Δθ), and Δθ is included in the measured value as an error. Here, in order to eliminate the influence of Δθ, it is indispensable to install the parts such that the flat surface B of the mechanical part is orthogonal to the reference line 1, and in this case, there is a problem that the operation takes time.

【0006】このように従来の1本の光ビームによる測
定では、例えば2枚レンズの相対的な誤差がレンズの位
置ずれによるものか角度ずれによるものかその原因を区
別できないとか、あるいは部品の傾斜角の測定では測定
部品を設置したときの傾斜角度の影響が除去できないた
め測定精度が低下するという問題がある。
As described above, in the conventional measurement using one light beam, it is impossible to distinguish the cause of the relative error between the two lenses, for example, the positional deviation of the lenses or the angular deviation, or the inclination of the component. In the angle measurement, the influence of the tilt angle when the measurement component is installed cannot be eliminated, and thus there is a problem that the measurement accuracy decreases.

【0007】本発明は、上述の問題に鑑み、位置ずれか
角度ずれかの誤差を区別でき、また傾斜角測定にあって
は測定精度を向上させるようにした双方向光ビームによ
る部品の設置状態測定方法及び装置の提供を目的とす
る。
In view of the above-mentioned problems, the present invention is capable of distinguishing between an error of a positional deviation and an angular deviation, and also improves the measurement accuracy in tilt angle measurement. The purpose is to provide a measuring method and an apparatus.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成する本
発明は、(1)互いに反対方向に進む2本の光ビームを
重ね合わせて一本の双方向光ビームとし、この双方向光
ビーム中に置いた測定対象部品を透過した上記双方向光
ビームのうちの一方向に進む光ビームと、上記測定対象
部品を透過しない前の上記双方向光ビームのうちの他方
向に進む光ビームと、の相互の距離を測定することを特
徴とし、(2)測定対象部品の双方向光ビームに沿う一
側にて透過後の光ビームと透過前の光ビームとの相互の
距離に相応する角θA と、他側にて透過後の光ビームと
透過前の光ビームとの相互の距離に相応する角θB とを
決め、角度ずれによる偏向角と位置ずれによる偏向角と
は、(θA +θB )/2と(θA −θB )/2とにより
求めることを特徴とし、(3)互いに反対方向に進む2
本の光ビームを重ね合わせて一本の双方向光ビームと
し、この双方向光ビーム中に置いた測定対象部品の一方
の表面一点にて上記双方向光ビームのうちの一方向に進
む光ビームを反射させると共に、上記一方の表面に対応
する他方の表面一点にて上記双方向光ビームのうちの他
方向に進む光ビームを反射させ、それぞれの光ビームの
入射光と反射光との相互の距離を測定することを特徴と
し、(4)測定対象部品の双方向光ビームに沿う一側に
て入射光と反射光との相互の距離に相応する角θA と、
他側にて入射光と反射光との相互の距離に相応する角θ
B とを決め、双方向光ビームの基準線に対する上記一側
の傾斜角θ0 は、θ 0 =θA /2+θB により求めるこ
とを特徴とし、(5)可視光レーザ発振器から出た光ビ
ームをコリメートレンズと光ビーム径を縮小する逆エク
スパンダで細径光コリメートビームを形成する部分を備
え、この光コリメートビームをビームスプリッタで2本
の光ビームに分岐しそれぞれの分岐した光コリメートビ
ームを反射ミラーとハーフミラーを介して互いに反対方
向に進む2本のビームとし、さらに反射ミラーやハーフ
ミラーに位置や角度の調整機構を付加して2本の光ビー
ムを重合わせて一本の双方向光ビームを形成するマッハ
ツェンダ型光学系の測定部分を備え、ハーフミラーに対
して光コリメートビームの進行方向と反対側に設置した
撮像カメラ及びTVモニタの観察評価部分を備え、たこ
とを特徴とする。
A book that achieves the above-mentioned object
The invention provides (1) two light beams traveling in opposite directions.
The two bidirectional light beams are combined to form a bidirectional light beam.
The above bidirectional light transmitted through the part to be measured placed in the beam
A light beam that travels in one direction of the beam and the measurement target
The other of the above bidirectional light beams before passing through the component
The feature is to measure the mutual distance between the light beam traveling in the opposite direction.
(2) One along the bidirectional light beam of the part to be measured
On the side of the light beam after transmission and the light beam before transmission
Angle θ corresponding to the distanceAAnd the light beam after passing through on the other side
Angle θ corresponding to the mutual distance with the light beam before transmissionBAnd
The deflection angle due to the angular deviation and the deflection angle due to the positional deviation.
Is (θA+ ΘB) / 2 and (θA−θB) / 2 and
Characteristic of seeking, (3) proceeding in opposite directions 2
The two light beams are overlapped to form one bidirectional light beam.
One of the parts to be measured placed in this bidirectional light beam
A single point on the surface of the
Reflects the light beam and supports one of the above surfaces
The other side of the bidirectional light beam at one point on the other side
Reflects the light beam traveling in the direction,
Characterized by measuring the mutual distance between the incident light and the reflected light
(4) On one side of the part to be measured along the bidirectional light beam
Angle θ corresponding to the mutual distance between the incident light and the reflected lightAWhen,
The angle θ corresponding to the mutual distance between the incident light and the reflected light on the other side
BAnd one side above the reference line of the bidirectional light beam
Inclination angle of0Is θ 0= ΘA/ 2 + θBAsk by
And (5) optical beam emitted from a visible light laser oscillator.
The collimating lens and the reverse
Equipped with a part that forms a small-diameter collimated beam with a spanner
Eh, two beams of this collimated beam with a beam splitter
Optical beams are split into
The opposite side of the mirror through a reflection mirror and a half mirror
Two beams traveling in the same direction, and a reflection mirror and half
Two optical beads by adding a position and angle adjustment mechanism to the mirror
Mach that overlaps the beams to form a single bidirectional light beam
Equipped with a measurement part of a Zender type optical system and compatible with a half mirror
And installed on the side opposite to the direction of travel of the optical collimated beam.
It is equipped with an imaging camera and a TV monitor for observation and evaluation.
And are characterized.

【0009】[0009]

【作用】レンズ等の光透過部品を測定対象部品とすると
き、中心位置ずれと角度ずれとの違いにより双方向光ビ
ームの透過光が双方向光ビームの基準線に対して同じ側
に屈折するか互いに反対側に屈折するかの違いにより区
別・測定でき、また、傾斜角の測定に当っては双方向光
ビームの反射光によって一表面に対する他表面の傾斜を
加味して反射角を測定することができる。
When a light-transmitting component such as a lens is used as the measurement target component, the transmitted light of the bidirectional light beam is refracted to the same side with respect to the reference line of the bidirectional light beam due to the difference between the center position deviation and the angular deviation. It is possible to distinguish and measure by the difference of refraction to the opposite side, and when measuring the inclination angle, the reflection angle is measured by adding the inclination of the other surface to the one surface by the reflected light of the bidirectional light beam. be able to.

【0010】[0010]

【実施例】ここで、図1および図2を参照して本発明の
実施例を説明する。図1は、双方向光ビームによる2枚
レンズの設置状態の測定図で、2Aは左から右方向に進
む光ビームで、2Bは2Aと反対方向に進む光ビーム
で、光ビーム2Aと2Bは空間的に重なり1本の双方向
光ビームとなり、3Aと3Bはレンズで、レンズ3Bは
レンズ3Aに対してΔθ傾斜していたり(図1
(a))、距離dだけ位置ずれしている(図1
(b))。レンズ3Bを透過した光ビーム2Aを2A
T、レンズ3Aを透過した光ビーム2Bを2BTとす
る。図1(a)において、光ビーム2Aはレンズ3Aの
中心を通ってレンズ3Bの中心に向かって直進するが、
レンズ3Bを透過するときレンズ3Bの傾きΔθに対応
した角度αだけ偏向(図では光ビーム2Bの下側)した
光ビーム2ATとなって光ビーム2Bと重なることなく
右方向に進む。また、右から進行してきてレンズ3Bの
中心に入った光ビーム2Bもレンズ3Bの傾きにより角
度αだけ光ビーム2ATと反対方向(図では光ビーム2
Aの上側)に傾いた光ビーム2BTとなってレンズ3B
から出ていく。レンズ3Bを出た光ビーム2BTは、レ
ンズ3Aに対してその中心とは離れた位置でレンズ3A
に入射するため、レンズ3Aを出る光ビーム2BTも光
ビーム2Aとは重ならない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will now be described with reference to FIGS. FIG. 1 is a measurement diagram of a two-lens installation state using a bidirectional light beam. 2A is a light beam traveling from left to right, 2B is a light beam traveling in the opposite direction to 2A, and light beams 2A and 2B are Spatial overlapping results in one bidirectional light beam, 3A and 3B are lenses, and lens 3B is inclined by Δθ with respect to lens 3A (see FIG. 1).
(A)), the position is displaced by the distance d (Fig. 1).
(B)). 2A of the light beam 2A transmitted through the lens 3B
The light beam 2B that has passed through T and the lens 3A is referred to as 2BT. In FIG. 1A, the light beam 2A goes straight through the center of the lens 3A toward the center of the lens 3B.
When passing through the lens 3B, the light beam 2AT is deflected by the angle α corresponding to the inclination Δθ of the lens 3B (lower side of the light beam 2B in the figure), and goes to the right without overlapping the light beam 2B. Also, the light beam 2B that has traveled from the right and entered the center of the lens 3B is in the opposite direction to the light beam 2AT by the angle α due to the inclination of the lens 3B (in the figure,
The light beam 2BT tilted to the upper side of A) becomes a lens 3B
Get out of. The light beam 2BT emitted from the lens 3B is moved away from the center of the lens 3A with respect to the lens 3A.
Since the light beam 2BT exits the lens 3A, the light beam 2BT does not overlap the light beam 2A.

【0011】一方、図1(b)ではレンズ3Aを透過し
て直進してきた光ビーム2Aは、レンズ3Bの位置ずれ
によりその中心から距離dだけ離れた位置で入射する。
そして光ビーム2Aがレンズ3Bを出るときには、位置
ずれdに対応して光ビーム2Aに対して角度β(図では
光ビーム2Bの下側に)傾いた光ビーム2ATとなって
出射し光ビーム2Bとは重ならない。また光ビーム2B
のレンズ3Bに対する入射条件は、光ビーム2Aのレン
ズ3Bに対する入射と同じで進行方向が反対になってい
るだけであるため、その透過した光ビーム2BTの偏向
の方向と角度は光ビーム2ATと同じで進む方向だけが
反対になる。そしてこの光ビーム2BTはレンズ3Aに
対してそのレンズ中心から外れた位置(図では光ビーム
2Aの下側)を透過するので、レンズ3Aを出た光ビー
ム2BTはレンズ中心からの位置ずれ距離に依存した角
度でレンズ3Aを出射し、光ビーム2Aとは重ならな
い。
On the other hand, in FIG. 1B, the light beam 2A that has passed through the lens 3A and travels straight is incident at a position away from the center by a distance d due to the displacement of the lens 3B.
Then, when the light beam 2A leaves the lens 3B, it becomes a light beam 2AT that is inclined by an angle β (to the lower side of the light beam 2B in the figure) with respect to the light beam 2A corresponding to the positional deviation d, and is emitted as the light beam 2B. Does not overlap with. Also the light beam 2B
The incident condition of the light beam 2A on the lens 3B is the same as the incident condition of the light beam 2A on the lens 3B, but the traveling direction is opposite. Therefore, the direction and angle of deflection of the transmitted light beam 2BT are the same as those of the light beam 2AT. Only the direction to go is opposite. Since this light beam 2BT passes through the lens 3A at a position deviated from the lens center (the lower side of the light beam 2A in the figure), the light beam 2BT exiting the lens 3A is displaced from the center of the lens. It exits the lens 3A at a dependent angle and does not overlap the light beam 2A.

【0012】この結果、レンズ3Aに対するレンズ3B
の角度ずれ量または位置ずれ量は、レンズ3Bの右側の
空間においてレンズ3Bからの一定の距離だけ離れた場
所での光ビーム2Bと透過光ビーム2ATの間隔から求
めることができる。そして2本の光ビームのずれがレン
ズの角度ずれと位置ずれのどちらが原因であるかは、双
方向光ビームに対する透過光ビームの現れる位置で区別
できる。すなわち、双方向光ビームの基準位置に対して
透過光ビーム2ATと2BTがそれぞれ反対側に現れる
(図1(a)ではレンズ3Aの左空間において光ビーム
2Aに対する透過光ビーム2BTが上側にある)場合は
角度ずれによるもので、双方向光ビームの基準位置に対
して透過光ビーム2ATと2BTが同じ側に現れる(図
1(b)では透過光ビーム2BTが下側にある)場合は
位置ずれによるものと判定することができる。
As a result, the lens 3B is different from the lens 3A.
The angular shift amount or the positional shift amount of can be obtained from the distance between the light beam 2B and the transmitted light beam 2AT at a position separated from the lens 3B by a certain distance in the space on the right side of the lens 3B. Then, whether the displacement of the two light beams is caused by the angular displacement or the positional displacement of the lens can be distinguished by the position where the transmitted light beam appears with respect to the bidirectional light beam. That is, the transmitted light beams 2AT and 2BT appear on the opposite sides of the reference position of the bidirectional light beam (in FIG. 1A, the transmitted light beam 2BT with respect to the light beam 2A is on the upper side in the left space of the lens 3A). In this case, the positional deviation is caused by the angular displacement. When the transmitted light beams 2AT and 2BT appear on the same side with respect to the reference position of the bidirectional light beam (in FIG. 1B, the transmitted light beam 2BT is on the lower side), the positional displacement occurs. It can be determined that

【0013】角度と位置の両方がずれている場合には、
左右への角度ずれと上下への位置ずれとの組合せ方によ
り4通りの場合が考えられ、いずれの場合でも図1の
(a)と(b)を基本として角度ずれと位置ずれを区別
し、それぞれの大きさを求めることができる。一例とし
て、図1(c)を用いて図1(a)の角度ずれと(b)
の位置ずれの両方が起きている場合について説明する。
光ビーム2Bに対する透過光ビーム2ATの偏向はどち
らも同じ方向になるので、その偏向角θA は位置ずれに
よる偏向角αと角度ずれによる偏向角βを加えた(α+
β)となる。一方、光ビーム2Aに対する透過光ビーム
2BTの偏向方向は、角度ずれと位置ずれとでは異なり
光ビーム2Aに対して反対側に存在することになるの
で、その偏向角θB は両者の差に等しく、ここで角度ず
れによる偏向角αが位置ずれによる偏向角βより大きい
とすると、レンズ3Bを出た透過光2BTは光ビーム2
Aの上側に存在しその偏向角θB は(α−β)となる。
偏向角θA はレンズ3Bの右側で、二つの光ビームの距
離およびレンズ3Bから光ビーム間の距離測定を行う位
置(図示せず)までの距離とから求めることができる。
一方、レンズ3Bを出た偏向角θB を有する透過光ビー
ム2BTは、そのままの角度でレンズ2Aに入射し、偏
向角γとなってレンズ2Aから出ていく。偏向角γはレ
ンズ2Aの左側の異なる二つの場所(図示せず)での二
つの光ビームの距離測定から得られ、偏向角γが明らか
になるとよく知られた光線行列式を用いて偏向角θB
求められる。このようにして得られた二つの偏向角
θA ,θB の測定値から角度ずれによる偏向角αと位置
ずれによる偏向角βは次式から求められる。 α=(θA +θB )/2 β=(θA −θB )/2
When both the angle and the position are deviated,
There are four possible cases depending on the combination of the left and right angular displacement and the vertical positional displacement. In any case, the angular displacement and the positional displacement are distinguished based on FIGS. 1A and 1B. Each size can be calculated. As an example, using FIG. 1C, the angular deviation of FIG.
A case where both of the positional shifts of 1 occur will be described.
Since the deflection of the transmitted light beam 2AT with respect to the light beam 2B is in the same direction, the deflection angle θ A is obtained by adding the deflection angle α due to the positional deviation and the deflection angle β due to the angular deviation (α +
β). On the other hand, the deflection direction of the transmitted light beam 2BT with respect to the light beam 2A is on the opposite side with respect to the light beam 2A because of the angular deviation and the positional deviation, and therefore the deflection angle θ B is equal to the difference between them. If the deflection angle α due to the angular displacement is larger than the deflection angle β due to the positional displacement, the transmitted light 2BT emitted from the lens 3B is the light beam 2
It exists above A and its deflection angle θ B is (α-β).
The deflection angle θ A can be obtained on the right side of the lens 3B from the distance between the two light beams and the distance from the lens 3B to a position (not shown) for measuring the distance between the light beams.
On the other hand, the transmitted light beam 2BT having the deflection angle θ B, which has exited the lens 3B, is incident on the lens 2A at the angle as it is, and exits from the lens 2A at the deflection angle γ. The deflection angle γ is obtained from the distance measurement of two light beams at two different places (not shown) on the left side of the lens 2A, and the deflection angle γ is obtained by using a well-known ray determinant. θ B is obtained. From the two measured deflection angles θ A and θ B thus obtained, the deflection angle α due to the angular deviation and the deflection angle β due to the positional deviation can be obtained from the following equations. α = (θ A + θ B ) / 2 β = (θ A −θ B ) / 2

【0014】図2は部品の角度測定例で、2A,2Bは
双方向光ビームを構成する光ビーム、2AR,2BRは
反射光、5は被測定部品、B面は部品の基準面でA面は
B面に対して角度θ0 だけ傾斜している。双方向光ビー
ムに対してB面が角度Δθだけ傾いて設置されている部
品5のA面に光ビーム2Aを照射したとき、その反射光
2ARと光ビーム2Aのなす角をθA とすると、光ビー
ム2Aに対するA面の傾斜角(θ0 +Δθ)の間には次
式の関係がある。 θA =2(θ0 +Δθ) 同様にして、光ビーム2Bとその反射光2BRのなす角
をθB とすれば、B面の傾斜角Δθとの間にも、次式の
関係がある。 θB =2Δθ 上記2式により角度θ0 の値が次式にて求められる。 θ0 =θA /2+θB
FIG. 2 shows an example of measuring the angle of a component. 2A and 2B are light beams forming a bidirectional light beam, 2AR and 2BR are reflected lights, 5 is a component to be measured, B is a reference plane of the component, and A is a plane. Is inclined with respect to the B plane by an angle θ 0 . When the light beam 2A is applied to the A surface of the component 5 in which the B surface is inclined by the angle Δθ with respect to the bidirectional light beam, the angle between the reflected light 2AR and the light beam 2A is θ A , The inclination angle (θ 0 + Δθ) of the surface A with respect to the light beam 2A has the following relationship. θ A = 2 (θ 0 + Δθ) Similarly, if the angle formed by the light beam 2B and its reflected light 2BR is θ B , the relationship between the tilt angle Δθ of the B surface also has the following expression. θ B = 2Δθ From the above two equations, the value of the angle θ 0 can be obtained by the following equation. θ 0 = θ A / 2 + θ B

【0015】図3は、前記の測定を実施した装置構成
で、6のHe−Neレーザ、7のピンホール、8のコリ
メートレンズ、9の光ビーム径を1/20に縮小する逆
エクスパンダとからなる細径平行光ビーム形成部と、1
0の全反射ミラー、11のビームスプリッタ、12のハ
ーフミラー、13のXYZ並行軸とαβγ回転軸の6軸
が調整可能なステージ、14の被測定物とからなるマッ
ハツェンダ型測定光学系、および15A,15Bの同軸
照明とズーム拡大光学系を有するCCDカメラと画像処
理機能を有する16A,16Bのテレビモニタからなる
観察評価部の3つの主要部分からなっている。
FIG. 3 shows an apparatus configuration in which the above-mentioned measurement is carried out. A He-Ne laser 6; a pinhole 7; a collimating lens 8; and an inverse expander for reducing the light beam diameter 9 to 1/20. A small-diameter parallel light beam forming unit and 1
0 total reflection mirror, 11 beam splitter, 12 half mirror, 13 XYZ parallel axis and 6 stages of αβγ rotation axis adjustable, Mach-Zehnder type measurement optical system consisting of 14 DUT, and 15A , 15B coaxial illumination and a CCD camera having a zoom magnifying optical system, and 16A and 16B television monitors having an image processing function.

【0016】レーザ6を出た光はピンホール7とコリメ
ートレンズ8により直径2mmの光ビームとなり、さら
に逆エクスパンダ9を経て0.1mmの平行光ビームに
変換される。この平行光ビームは全反射ミラー10Aに
て直角に曲げられ、ビームスプリッタ11で2本の光ビ
ームに分岐され、1本はハーフミラー12Bで進路を直
角に曲げられて右方向から被測定物14に当たる光ビー
ム2Bとなり、もう1本は全反射ミラー10Bで直角に
進路を曲げられた後、ハーフミラー12Aに入りもう一
度進路は直角に曲げられて左方向から被測定物14に当
たる光ビーム2Aとなる。このようにして形成した2本
の光ビーム2Aと2Bは空間的に重なり合って1本のビ
ームになったときに双方向光ビームが得られたことにな
る。このためには被測定物14の位置に半透過性スクリ
ーン(図示せず)を置き、このスクリーンがハーフミラ
ー12Aと12Bの間のどの位置にあってもスクリーン
上で2本の光ビーム2Aと2Bが1つのスポットになる
よう、ハーフミラーを載せた2つの6軸ステージをそれ
ぞれ調整する。スクリーン上で2つの光ビームスポット
が1つになったかどうかはCCDカメラ15A,15B
とテレビモニタ16A,16Bを通して確認する。実際
の測定は図3の所定位置に被測定物14と、被測定物1
4とハーフミラー12Aおよび12Bの間の2ヶ所に被
測定物14から一定距離離れた位置に半透過性スクリー
ン(図示せず)を設置し、このスクリーン上に現れるス
ポットの間隔を測定するだけである。なお、本願発明の
測定装置の各光学部品の配置は図5に限定されるもので
なく、発明の主旨を逸脱しない範囲で変更可能である。
The light emitted from the laser 6 is converted into a light beam having a diameter of 2 mm by the pinhole 7 and the collimator lens 8 and further converted into a parallel light beam having a diameter of 0.1 mm through the inverse expander 9. This parallel light beam is bent at a right angle by the total reflection mirror 10A, split into two light beams by the beam splitter 11, and one is bent at a right angle by the half mirror 12B, and the measured object 14 is moved from the right direction. The light beam 2B that hits the object 14 is bent at a right angle by the total reflection mirror 10B, and then enters the half mirror 12A. . When the two light beams 2A and 2B thus formed are spatially overlapped to form one beam, a bidirectional light beam is obtained. For this purpose, a semi-transmissive screen (not shown) is placed at the position of the object to be measured 14, and no matter where this screen is located between the half mirrors 12A and 12B, two light beams 2A are projected on the screen. Adjust two 6-axis stages with half mirrors so that 2B becomes one spot. Whether or not the two light beam spots become one on the screen is determined by CCD cameras 15A and 15B.
And confirm through the television monitors 16A and 16B. In the actual measurement, the DUT 14 and the DUT 1 are placed at predetermined positions in FIG.
By installing a semi-transmissive screen (not shown) at a certain distance from the object to be measured 14 at two positions between the 4 and the half mirrors 12A and 12B, and measuring the distance between the spots appearing on the screen. is there. The arrangement of each optical component of the measuring apparatus of the present invention is not limited to that shown in FIG. 5 and may be changed within the scope of the invention.

【0017】[0017]

【発明の効果】以上説明したように、部品相互の位置誤
差要因の決定や部品の姿勢に影響されやすい傾斜角の高
精度測定など1本の光ビームでは困難な測定が、本発明
によれば双方向光ビームを用いて被測定物の両側の空間
で二つの光ビームの距離を測定するだけの簡単な操作で
容易に可能となり、しかもこの測定を行うための装置は
レーザ、エクスパンダ、CCDカメラ、ビームスプリッ
タなどの光学部品および6軸調整ステージといった一般
市販品のみを用いた簡単な構成で実現できる。なお、図
1の実施例においてレンズを透過した光ビームとレンズ
を透過する前の光ビームの2本の光ビームが1本に重な
るように、一方のレンズに対する他方のレンズの位置調
整を行うと、図2の例ではB面に対する入射光と反射光
が一致するように部品の姿勢を調整することにより、本
発明を部品の位置調整方法とその装置としても応用でき
ることは明らかである。
As described above, according to the present invention, it is possible to perform measurement that is difficult with a single light beam, such as determination of factors of positional error between components and high-accuracy measurement of tilt angles that are easily influenced by the postures of components. This can be easily done by simply measuring the distance between two light beams in the space on both sides of the object to be measured using a bidirectional light beam, and the device for this measurement is a laser, expander, CCD. It can be realized with a simple configuration using only general commercial products such as a camera, a beam splitter, and other optical components and a 6-axis adjustment stage. In the embodiment of FIG. 1, when the position adjustment of one lens with respect to the other lens is performed so that the two light beams, the light beam that has passed through the lens and the light beam that has not passed through the lens, overlap each other. In the example of FIG. 2, it is apparent that the present invention can be applied as a component position adjusting method and its device by adjusting the posture of the component so that the incident light and the reflected light with respect to the B surface are matched.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による2枚レンズの相対精度の測定方法
の説明図。
FIG. 1 is an explanatory view of a method for measuring relative accuracy of two lenses according to the present invention.

【図2】機械部品の傾斜角測定方法の説明図。FIG. 2 is an explanatory diagram of a method for measuring a tilt angle of a mechanical component.

【図3】装置の構成図。FIG. 3 is a block diagram of the apparatus.

【図4】従来の1本の光ビームの2枚レンズの相対精度
の測定方法の説明図。
FIG. 4 is an explanatory view of a conventional method for measuring relative accuracy of two lenses of one light beam.

【図5】従来の機械部品の傾斜角測定方法の説明図。FIG. 5 is an explanatory view of a conventional method for measuring a tilt angle of a mechanical component.

【符号の説明】[Explanation of symbols]

1 基準線 2,2A,2B,2AT,2BT,2AR,2BR 光
ビーム 3A,3B レンズ 4 スクリーン 5 被測定物 6 He−Neレーザ 7 ピンホール 8 コリメートレンズ 9 逆エクスパンダ 10A,10B 全反射ミラー 11 ビームスプリッタ 12A,12B ハーフミラー 13A,13B 6軸ステージ 14 被測定物 15A,15B CCDカメラ 16A,16B テレビモニタ
1 Reference line 2, 2A, 2B, 2AT, 2BT, 2AR, 2BR Light beam 3A, 3B Lens 4 Screen 5 Object to be measured 6 He-Ne laser 7 Pinhole 8 Collimating lens 9 Reverse expander 10A, 10B Total reflection mirror 11 Beam splitter 12A, 12B Half mirror 13A, 13B 6-axis stage 14 DUT 15A, 15B CCD camera 16A, 16B TV monitor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 互いに反対方向に進む2本の光ビームを
重ね合わせて一本の双方向光ビームとし、 この双方向光ビーム中に置いた測定対象部品を透過した
上記双方向光ビームのうちの一方向に進む光ビームと、
上記測定対象部品を透過しない前の上記双方向光ビーム
のうちの他方向に進む光ビームと、の相互の距離を測定
することを特徴とする双方向光ビームによる部品の設置
状態測定方法。
1. A bidirectional light beam is formed by superposing two light beams traveling in opposite directions to each other, and the bidirectional light beam is transmitted through a component to be measured placed in the bidirectional light beam. A light beam traveling in one direction,
A method for measuring the installation state of a component using a bidirectional light beam, which comprises measuring a mutual distance between the bidirectional light beam that has not passed through the component to be measured and a light beam that travels in the other direction.
【請求項2】 測定対象部品の双方向光ビームに沿う一
側にて透過後の光ビームと透過前の光ビームとの相互の
距離に相応する角θA と、他側にて透過後の光ビームと
透過前の光ビームとの相互の距離に相応する角θB とを
決め、角度ずれによる偏向角と位置ずれによる偏向角と
は、(θA +θB )/2と(θA −θ B )/2とにより
求めることを特徴とする請求項1記載の双方向光ビーム
による部品の設置状態測定方法。
2. One of the parts to be measured along the bidirectional light beam.
On the side of the light beam after transmission and the light beam before transmission
Angle θ corresponding to the distanceAAnd the light beam after passing through on the other side
Angle θ corresponding to the mutual distance with the light beam before transmissionBAnd
The deflection angle due to the angular deviation and the deflection angle due to the positional deviation.
Is (θA+ ΘB) / 2 and (θA−θ B) / 2 and
2. The bidirectional light beam according to claim 1, which is obtained.
How to measure the installation status of parts.
【請求項3】 互いに反対方向に進む2本の光ビームを
重ね合わせて一本の双方向光ビームとし、 この双方向光ビーム中に置いた測定対象部品の一方の表
面一点にて上記双方向光ビームのうちの一方向に進む光
ビームを反射させると共に、上記一方の表面に対応する
他方の表面一点にて上記双方向光ビームのうちの他方向
に進む光ビームを反射させ、それぞれの光ビームの入射
光と反射光との相互の距離を測定することを特徴とする
双方向光ビームによる部品の設置状態測定方法。
3. Two bidirectional light beams advancing in mutually opposite directions are superposed to form one bidirectional light beam, and the bidirectional light beam is placed at one point on one surface of a component to be measured placed in the bidirectional light beam. The light beam that travels in one direction of the light beam is reflected, and the light beam that travels in the other direction of the bidirectional light beam is reflected at one point on the other surface corresponding to the one surface. A method for measuring the installation state of a component using a bidirectional light beam, characterized in that the mutual distance between the incident light and the reflected light of the beam is measured.
【請求項4】 測定対象部品の双方向光ビームに沿う一
側にて入射光と反射光との相互の距離に相応する角θA
と、他側にて入射光と反射光との相互の距離に相応する
角θB とを決め、双方向光ビームの基準線に対する上記
一側の傾斜角θ0 は、θ0 =θA /2+θB により求め
ることを特徴とする請求項3記載の双方向光ビームによ
る部品の設置状態測定方法。
4. An angle θ A corresponding to the mutual distance between incident light and reflected light on one side of the component to be measured along the bidirectional light beam.
And an angle θ B corresponding to the mutual distance between the incident light and the reflected light on the other side, and the inclination angle θ 0 of the one side with respect to the reference line of the bidirectional light beam is θ 0 = θ A / The method for measuring the installation state of a component by means of a bidirectional light beam according to claim 3, wherein the method is determined by 2 + θ B.
【請求項5】 可視光レーザ発振器から出た光ビームを
コリメートレンズと光ビーム径を縮小する逆エクスパン
ダで細径光コリメートビームを形成する部分を備え、こ
の光コリメートビームをビームスプリッタで2本の光ビ
ームに分岐しそれぞれの分岐した光コリメートビームを
反射ミラーとハーフミラーを介して互いに反対方向に進
む2本のビームとし、さらに反射ミラーやハーフミラー
に位置や角度の調整機構を付加して2本の光ビームを重
合わせて一本の双方向光ビームを形成するマッハツェン
ダ型光学系の測定部分を備え、ハーフミラーに対して光
コリメートビームの進行方向と反対側に設置した撮像カ
メラ及びTVモニタの観察評価部分を備え、たことを特
徴とする双方向光ビームによる部品の設置状態測定装
置。
5. A light beam emitted from a visible light laser oscillator is provided with a collimating lens and a portion for forming a small-diameter light collimated beam by an inverse expander for reducing the light beam diameter, and two light collimated beams are provided by a beam splitter. The light beams are split into two light beams, and each split light collimated beam is made into two beams that travel in opposite directions through the reflection mirror and the half mirror. Furthermore, a mechanism for adjusting the position and angle is added to the reflection mirror and the half mirror. An imaging camera and a TV that are provided with a measurement unit of a Mach-Zehnder type optical system that forms two bidirectional light beams by superimposing two light beams, and is installed on the side opposite to the traveling direction of the optical collimated beam with respect to the half mirror. A device installation state measuring device using a bidirectional light beam, which is provided with an observation and evaluation part of a monitor.
JP14438594A 1994-06-27 1994-06-27 Method and apparatus for measuring component installation state using bidirectional light beam Expired - Fee Related JP3289865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14438594A JP3289865B2 (en) 1994-06-27 1994-06-27 Method and apparatus for measuring component installation state using bidirectional light beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14438594A JP3289865B2 (en) 1994-06-27 1994-06-27 Method and apparatus for measuring component installation state using bidirectional light beam

Publications (2)

Publication Number Publication Date
JPH0814818A true JPH0814818A (en) 1996-01-19
JP3289865B2 JP3289865B2 (en) 2002-06-10

Family

ID=15360912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14438594A Expired - Fee Related JP3289865B2 (en) 1994-06-27 1994-06-27 Method and apparatus for measuring component installation state using bidirectional light beam

Country Status (1)

Country Link
JP (1) JP3289865B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116202425A (en) * 2022-06-15 2023-06-02 武汉鑫岳光电科技有限公司 Laser ranging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116202425A (en) * 2022-06-15 2023-06-02 武汉鑫岳光电科技有限公司 Laser ranging device
CN116202425B (en) * 2022-06-15 2023-09-12 武汉鑫岳光电科技有限公司 Laser ranging device

Also Published As

Publication number Publication date
JP3289865B2 (en) 2002-06-10

Similar Documents

Publication Publication Date Title
JP2752003B2 (en) Inspection interferometer with scanning function
JP2913984B2 (en) Tilt angle measuring device
US5059022A (en) Device for measuring radius of curvature and a method thereof
CA2221170A1 (en) Laser beamsplitter for generating a plurality of parallel beams
US6219146B1 (en) Laser reflector alignment
US5995215A (en) Autocollimator with grating
US5383025A (en) Optical surface flatness measurement apparatus
JPH0814818A (en) Measurement method and device for installation state of parts using bidirectional optical beam
WO2018099348A1 (en) Focusing and leveling device
US3832063A (en) Lens axis detection using an interferometer
JP2005003667A (en) Reference axis setting optical system, eccentricity measuring machine and eccentricity-measuring method using the optical system
JPH095055A (en) Surface inclination detecting device
JP2902417B2 (en) Interferometer for measuring wavefront aberration
JP2527176B2 (en) Fringe scanning shearing interferometer
JP2671479B2 (en) Surface shape measuring device
JPH08166209A (en) Polygon mirror evaluating device
JP2783252B2 (en) Angle difference measuring device between two surfaces
JPH03130603A (en) Inspection of molding die for roof reflecting mirror
JPH10281720A (en) Stage device and wave front aberration measuring device using the same
JPS59197809A (en) Interference measuring device
SU1058875A1 (en) Laser profilograph
JPH07318453A (en) Polygon mirror evaluating device
JPS61253405A (en) Shear amount measurement in shearing interference measurement system
JPS5987309A (en) Measuring device of inclination of face
JPH02259511A (en) Interference measuring instrument

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees