JPH0814737A - Method and apparatus for low-temperature rapid dehydration and drying by high-speed fluid - Google Patents

Method and apparatus for low-temperature rapid dehydration and drying by high-speed fluid

Info

Publication number
JPH0814737A
JPH0814737A JP7141051A JP14105195A JPH0814737A JP H0814737 A JPH0814737 A JP H0814737A JP 7141051 A JP7141051 A JP 7141051A JP 14105195 A JP14105195 A JP 14105195A JP H0814737 A JPH0814737 A JP H0814737A
Authority
JP
Japan
Prior art keywords
dried
drying
suction
water
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7141051A
Other languages
Japanese (ja)
Inventor
Toshimi Kuma
利実 隈
Shinji Kadoya
信治 角屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP7141051A priority Critical patent/JPH0814737A/en
Publication of JPH0814737A publication Critical patent/JPH0814737A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

PURPOSE:To considerably shorten a period of time required for dehydration and drying by having a high-speed jet flow and a high-speed negative-pressure flow directly and strongly sucking water droplets and steam from an article being dried to dry the latter while the flows are speeded up due to a synergistic effect. CONSTITUTION:A wet mat 1 formed by implanting a multiplicity of fibers 1a in a rubber sheet substrate 1b is secured as an article being dried to a moving mount base 2, a suction nozzle 3c on a suction pipe 3a is disposed on upper surfaces of the fibers 1a on the mat 1 to enable sliding contact therewith, and a suction port of a fan 4 is connected to the suction pipe 3a. The fan 4 is actuated to make a high-speed jet flow R from a discharge nozzle 3d reach near roots of the multiplicity of fibers 1a such that the high-speed jet flow R and a high-speed negative-pressure flow Q are increased in speed due to synergistic effect to dry the mat 1 while directly and strongly sucking water droplets and steam therefrom. Accordingly, it is possible to considerably shorten a period of time required for dehydration and drying and greatly save energy consumption without injuring the mat 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマツト、じゅうたん、織
物、衣類、不織布、合成樹脂、ガラス、フイルム、厚紙
等のシート状物その他扁平状部品の乾燥に使用する高速
流体による低温急速脱水乾燥の方法および装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to low temperature rapid dehydration drying with a high-speed fluid used for drying sheet materials such as mats, carpets, woven fabrics, clothing, non-woven fabrics, synthetic resins, glass, film, cardboard and other flat parts. A method and apparatus.

【0002】[0002]

【従来の技術】マツト類、長尺の布帛、シート類等の乾
燥には外気による自然乾燥、加熱乾燥、遠心力を利用し
た脱水乾燥、通風による乾燥、加圧脱水乾燥、減圧によ
る真空乾燥等が一般に行なわれている。このうち減圧、
真空乾燥は被乾燥物を収納したチヤンバー内を減圧する
ことにより蒸気圧を低下させ被乾燥物が含有している湿
分を蒸発させ気化熱を奪いながら乾燥するため被乾燥物
が冷却され凍り付く現象が現われる。これを防止するた
め被乾燥物を加熱しなければならないので大きな熱エネ
ルギーを必要とし、かつ乾燥に長時間を要する欠陥があ
つた。特に家庭用足ふきマツト、営業用クツふきマツト
等は補強用ゴムシート表面に各種繊維を植毛したり、織
物をゴムシートに接着してあり、マツトの厚さ方向に通
気性が全くないため乾燥が極めて困難であつた。また熱
風乾燥では加熱通風によって被乾燥物の水分を蒸発させ
乾燥するため大きな気化熱エネルギーを必要とする。
2. Description of the Related Art For drying mats, long cloths, sheets, etc., natural drying by outside air, heat drying, dehydration drying using centrifugal force, drying by ventilation, pressure dehydration drying, vacuum drying by decompression, etc. Is generally practiced. Of these, decompression,
Vacuum drying reduces the vapor pressure by depressurizing the chamber that contains the material to be dried, evaporates the moisture contained in the material to be dried and removes the heat of vaporization to dry it, causing the material to cool and freeze. Appears. In order to prevent this, the material to be dried has to be heated, which requires a large amount of heat energy and has a defect that it takes a long time to dry. Especially for domestic foot wipe mats and commercial foot wipe mats, various fibers are planted on the surface of the reinforcing rubber sheet, and the fabric is adhered to the rubber sheet, so there is no air permeability in the thickness direction of the mat, so it is dry. Was extremely difficult. Further, in hot air drying, a large amount of heat of vaporization heat energy is required because the moisture of the material to be dried is evaporated by heating air to dry it.

【0003】また長尺かつ広幅の天然繊維または合成繊
維の緻密な織物その他の布帛、合成樹脂シート、紙等の
製造工程中での乾燥においても均一な加熱乾燥をするた
めには精密な温度コントロールが必要でありかつ低温
(約60℃以下)乾燥の場合には長時間を要する。また
梅雨時の高湿度により畳、ゴザが多量の湿気を含む場合
には従来の熱風乾燥方式ではかなり高温高圧の熱風を用
いなければならないため被乾燥物を熱劣化させるおそれ
があつた。また遠心力を用いた脱水乾燥方法では被乾燥
物を高速回転ドラム内に収納し、これを高速で回転し水
に遠心力を与えて脱水する方式であり、この方式では被
乾燥物の水分を75%以上は脱水できず次の工程で再び
乾燥しなければならない欠陥があつた。
In addition, in the drying of a long and wide natural fiber or a dense woven fabric such as synthetic fiber or other cloth, synthetic resin sheet, paper or the like in the manufacturing process, precise temperature control is required for uniform heating and drying. Is required and a long time is required in the case of low temperature (about 60 ° C. or lower) drying. Further, when the tatami mat and the moss contain a large amount of moisture due to the high humidity during the rainy season, the conventional hot air drying method requires the use of hot air at a considerably high temperature and pressure, which may cause thermal deterioration of the material to be dried. Further, in the dehydration / drying method using centrifugal force, the material to be dried is stored in a high-speed rotating drum, and this is rotated at a high speed to impart centrifugal force to water to dehydrate the material. There was a defect that more than 75% could not be dehydrated and had to be dried again in the next step.

【0004】[0004]

【発明が解決しようとする課題】本願は上記の諸欠陥を
除くため高速負圧流または高速負圧流と高速ジェット流
との組合せを利用して被乾燥物を低温(約60℃以下)
で連続的に脱水乾燥し、脱水乾燥の所要時間を著しく短
縮できかつ被乾燥物を傷めることなく消費エネルギーを
大幅に節約できる連続的低温急速脱水乾燥の方法および
装置を提供しようとするものである。
In order to eliminate the above-mentioned defects, the present application utilizes a high-speed negative pressure flow or a combination of a high-speed negative pressure flow and a high-speed jet flow to cool the material to be dried at a low temperature (about 60 ° C. or less).
The present invention aims to provide a continuous low-temperature rapid dehydration drying method and apparatus capable of significantly reducing the time required for dehydration drying and drastically reducing energy consumption without damaging an object to be dried. .

【0005】[0005]

【課題を解決するための手段】本発明は濡れた被乾燥物
例えば織物、植毛シート、カーペット等特に通気性のな
いゴムシート等を裏打ちしたマット等の乾燥において、
繊維の間隙に付着した水分および繊維自身に浸潤付着し
た水分を吸出しノズルの強力な負圧流によつて吸出し、
または吸出しノズルと吐出ノズルを使用して高速ジエツ
ト流と高速負圧流との組合せによる相乗効果により両高
速流を増速しながら連続脱水乾燥するもので、マット等
の繊維間隙に付着した水分および繊維自身に浸潤付着し
ている水分を繊維から剥離させながら吸出しノズルの負
圧流領域に移送し、吸出しノズルの高速負圧流に乗せて
微細な水滴となし、繊維の根元から上部に向ってこの水
滴を移送し、吸出し管によって吸出し排出することによ
り連続的かつ効率的に低温で急速脱水乾燥することがで
きる。
The present invention relates to the drying of a wet material to be dried, for example, a woven fabric, a flocked sheet, a carpet, or a mat lined with a non-breathable rubber sheet.
Suction the water adhering to the gaps between the fibers and the water infiltrating and adhering to the fibers themselves by a strong negative pressure flow of the nozzle,
Alternatively, by using a suction nozzle and a discharge nozzle to continuously dehydrate and dry while increasing the speed of both high-speed jet flow and high-speed negative pressure flow by the synergistic effect of the combination of high-speed jet flow and high-speed negative pressure flow. The water that has infiltrated and attached to itself is transferred to the negative pressure flow area of the suction nozzle while separating from the fiber, and put on the high-speed negative pressure flow of the suction nozzle to form fine water droplets. It is possible to continuously and efficiently perform rapid dewatering and drying at low temperature by transferring, and sucking and discharging by a suction pipe.

【0006】この発明では被乾燥物より70%以下の水
分を除くことを単なる脱水とよび、70〜86%の水分
を除くことを脱水乾燥とよび、86〜95%の水分を除
くことを乾燥とよぶ。さらに被乾燥物より95〜100
%の水分を除去することを絶対乾燥とよぶ。ここで上記
の百分率は被乾燥物の最大保水量を100%としこの値
より除水した場合の割合をいう。例えば被乾燥物の最大
保水量を1kgとしこれを0.9kg除水した場合を9
0%の乾燥という。
In the present invention, removing 70% or less of water from the material to be dried is referred to as simple dehydration, removing 70 to 86% of water is referred to as dehydration drying, and removing 86 to 95% of water is referred to as drying. Call it. 95 to 100 from the material to be dried
Removing% water is called absolute drying. Here, the above percentage means the ratio when the maximum water retention amount of the material to be dried is 100% and water is removed from this value. For example, if the maximum amount of water retention of the material to be dried is 1 kg and 0.9 kg of water is removed,
It is said to be 0% dry.

【0007】[0007]

【実施例1】図3は水分吸出しノズル3cを用いた本発
明の脱水装置の一実施例、図4は吸出しノズル3cの拡
大斜視図を示す。移動載置台2に多数の繊維1aを通気
性のないゴムシート基材1bに植え込んだ濡れたマット
1を被乾燥物として定着し、吸出し管3aの吸出しノズ
ル3cをマット1の繊維1aの上面に近接好ましくは接
触摺動できるように配置し、送風機4の吸込口を吸出し
管3aと連結する。マット基材裏面は面状ヒータPhな
どで加熱する。マット1は載置台2とともに図中矢印P
方向に5〜50mm/sec.の速さで移動させる。な
お一般に吸出しノズル3cから負圧のおよぶ範囲は1D
以内(図5参照)とされており1Dから吸出しノズル3
cに近づくに従い負圧は急速に大きくなる。ここで負圧
とは大気圧(1kg/cm)と比べて低い圧力をい
う。
[Embodiment 1] FIG. 3 shows an embodiment of a dehydrating apparatus of the present invention using a moisture suction nozzle 3c, and FIG. 4 shows an enlarged perspective view of the suction nozzle 3c. The wet mat 1 in which a large number of fibers 1a are planted in the air-impermeable rubber sheet substrate 1b is fixed on the movable mounting table 2 as a material to be dried, and the suction nozzle 3c of the suction pipe 3a is placed on the upper surface of the fibers 1a of the mat 1. It is arranged so that it can be brought into close proximity, preferably in sliding contact, and the suction port of the blower 4 is connected to the suction pipe 3a. The back surface of the mat substrate is heated by a planar heater Ph or the like. The mat 1 together with the mounting table 2 is indicated by an arrow P in the figure.
5 to 50 mm / sec. Move at the speed of. Generally, the range of negative pressure from the suction nozzle 3c is 1D.
It is said to be within (see Fig. 5), and suction nozzle 3 from 1D
The negative pressure rapidly increases as it approaches c. Here, the negative pressure means a pressure lower than the atmospheric pressure (1 kg / cm 2 ).

【0008】送風機4を作動させると図6に示す如く吸
出し管3aの吸出しノズル3cにおける高速負圧流Qに
よりマット1の繊維1aの間隙に付着した水分12aお
よび繊維1a自身に浸潤した層状の水分12(以後水膜
12という)は吸い上げられながら連続した水滴状態1
3(図7)となりさらに繊維1a表面において水の表面
張力により小さな多数の水滴14(図8)となり、これ
が高速負圧流に乗って吸出し管3a内に吸出されマット
1は乾燥する。この場合水分の蒸発も伴う。この蒸発に
よる気化熱でマツト自身の温度が低下するのを防止する
ため特に冬期では面状ヒータPhで加熱し乾燥を促進す
る。このようにして繊維1aの下部から上部まで微細な
水滴を生成し高速負圧流Qにより微細な水滴は吸出しノ
ズル3cに運び込まれ吸出し管3aに移送され送風機に
より外気に排出される。
When the blower 4 is operated, the moisture 12a adhering to the gap between the fibers 1a of the mat 1 and the layered moisture 12 infiltrated into the fibers 1a themselves by the high-speed negative pressure flow Q in the suction nozzle 3c of the suction pipe 3a as shown in FIG. (Hereinafter referred to as water film 12) is a continuous state of water drops being sucked up 1
3 (FIG. 7) and a large number of small water droplets 14 (FIG. 8) on the surface of the fiber 1a due to the surface tension of water, which are carried by the high-speed negative pressure flow and sucked out into the suction pipe 3a, and the mat 1 is dried. In this case, evaporation of water is also involved. In order to prevent the temperature of the mat itself from lowering due to the heat of vaporization due to this evaporation, heating is performed by the sheet heater Ph especially in winter to promote the drying. In this way, fine water droplets are generated from the lower portion to the upper portion of the fiber 1a, and the fine water droplets are carried by the high-speed negative pressure flow Q to the suction nozzle 3c, transferred to the suction pipe 3a, and discharged to the outside air by the blower.

【0009】本実施例ではノズル3cを負圧流Qが重力
に逆らった上向きに発生する位置に配置してあるので吸
出しノズル3c内の負圧は−800mmAq以上が好ま
しく、逆に負圧流Qが下向きに発生する位置に配置した
場合は−500mmAq程度でよい。
In this embodiment, since the nozzle 3c is arranged at a position where the negative pressure flow Q is generated upward against the gravity, the negative pressure in the suction nozzle 3c is preferably -800 mmAq or more, and conversely the negative pressure flow Q is downward. When it is arranged at a position where the above occurs, it may be about -500 mmAq.

【0010】[0010]

【実施例2】図1、図2に示す如く吸出しノズル3cと
高速ジェット吐出ノズル3d、3dとを隣接させた構成
体3を用い、吸出しノズル3cと送風機4の吸込口4a
との間に水滴分離槽5(図1参照)を配置してなる脱水
乾燥装置である。水滴分離槽5は図9に示す如く槽内底
部に水分排出用ポンプ7Aを設け更に水滴および塵埃フ
ィルター8を設けてなるものである。送風機4の吸込口
4aと水滴分離槽5との間には除湿機6を配置する(図
1参照)。好ましくは除湿機6としてロータリーハニカ
ム除湿機(図10参照)を用いるのがよい。あるいは圧
力スイング吸着(PSA)方式または熱スイング吸着
(TSA)方式を用いることもできる。図1においてマ
ット1をその繊維1aを上面にして移動載置台2に載せ
る。
[Embodiment 2] As shown in FIGS. 1 and 2, the structure 3 in which the suction nozzle 3c and the high-speed jet discharge nozzles 3d and 3d are adjacent to each other is used, and the suction nozzle 3c and the suction port 4a of the blower 4 are used.
And a water droplet separation tank 5 (see FIG. 1) are disposed between and. As shown in FIG. 9, the water drop separation tank 5 is provided with a water discharge pump 7A at the bottom of the tank and further with a water drop and dust filter 8. A dehumidifier 6 is arranged between the suction port 4a of the blower 4 and the water droplet separation tank 5 (see FIG. 1). A rotary honeycomb dehumidifier (see FIG. 10) is preferably used as the dehumidifier 6. Alternatively, a pressure swing adsorption (PSA) method or a thermal swing adsorption (TSA) method can be used. In FIG. 1, the mat 1 is placed on the movable mounting table 2 with the fibers 1a thereof facing upward.

【0011】ここで該構成体3は固定し、マット1は移
動載置台2とともに図中矢印P方向に5〜50mm/s
ec.の速さで移動させる。マット1の繊維1aの上面
と該構成体3の先端は接触押圧摺動させる。洗浄後の濡
れたマット1の多数の繊維1aのまわりは図11に示す
如く水膜12で覆われかつその繊維1aの間には多量の
水12aが溜っている。送風機4(図1参照)を作動さ
せると吐出ノズル3d、3dからの高速ジェット流Rは
図中矢印で示す如く繊維の根元付近まで奥深く到達し多
数の繊維1aの表面の水膜12および繊維間隙の水分1
2aに強力に噴出し繊維1aの表面の水膜12を下向き
に吹き落し吸出しノズル3cの負圧領域と合流し高速ジ
ェット流と高速負圧流との相乗効果により高速負圧流は
増速されながら水膜12および繊維間隙の水分12aを
上向きに移送し、繊維周縁の水膜は図12に示す連続し
た水滴状13に更に図13に示す如く多数の微細な水滴
状14に細分され高速負圧流Qに乗って吸出され外部に
排出され脱水乾燥する。かくしてマット1を連続的に移
送すれば連続脱水乾燥ができる。高速負圧流Qに乗って
吸出された微細な水滴および水蒸気は水滴分離槽5に送
られる。
Here, the structure 3 is fixed, and the mat 1 together with the movable mounting table 2 is 5 to 50 mm / s in the direction of arrow P in the figure.
ec. Move at the speed of. The upper surface of the fiber 1a of the mat 1 and the tip of the structural body 3 are brought into contact pressure and slide. A large number of fibers 12a of the wet mat 1 after washing are covered with a water film 12 as shown in FIG. 11, and a large amount of water 12a is accumulated between the fibers 1a. When the blower 4 (see FIG. 1) is operated, the high-speed jet stream R from the discharge nozzles 3d and 3d reaches deeply near the roots of the fibers as shown by the arrows in the figure, and the water film 12 and the fiber gaps on the surface of many fibers 1a are formed. Water 1
The water film 12 on the surface of the jetted fiber 1a is strongly blown down to the 2a, merges with the negative pressure area of the suction nozzle 3c, and the high-speed negative pressure flow is accelerated by the synergistic effect of the high-speed jet flow and the high-speed negative pressure flow. The membrane 12 and the moisture 12a in the fiber gap are transferred upward, and the water film around the fiber edge is subdivided into the continuous water droplets 13 shown in FIG. 12 and a large number of fine water droplets 14 as shown in FIG. It is sucked out and discharged to the outside and dehydrated and dried. Thus, continuous dewatering and drying can be performed by continuously transferring the mat 1. The fine water droplets and water vapor sucked along with the high-speed negative pressure flow Q are sent to the water droplet separation tank 5.

【0012】水滴分離槽5の断面積は図9に示す如く吸
出し管3aの断面積に比し著しく広いので高速負圧流Q
の流速は水滴分離槽5内において激減する。 従って水
滴14は自重により空気流より外れて落下し、槽内底部
の水分Aはスネークポンプ・アルキメデスポンプ・モノ
フレックスポンプ等の容積型ポンプ7Aを使用して外部
に排出する。また負圧流Qによって運ばれた水滴の一
部および塵埃はフィルター8により濾過して清浄空気を
図面矢印Q方向に移送する。図1に示す如くこの清浄
空気Qを除湿機6により除湿した後送風機4の吸込口
4aに送入し、送風機4の吐出口4bから加圧流R
して再び吐出ノズル3d、3dに移送し、高速ジェット
流Rとして吐出ノズル3d,3dよりマットの繊維1a
に強力に噴出し、かくして連続的に脱水乾燥が行われ
る。水滴分離槽5において容積型ポンプ7Aの代わりに
図9に破線で示す如くロータリー弁7Bを使用して水を
槽外へ放出し、容器10に溜めてもよい。この場合回転
中のロータリー弁7Bと該ロータリー弁7Bの周縁に固
定したシール板7Cとの作用により槽内圧力Ptと大気
圧PoAとは常時遮断されている。
Since the cross-sectional area of the water drop separation tank 5 is remarkably wider than that of the suction pipe 3a as shown in FIG.
The flow velocity of is drastically reduced in the water drop separation tank 5. Therefore, the water drop 14 falls off from the air flow due to its own weight, and the water A at the bottom of the tank is discharged to the outside by using a positive displacement pump 7A such as a snake pump, an Archimedes pump, or a monoflex pump. Part of the water droplets and dust carried by the negative pressure flow Q 1 are filtered by the filter 8 and clean air is transferred in the direction of the arrow Q 2 in the drawing. As shown in FIG. 1, this clean air Q 2 is dehumidified by the dehumidifier 6 and then fed into the suction port 4a of the blower 4 and again from the discharge port 4b of the blower 4 to the discharge nozzles 3d and 3d as a pressurized flow R D. , A high-speed jet stream R from the discharge nozzles 3d, 3d to the matte fiber 1a
It spouts out strongly and thus is continuously dehydrated and dried. Instead of the positive displacement pump 7A in the water drop separation tank 5, a rotary valve 7B may be used as shown by a broken line in FIG. 9 to discharge water to the outside of the tank and store it in the container 10. In this case, the in-tank pressure Pt and the atmospheric pressure Poa are always cut off by the action of the rotating rotary valve 7B and the seal plate 7C fixed to the peripheral edge of the rotary valve 7B.

【0013】除湿機6は図10に示す如く吸湿性を有す
るハニカム除湿ロータ61をケーシング62内に駆動回
転可能に保持し、モータ63、駆動ベルト64によりロ
ータ61を10〜20r.p.h.の速さで回転するも
ので、水滴分離槽5(図9)で水滴を分離除去した湿っ
た空気Qを送風機4により1〜3m/sec.の速さ
でロータ61の吸着ゾーン65に矢印Q方向に送入
し、処理空気Q中の湿気をハニカムロータ61に吸着
除去させて乾燥空気Qとなし、送風機4により高速ジ
ェット流Rとして構成体3(図1)の吐出管3b,3
bに供給する。
As shown in FIG. 10, the dehumidifier 6 holds a honeycomb dehumidifying rotor 61 having a hygroscopic property in a casing 62 so that the rotor 61 can be driven and rotated. p. h. It rotates at a speed of 1 to 3 m / sec. By the blower 4 of moist air Q 2 from which water droplets have been separated and removed in the water droplet separation tank 5 (FIG. 9). At a speed of 1 to the adsorption zone 65 of the rotor 61 in the direction of the arrow Q 2 , and the moisture in the treated air Q 2 is adsorbed and removed by the honeycomb rotor 61 to form dry air Q 3, and the high speed jet stream R is blown by the blower 4. As D , the discharge pipes 3b, 3 of the structure 3 (FIG. 1)
supply to b.

【0014】一方ヒータHにより外気OAを100〜1
40゜Cに過熱した再生空気RAを再生ゾーン66の小
透孔に処理空気Qと逆方向(矢印RA方向)に通し吸
着ゾーン65で吸着した湿分を連続的に加熱脱着し排気
EAとする。従って吸着ゾーン65は空気流Qを連続
的に乾燥空気Qとして供給し、これを吐出管3b、3
bに提供することにより乾燥速度を速める。
On the other hand, the heater H controls the outside air OA to 100 to 1
The regeneration air RA heated to 40 ° C. is passed through the small through-holes in the regeneration zone 66 in the direction opposite to the treatment air Q 2 (the direction of the arrow RA) to continuously heat and desorb the moisture adsorbed in the adsorption zone 65 to form the exhaust air EA. To do. Therefore, the adsorption zone 65 continuously supplies the air flow Q 2 as dry air Q 3 , which is supplied to the discharge pipes 3b, 3b.
Increase the drying rate by providing to b.

【0015】次に本実施例の送風機1台を使用した場合
のフローパターンを図14に示す。乾燥空気Qの温度
が低い場合にはヒータHを通して40〜80℃に加熱
し相対湿度を下げ高速ジェット流としてマット1に吹付
け乾燥速度を上げる。一方図15に吐出用送風機4dと
吸出し用送風機4sとの2台の送風機および除湿機6を
用いた場合のフローパターンを示す。吸出し用送風機4
sと構成体3の吸出し管3aを連結し、送風機4sによ
って吸出された水滴混じりの空気EAは外気に放出す
る。送風機4dの吸込口前段にロータリー除湿機6を配
置し、送風機4dの吐出口と構成体3の吐出管3b、3
bとをヒータHを介して連結する。除湿機6の吸着ゾ
ーンには外気OAを送入して外気の湿分を除去し送風機
4dにより加圧し更にヒータHにより加熱し吐出ノズ
ル3d、3dより乾燥高速ジェット流Rとして濡れたマ
ット1に強力に吹き付けながら高速乾燥するものであ
る。この場合除湿機6がない場合に比較して乾燥時間は
約40%短縮できる。
Next, FIG. 14 shows a flow pattern when one blower of this embodiment is used. When the temperature of the dry air Q 3 is low, it is heated to 40 to 80 ° C. through the heater H 2 to lower the relative humidity and spray the mat 1 as a high-speed jet stream to increase the drying speed. On the other hand, FIG. 15 shows a flow pattern in the case of using two blowers, a blower for discharge 4d and a blower for suction 4s, and the dehumidifier 6. Blower 4 for suction
s and the suction pipe 3a of the structural body 3 are connected to each other, and the air EA mixed with water droplets sucked by the blower 4s is discharged to the outside air. The rotary dehumidifier 6 is arranged in front of the suction port of the blower 4d, and the discharge port of the blower 4d and the discharge pipes 3b, 3
b is connected via a heater H 2 . The outside air OA is fed into the adsorption zone of the dehumidifier 6 to remove the moisture in the outside air, pressurized by the blower 4d, further heated by the heater H 2 , and heated by the discharge nozzles 3d and 3d as the dry high-speed jet stream R. High-speed drying while strongly spraying. In this case, the drying time can be shortened by about 40% as compared with the case without the dehumidifier 6.

【0016】水以外の揮発性液体を使用してマットを洗
浄したとき、この濡れたマットを乾燥する場合、図1
4,図15のフローパターンにおいて除湿機6の代わり
に揮発性液体蒸気(VOC)吸着除去装置6vocを用
いる。この場合吸着除去装置はたとえばハニカムロータ
リー式吸着除去装置を使用し、吸着剤として活性炭、疎
水性ゼオライト等を担持したハニカムロータを用いる。
ハニカムロータ吸着除去装置6vocは図10の除湿機
6と同様にVOC吸着ゾーン65と再生ゾーン66を有
し、図9の水滴分離槽と同様な気液分離槽5を通った空
気Q(図14)中のVOCを連続的に吸着し清浄空気
となしこれを乾燥用ジェット流として用いる。
When the mat is washed with a volatile liquid other than water and the wet mat is dried, as shown in FIG.
4, a volatile liquid vapor (VOC) adsorption / removal device 6 voc is used instead of the dehumidifier 6 in the flow patterns of FIGS. In this case, for example, a honeycomb rotary type adsorption / removal device is used as the adsorption / removal device, and a honeycomb rotor carrying activated carbon, hydrophobic zeolite or the like as an adsorbent is used.
The honeycomb rotor adsorption / removal device 6 voc has a VOC adsorption zone 65 and a regeneration zone 66 like the dehumidifier 6 of FIG. 10, and the air Q 2 (passes through the gas-liquid separation tank 5 similar to the water droplet separation tank of FIG. 9 ( The VOCs in Fig. 14) are continuously adsorbed to form clean air, which is used as a drying jet stream.

【0017】図14に示す如く送風機4を作動させるこ
とにより構成体3の吸出しノズル3cで濡れたマット1
の有機溶剤を吸出し気液分離槽5を通して有機溶剤蒸気
混りの空気をハニカムロータ式吸着除去装置6voc
吸着ゾーン65に送入し有機溶剤蒸気が除去された清浄
空気Qとして送風機4の吸込口に入り加圧されヒータ
により加熱され構成体3の吐出ノズル3d、3dよ
り高速ジェット流として濡れたマット1に強力に吹き付
け乾燥するものである。一方ハニカムロータリー式吸着
除去装置6vocは再生ゾーンに外気OAを約120〜
180℃程度に加熱し再生空気RAとして送入している
ので吸着ゾーン65で吸着されたVOCは連続的に脱着
され排気EAとして放出する。
By operating the blower 4 as shown in FIG. 14, the mat 1 wetted by the suction nozzle 3c of the structural body 3
Of the organic solvent is sucked out, and the air mixed with the organic solvent vapor is sent into the adsorption zone 65 of the honeycomb rotor type adsorption / removal device 6 voc through the gas-liquid separation tank 5 to obtain the clean air Q 3 from which the organic solvent vapor has been removed. It enters into the suction port, is pressurized, is heated by the heater H 2, and is strongly sprayed and dried on the wet mat 1 as a high-speed jet stream from the discharge nozzles 3d and 3d of the structural body 3. On the other hand, the honeycomb rotary adsorption removal device 6 voc has about 120 to 120% of outside air OA in the regeneration zone.
The VOCs adsorbed in the adsorption zone 65 are continuously desorbed and discharged as exhaust air EA because they are heated to about 180 ° C. and fed as regeneration air RA.

【0018】揮発性液体と水の混合物を使用してマット
を清浄したときの乾燥を行う場合は、上記ロータリーV
OC吸着除去素子に水分を吸着する吸着剤例えば親水性
ゼオライトと疎水性ゼオライトとを混合した素子を用い
たハニカム吸着除去装置を用いることもできる。
When the mat is dried using a mixture of a volatile liquid and water, the rotary V is used.
It is also possible to use a honeycomb adsorption / removal device using an adsorbent that adsorbs water to the OC adsorption / removal element, for example, an element in which hydrophilic zeolite and hydrophobic zeolite are mixed.

【0019】図1、図2には吸出しノズル3cと吐出ノ
ズル3dとを並列密接して一体化した構成体3を示した
が、図16に示す如く吸出しノズル3cを有する吸出し
管3a内に吐出ノズル3dを有する吐出管3bを内蔵し
た構成体3あるいは吐出ノズル3dを有する吐出管3b
内に吸出しノズル3cを有する吸出し管3aを内蔵した
構成体3を使用してもその作用効果はほぼ同一である。
この場合送風機4を1台使用して空気流を循環させる
か、または図中破線で示す如く吸出し用、吐出用送風機
4、4d2台使用して脱水乾燥を行なってもよい。
1 and 2 show the structure 3 in which the suction nozzle 3c and the discharge nozzle 3d are closely and parallelly integrated with each other. As shown in FIG. 16, the discharge nozzle 3c discharges into the suction pipe 3a having the suction nozzle 3c. Structure 3 with built-in discharge pipe 3b having nozzle 3d or discharge pipe 3b having discharge nozzle 3d
Even if the constructing body 3 having the suction pipe 3a having the suction nozzle 3c therein is used, the function and effect are almost the same.
In this case, one air blower 4 may be used to circulate the air flow, or dewatering and drying may be performed using two air blowers 4 and 4d for suction and discharge as shown by broken lines in the figure.

【0020】[0020]

【実施例3】図17に示す如く駆動プーリ18、従動プ
ーリ19、テンションプーリ20、従動プーリ21、2
2に線条エンドレスコンベア16を架設し、吸出しノズ
ル3cと吐出ノズル3d、3dとを一体に形成してなる
構成体3を該コンベア16の下面に配置してなる低温急
速脱水乾燥装置である。該コンベア16は図18に示す
如く多数の線条体16cを適宜間隔に配設したもので、
駆動プーリ18、従動プーリ19に線条体16cが嵌合
できる溝を線条体の配設間隔で設ける。この場合線条エ
ンドレスコンベア16の代わりに図19に示す開口率の
大きいたとえば縦横夫々10mmの目を有する網状エン
ドレスコンベア15を使用してもよい。構成体3の吸出
しノズル3cはダクトSp1により水滴分離槽5の流入
口に連通し、吐出ノズル3d、3dはダクトDにより
送風機4の吐出口に連通し、水滴分離槽5の排出口と送
風機4の吸込口とは除湿機6を介してダクトSp2で連
結する。構成体3の吐出ノズル3d、3dからの強力な
高速ジェット流の噴出により被乾燥物のマット1が浮き
上がらないように複数の押圧ローラ15eをマット1の
上面から押える位置に配置する。複数の該押圧ローラ1
5eはチェーン17で連結する。
[Third Embodiment] As shown in FIG. 17, a driving pulley 18, a driven pulley 19, a tension pulley 20, a driven pulley 21, and a driven pulley 2 are provided.
2 is a low-temperature rapid dehydration / drying apparatus in which a linear endless conveyor 16 is erected on 2 and a structure 3 in which suction nozzles 3c and discharge nozzles 3d and 3d are integrally formed is arranged on the lower surface of the conveyor 16. As shown in FIG. 18, the conveyor 16 has a large number of filaments 16c arranged at appropriate intervals.
The drive pulley 18 and the driven pulley 19 are provided with grooves at which the linear members 16c can be fitted at intervals of the linear members. In this case, instead of the linear endless conveyor 16, a net-like endless conveyor 15 having a large opening ratio, for example, 10 mm vertically and horizontally, as shown in FIG. 19, may be used. The suction nozzle 3c of the structural body 3 communicates with the inlet of the water droplet separation tank 5 through the duct S p1 , and the discharge nozzles 3d and 3d communicate with the outlet of the blower 4 through the duct D p and the outlet of the water droplet separation tank 5. The suction port of the blower 4 is connected via the dehumidifier 6 by the duct Sp2 . A plurality of pressing rollers 15e are arranged at positions to be pressed from the upper surface of the mat 1 so that the mat 1 to be dried is not lifted up by the jetting of a powerful high-speed jet stream from the discharge nozzles 3d, 3d of the structure 3. A plurality of the pressing rollers 1
5e is connected by a chain 17.

【0021】作用を説明するとマット1を繊維1aを下
面にして該コンベア16の上に載せモータM、Maによ
り該コンベア16および押圧ローラ15eで挟持しなが
ら図中矢印P方向に6〜10mm/sec.の速さで移
動させ送風機4を作動させることにより吐出ノズル3
d、3dより高速ジェット流をマットの繊維1aの内に
進入するように強力に吹き付け、ジェット流と吸出しノ
ズル3cの負圧流との相乗効果により増速された高速負
圧流によって吸出しノズル3cからマット繊維内の水滴
および水蒸気を強力にしかも急速に吸出しながら連続的
に乾燥するものである。
The operation will be described. The mat 1 is placed on the conveyor 16 with the fibers 1a on the lower surface, and is sandwiched by the motors M and Ma by the conveyor 16 and the pressing roller 15e, and is 6 to 10 mm / sec in the direction of arrow P in the figure. . By moving the blower 4 at a speed of
3d, 3d is strongly blown so as to enter into the fibers 1a of the mat, and the mat is sucked from the suction nozzle 3c by the high-speed negative pressure flow increased by the synergistic effect of the jet flow and the negative pressure flow of the suction nozzle 3c. It dries water drops and water vapor in the fiber strongly and rapidly while continuously drying.

【0022】この場合吸出しノズル内の静圧は−800
〜−1500mmAqとし、吐出ノズル内の静圧は+8
00〜+1500mmAqとした。本実施例で使用した
構成体3は図2に示す構成体である。また本実施例では
吸出しノズルと吐出ノズルを一体的に形成した構成体3
を使用したが吸出しノズル3cおよび吐出ノズル3dを
それぞれ別体のノズルとして該吸出しノズル3cと該吐
出ノズル3dを交互にしかも複数個近接配置してもよ
い。
In this case, the static pressure in the suction nozzle is -800.
~ -1500mmAq, static pressure in discharge nozzle is +8
It was set to 00 to +1500 mmAq. The structure 3 used in this example is the structure shown in FIG. Further, in this embodiment, the structure 3 in which the suction nozzle and the discharge nozzle are integrally formed
However, the suction nozzles 3c and the discharge nozzles 3d may be separate nozzles, and the suction nozzles 3c and the discharge nozzles 3d may be alternately and closely arranged.

【0023】[0023]

【実施例4】図20に示す如く実施例3(図17)と同
様線条エンドレスコンベア16を図示矢印P方向に駆動
し、駆動モータMaによって駆動プーリ18aを介して
ベルトコンンベア15bを矢印方向に線条エンドレスコ
ンベア16と同速度でマット1を挟持しながら移送す
る。なお複数のローラ15eはベルトコンベア15bの
裏面より被乾燥物を押圧するためのものである。第1段
脱水装置30は吸出しノズル3c,3cと吐出ノズル3
dとを一体的に組み合わせた構成体3Aを使用し、該構
成体3Aの吸出しノズル3c,3cと吸出し用送風機4
の吸込口とをダクトSpで連結し、吐出ノズル3
dと吐出用送風機4dの吐出口とをダクトDpで連
結する。第二段乾燥装置40は図2に示した構成体を使
用し該構成体3Bは前記第一段脱水装置と同様吸出し
用、吐出用送風機とダクトにより連結し、吐出用送風機
4dの前段に除湿機6、後段にヒータHをそれぞれ配
置する。第三段乾燥装置50は第二段乾燥装置40で使
用した構成体3Bを使用し、送風機4の吸込口と構成体
3Bの吸出しノズル3cとを水滴分離槽5および除湿機
6Aを介してダクトSpで連結し、送風機4の吐出口
と構成体3Bの吐出ノズル3d、3dとをヒータHを介
してダクトDpで連結する。
Fourth Embodiment As shown in FIG. 20, as in the third embodiment (FIG. 17), the linear endless conveyor 16 is driven in the direction indicated by the arrow P, and the belt motor 15b is moved by the drive motor Ma through the drive pulley 18a in the direction indicated by the arrow. Then, the mat 1 is clamped and transferred at the same speed as the linear endless conveyor 16. The plurality of rollers 15e are for pressing the material to be dried from the back surface of the belt conveyor 15b. The first stage dewatering device 30 includes suction nozzles 3c, 3c and a discharge nozzle 3.
The structure 3A in which d is integrally combined is used, and the suction nozzles 3c, 3c and the blower 4 for suction of the structure 3A are used.
a suction port of s 1 are connected by a duct Sp 1, the discharge nozzle 3
d and the discharge port of the discharge blower 4d 1 are connected by the duct Dp 1 . The second-stage drying device 40 uses the structure shown in FIG. 2, and the structure 3B is connected to the suction and discharge blowers by a duct as in the case of the first-stage dewatering device, and is connected to the front stage of the discharge blower 4d 2 . The dehumidifier 6 and the heater H are arranged at the subsequent stage. The third-stage drying device 50 uses the structure 3B used in the second-stage drying device 40, and connects the suction port of the blower 4 and the suction nozzle 3c of the structure 3B to the duct through the water droplet separation tank 5 and the dehumidifier 6A. connected by sp 3, the discharge nozzles 3d constructs 3B and the discharge port of the blower 4, and 3d through the heater H which is linked with the duct Dp 3.

【0024】次に本実施例の作用を説明すると線条エン
ドレスコンベア16とベルトコンベア15bの駆動プー
リ18、18aを駆動させ両コンベア15b,16を図
中矢印P方向に同速度で回転させ、マット1をその繊維
1aを下面にして両コンベア15b、16に挟持し移動
させながら脱水乾燥を行う。まず最初の第一段脱水装置
30では吐出用、吸出し用送風機4d、4sを作動
させることにより実施例2で詳述した如く高速ジェット
流と高速負圧流との相乗効果により高速負圧流を増速さ
せながらマット繊維内の水分を微細な水滴として吸出し
ノズル3c、3cより吸出し、吸出し用送風機4s
ら排出して連続脱水する。この場合構成体3Aの吸出し
ノズル内の静圧を−1300mmAqと高くし、吐出し
ノズル内の静圧は+500〜+800mmAqとし、最
大保水量のマット水分を70〜86%除去し大部分の水
分を取り除くことができる。
Next, the operation of this embodiment will be described. By driving the drive pulleys 18 and 18a of the linear endless conveyor 16 and the belt conveyor 15b, both conveyors 15b and 16 are rotated at the same speed in the direction of arrow P in the drawing to form a mat. The fiber 1 is sandwiched between the conveyors 15b and 16 with the fiber 1a being the lower surface, and is moved while being dehydrated and dried. First, in the first-stage dewatering device 30, by operating the blowers 4d 1 and 4s 1 for discharge and suction, a high-speed negative pressure flow is produced by the synergistic effect of the high-speed jet flow and the high-speed negative pressure flow as described in detail in the second embodiment. accelerated is allowed while suction nozzle 3c moisture in the mat fibers as fine water droplets, suction from 3c, successive dehydration by discharged from the suction blower 4s 1. In this case, the static pressure in the suction nozzle of the structure 3A is increased to -1300 mmAq, the static pressure in the discharge nozzle is set to +500 to +800 mmAq, and the maximum moisture retention mat moisture is removed by 70 to 86% to remove most of the moisture. Can be removed.

【0025】次に第一段脱水装置30で脱水されたマッ
ト1は両コンベア15b、16で挟持移送され第二段乾
燥装置40で構成体3Bにより乾燥作用が行われる。第
二段乾燥装置40の吐出送風機4dの吸込口前段に除
湿機6を配置し外気OAの湿分を除去し、該吐出用送風
機4dの吐出口後段にヒータHを介在させ乾いた空気
流を60℃程度に加熱し吐出ノズル3d,3dより高温
乾燥高速ジェット流としてマット繊維1aの根元まで吹
き込み乾燥を行い、第一段で脱水された残存水分を取り
除いて水分を86〜90%まで除去する。この場合構成
体3Bの吸出しノズル内の静圧は−500〜−800m
mAqとし、吐出しノズル内の静圧は+1300mmA
qと高くした。さらに最終乾燥操作を行う第三段乾燥装
置50へとマット1を移送する。
Next, the mat 1 dehydrated by the first stage dehydrator 30 is nipped and transferred by both conveyors 15b and 16 and dried by the structure 3B in the second stage dryer 40. The dehumidifier 6 is arranged in the preceding stage of the suction port of the discharge blower 4d 2 of the second stage drying device 40 to remove the moisture of the outside air OA, and the heater H is interposed in the latter stage of the discharge port of the discharge blower 4d 2 to dry air. The flow is heated to about 60 ° C., and is blown to the root of the mat fiber 1a as a high-temperature drying high-speed jet flow from the discharge nozzles 3d and 3d to perform drying, and the residual water dewatered in the first stage is removed to a water content of 86 to 90%. Remove. In this case, the static pressure in the suction nozzle of the structure 3B is -500 to -800 m.
mAq, static pressure in discharge nozzle is + 1300mmA
Increased to q. Further, the mat 1 is transferred to the third-stage drying device 50 which performs the final drying operation.

【0026】第三段乾燥装置50では1台の送風機4の
作動により高温低湿の高速ジェット流をマット繊維1a
内に強力に吹きつけ残存水分を構成体3Bの吸出しノズ
ル3cより急速に吸出し水滴分離槽5で水滴および塵埃
を除去し除湿機6Aにより露点−20〜−50℃に乾燥
した空気を送風機4の吐出口からヒータHに送って約8
0℃に加熱し吐出ノズル3d,3dより再び高温低湿の
高速ジェット流としてマット繊維1a内に強力に吹きつ
け高速負圧流が増速されながら繊維内の微量な水分を除
去し第三段乾燥操作を完了する。この第三段乾燥操作に
よりマット1の残存水分を90〜95%除去し乾燥す
る。この場合の構成体3Bの吸出しノズル内の静圧は−
700mmAq,吐出ノズル内の静圧は+1500mm
Aqとした。
In the third-stage drying device 50, one blower 4 is operated to generate a high-speed, low-humidity high-speed jet stream in the mat fiber 1a.
The remaining water is rapidly sucked into the inside of the structure 3B through the suction nozzle 3c, water drops and dust are removed in the water drop separation tank 5, and the dehumidifier 6A dries the dried air to -20 to -50 ° C. About 8 from the discharge port to the heater H
A high-speed jet stream of high temperature and low humidity is again blown from the discharge nozzles 3d and 3d into the mat fiber 1a to accelerate the high-speed negative pressure flow to remove a small amount of water in the fiber and to perform the third stage drying operation. To complete. By this third-stage drying operation, 90 to 95% of residual water in the mat 1 is removed and the mat 1 is dried. In this case, the static pressure in the suction nozzle of the structure 3B is −
700 mmAq, static pressure in discharge nozzle is +1500 mm
It was set to Aq.

【0027】このようにして各構成体の吸出しノズル内
の静圧および吐出ノズル内の静圧を調整し三段階の脱水
乾燥操作を行うことによりほぼ100%の絶対乾燥を得
ることができ、省エネルギー効果は大である。なお第三
段乾燥装置50では上述のように空気流を循環する送風
機1台を使用したが図中破線で示したごとく吸出し用送
風機4と吐出用送風機4dとの2台の送風機を使用し
てもよい。この場合吸出された空気は吸出し用送風機4
の吐出口から排気EAとして外気に排出し、他方吐出用
送風機4dの吸込み口前段には除湿機6Bを配置し外
気OAを除湿し乾いた空気をヒータHにより加熱して両
吐出ノズル3d,3dに作用させてもよい。この場合除
湿機6Aは不要である。
In this way, by adjusting the static pressure in the suction nozzle and the static pressure in the discharge nozzle of each component and performing three-stage dehydration / drying operation, it is possible to obtain almost 100% absolute drying, thus saving energy. The effect is great. In the third-stage drying device 50, one blower that circulates the airflow is used as described above, but two blowers, a suction blower 4 and a discharge blower 4d 3 , are used as indicated by the broken line in the figure. May be. In this case, the sucked air is blown by the blower 4
Is discharged to the outside air as exhaust air EA from the discharge port of the other side, and a dehumidifier 6B is disposed in front of the suction port of the discharge blower 4d 3 to dehumidify the outside air OA and heat the dry air with the heater H to discharge both discharge nozzles 3d, You may act on 3d. In this case, the dehumidifier 6A is unnecessary.

【0028】また本実施例の構成体の吐出ノズル3dは
被乾燥物に対して垂直に高速ジェット流Rが噴出するよ
うに構成したが図21に示すごとく被乾燥物1の進行方
向に合わせて斜めに高速ジェット流Rが噴出するように
吐出ノズル3dを構成すれば図22に示す如く高速ジェ
ット流Rの力を被乾燥物1の進行方向における分力R
とこれに垂直な分力Rとに分けて考えると分力R
被乾燥物1および線条エンドレスコンベア16の移送に
寄与し動力費の節減になる。また逆に図23に示す如く
被乾燥物の進行方向と逆に斜めに高速ジェット流Rが噴
出するように吐出ノズル3dを構成すれば高速ジェット
流Rが垂直な場合と比較して脱水乾燥の郊率がよくな
る。
Further, the discharge nozzle 3d of the structure of this embodiment is constructed so that the high-speed jet stream R is jetted perpendicularly to the material to be dried, but as shown in FIG. If the discharge nozzle 3d is configured so that the high-speed jet stream R is ejected obliquely, the force of the high-speed jet stream R is divided into the component force R 1 in the traveling direction of the article to be dried 1 as shown in FIG.
When divided into a component force R 2 and a component force R 2 perpendicular thereto, the component force R 1 contributes to the transfer of the article to be dried 1 and the linear endless conveyor 16 and the power cost is reduced. On the contrary, as shown in FIG. 23, if the discharge nozzle 3d is configured so that the high-speed jet stream R is ejected obliquely in the direction opposite to the traveling direction of the material to be dried, the dehydration / drying can be performed in comparison with the case where the high-speed jet stream R is vertical. The suburbs ratio improves.

【0029】本実施例の脱水乾燥装置の変形例として図
24を示す。線条エンドレスコンベア16と押圧ローラ
15eとにより濡れたマット1を挟持しながら移送し、
吸出しノズル3cおよび吐出ノズル3d、3dからなる
構成体2組を使用した前段脱水装置70および該前段脱
水装置70で使用したのと同一の構成体2組を用いた後
段乾燥装置80でマット1を脱水乾燥するものである。
この場合前段脱水装置70では吸出し用送風機4sと吐
出用送風機4dをそれぞれ用い脱水効果を高め、後段乾
燥装置80では送風機1台を使用し空気流を循環させ送
風機4の前段に水滴分離槽5および除湿機6を配置し乾
燥効率を高めたものである。
FIG. 24 shows a modification of the dehydration / drying apparatus of this embodiment. The wet mat 1 is sandwiched by the linear endless conveyor 16 and the pressing roller 15e, and transferred.
The mat 1 is formed by a pre-stage dewatering device 70 that uses two sets of the configuration body including the suction nozzle 3c and discharge nozzles 3d and 3d, and a post-stage drying device 80 that uses the same two sets of the configuration bodies used in the pre-stage dewatering device 70. It is dehydrated and dried.
In this case, the pre-stage dewatering device 70 enhances the dewatering effect by using the suction blower 4s and the discharge blower 4d, and the post-stage drying device 80 uses one blower to circulate the air flow to bring the water drop separation tank 5 and A dehumidifier 6 is arranged to improve the drying efficiency.

【0030】また被乾燥物の材質、大きさ、厚さ等によ
り構成体の吸出しノズルと吐出ノズルとを交互に単数あ
るいは複数隣接させた構成体を適宜選択してもよい。ま
た上記構成体を複数組用いて複数段階で脱水乾燥を行っ
てもよい。この場合送風機は吸出し用送風機、吐出用送
風機としてそれぞれ使用してもよく、循環用として1個
を使用してもよい。なお吸出しノズル内の静圧および吐
出ノズル内の静圧は適宜調節して選択してよい。
Further, depending on the material, size, thickness and the like of the material to be dried, a single or plural adjoining suction nozzles and plural discharge nozzles may be appropriately selected. Dehydration and drying may be carried out in a plurality of stages using a plurality of sets of the above-mentioned constituents. In this case, the blower may be used as a suction blower or a discharge blower, or one may be used for circulation. The static pressure in the suction nozzle and the static pressure in the discharge nozzle may be appropriately adjusted and selected.

【0031】[0031]

【実施例5】じゅうたん等の厚さ方向に空気流通が可能
な被乾燥物を乾燥する実施例を図25により説明する。
駆動プーリ10、従動プーリ11に線条エンドレスコン
ベア16aを架設し、駆動プーリ12、従動プーリ13
に線条エンドレスコンベア16を架設し該コンベア16
aの下行帯と該コンベア16の上行帯との間に被乾燥物
例えば濡れたじゅうたん1Aを挟持して図中矢印P方向
に搬送する。図26に明示する如く吸出しノズル3cお
よび吐出ノズル3dを対向させそれぞれ該コンベア16
a,16を介して被乾燥物1Aの表面と接触摺動する位
置に配置する。吸出しノズル3cはダクトSp1により
水滴分離槽5の吸込口と連結し、水滴分離槽5の排出口
と送風機4の吸込口とはダクトSp2で連結し、ダクト
p2の中途に除湿機6を配置する。送風機4の吐出口
と吐出ノズル3dとはダクトDで連結する。
[Embodiment 5] An embodiment of drying a material to be dried, such as a carpet, in which air can flow in the thickness direction, will be described with reference to FIG.
A linear endless conveyor 16a is installed on the drive pulley 10 and the driven pulley 11, and the drive pulley 12 and the driven pulley 13 are provided.
The wire endless conveyor 16 is installed on the
The material to be dried, for example, the wet carpet 1A is sandwiched between the descending belt of a and the ascending belt of the conveyor 16 and conveyed in the direction of arrow P in the figure. As shown in FIG. 26, the suction nozzle 3c and the discharge nozzle 3d are opposed to each other, and the conveyor 16
It is arranged at a position where it contacts and slides with the surface of the article to be dried 1A via a and 16. Suction nozzle 3c is connected to the inlet of a water drop separating vessel 5 by a duct S p1, the outlet and inlet of the blower 4 of the water drop separating vessel 5 are connected by ducts S p2, midway dehumidifier duct S p2 6 To place. Outlet of the blower 4 and the discharge nozzle 3d is connected with the duct D p.

【0032】次に本実施例の作用を説明するとモータ
M,Maにより該コンベア16,16aを同速度で回動
させ、通気性のある濡れたじゅうたん1Aを該コンベア
16上に載置し図中矢印P方向に5〜50mm/se
c.の速さで移動させると、じゅうたん1Aは該コンベ
ア16と該コンベア16aとで挟持されて吸出しノズル
3dを対向させた位置へと運ばれる。送風機4を作動さ
せると、図26に示す如く該コンベア16の上行帯下面
に接触摺動位置に配置した高速ジェット吐出ノズル3d
より高速ジエツト流Rが噴出し、この高速ジエツト流R
によりじゅうたん1A中に含有された水分は水滴となり
水蒸気とともに上方に吹き上げられ、高速ジエツト流が
負圧流領域で合流し高速負圧流によって水滴および水蒸
気は吸出しノズル3cより吸出され水滴分離槽5に送
り、水滴、塵埃が除去された空気は除湿機6に送入され
乾燥空気として送風機4により吐出ノズル3dに送られ
以上の工程を連続することにより連続脱水乾燥が行え
る。
Next, the operation of this embodiment will be described. The conveyors 16 and 16a are rotated at the same speed by the motors M and Ma, and the breathable wet carpet 1A is placed on the conveyor 16 in the figure. 5 to 50 mm / se in the direction of arrow P
c. When the carpet 1A is moved at a speed of, the carpet 1A is nipped between the conveyor 16 and the conveyor 16a and is conveyed to a position where the suction nozzle 3d is opposed. When the blower 4 is operated, as shown in FIG. 26, the high-speed jet discharge nozzle 3d arranged at the contact sliding position on the lower surface of the ascending belt of the conveyor 16
Higher-speed jet flow R jets out, and this high-speed jet flow R
Due to this, the water contained in the carpet 1A becomes water drops and is blown upward together with the steam, and the high speed jet flow merges in the negative pressure flow region, and the high speed negative pressure flow causes the water drops and water vapor to be sucked out from the suction nozzle 3c and sent to the water droplet separation tank 5. The air from which the water droplets and dust have been removed is sent to the dehumidifier 6 and is sent as dry air to the discharge nozzle 3d by the blower 4, and the above steps are continued to perform continuous dehydration and drying.

【0033】[0033]

【実施例6】図27に示す如く被乾燥物のマツト1を搬
送する前段搬送装置100と後段搬送装置110と脱水
乾燥部90とからなる装置で、前段搬送装置100はエ
ンドレスコンベア15cを駆動プーリ18,従動プーリ
19,21,22に架設し、後段搬送装置110は複数
の搬送用駆動ローラ15h,15h・・・を配設し、脱
水乾燥部90はマツト1を挟持搬送するエンドレスコン
ベア15bとローラ15g・・・を有し、該ローラ15
g間に吐出ノズル3d,3d,吸出しノズル3cを挿入
しマツトの繊維1a表面と接触摺動する位置に配置し、
吐出用送風機4dの吐出口と吐出ノズル3dとをヒータ
Hを介してダクトDpで連結し、吸出し用送風機4sの
吸込口と吸出しノズル3cとを水滴分離槽5を介してダ
クトSpで連結する。
[Embodiment 6] As shown in FIG. 27, an apparatus comprising a pre-stage conveying apparatus 100 for conveying the mat 1 to be dried, a post-stage conveying apparatus 110, and a dehydration / drying section 90. The pre-stage conveying apparatus 100 drives an endless conveyor 15c to drive pulleys. 18, the driven pulleys 19, 21 and 22 are installed, the post-stage transport device 110 is provided with a plurality of transport drive rollers 15h, 15h, ..., And the dehydration / drying unit 90 is an endless conveyor 15b for sandwiching and transporting the mat 1. The roller 15g ...
The discharge nozzles 3d, 3d and the suction nozzle 3c are inserted between g and are arranged at positions where they contact and slide with the surface of the fiber 1a of the mat.
The discharge port of the discharge blower 4d and the discharge nozzle 3d are connected by the duct Dp via the heater H, and the suction port of the suction blower 4s and the suction nozzle 3c are connected by the duct Sp via the water droplet separation tank 5.

【0034】前段搬送装置100の該コンベア15c上
にマツト1を繊維1aを下向きにして載置し、駆動モー
タMにより駆動プーリ18を駆動させ該コンベア15c
を矢印P方向に回動させマツト1を脱水乾燥部に移動さ
せ、実施例5と同様に脱水乾燥部90で脱水乾燥操作を
行い後段搬送装置110に移送し搬送用駆動ローラ15
h,15h・・・によって移送し脱水乾燥が終了する。
この場合該ローラ15h,15h・・・は駆動モータM
,M・・・により回動するようにした。後段搬送装
置は搬送用駆動ローラの代りにエンドレスコンベアを使
用してもよい。また本実施例では吐出ノズル2個と吸出
しノズル1個を搬送用ローラ15g間に配設したが被乾
燥物の大きさ、種類によって吐出ノズルの個数あるいは
配列順序を適宜選択してよい。
The mat 1 is placed on the conveyor 15c of the pre-stage conveying device 100 with the fiber 1a facing downward, and the drive motor M drives the drive pulley 18 to drive the conveyor 15c.
Is rotated in the direction of arrow P to move the mat 1 to the dehydration / drying section, and the dehydration / drying section 90 performs the dehydration / drying operation in the same manner as in Example 5, and the mat 1 is transferred to the post-stage conveyance device 110 and the conveyance drive roller 15
It is transferred by h, 15h ... and the dehydration drying is completed.
In this case, the rollers 15h, 15h ...
It was made to rotate by 1 , M 2 . An endless conveyor may be used in the latter-stage conveying device instead of the conveying driving roller. Further, in this embodiment, two discharge nozzles and one suction nozzle are arranged between the transport rollers 15g, but the number or arrangement order of the discharge nozzles may be appropriately selected depending on the size and type of the material to be dried.

【0035】[0035]

【作用】本発明による脱水乾燥方法は従来にない発想お
よび原理に基づいて高速負圧流のみによる脱水、また高
速ジエツト流と高速負圧流とを組合わせその相乗効果に
よる高速ジエツト流の動圧および高速負圧流の吸引力に
より被乾燥物に含まれる水分を水の気化熱エネルギーを
最小限にし大部分の水分を微細な水滴となして脱水乾燥
するものであり、省エネルギーでしかも低温で被乾燥物
に物理的な外力を加えることがないので被乾燥物を傷め
ず短時間に脱水乾燥を行うものである。
The dehydration / drying method according to the present invention is based on an unprecedented idea and principle, and dehydration only by a high-speed negative pressure flow, and by combining a high-speed jet flow and a high-speed negative pressure flow, the dynamic pressure and the high-speed of the high-speed jet flow due to their synergistic effect. The suction force of the negative pressure flow removes the moisture contained in the material to be dried by dehydration drying by minimizing the evaporation heat energy of the water and forming most of the water into minute water droplets. Since no physical external force is applied, dehydration drying is performed in a short time without damaging the material to be dried.

【0036】被乾燥物として脱水乾燥が困難なゴムシー
トによる裏打ちされた植毛マツト(図28参照)の乾燥
方法について説明する。まず吸出しノズル3cのみを使
用して脱水する脱水装置でこの濡れたマツトを乾燥する
場合の作用は図6,図7,図8により実施例1で詳述し
た如く、繊維に付着した水膜12は高速負圧流Qにより
連続した水滴13の状態となり吸出しノズル3cの吸引
力は水滴13の表面張力および粘性に打ち克って図8に
示す如く微細な水滴14に細分化し、マットの繊維1a
に付着した水滴を剥離しながら高速負圧流に乗せて吸出
し管3a内に吸込み水蒸気とともに外気へ排出し脱水す
るものである。
A method of drying a flocked mat (see FIG. 28) lined with a rubber sheet which is difficult to dehydrate and dry as a material to be dried will be described. First, the operation of drying the wet mat with a dehydrating device that dehydrates only by using the suction nozzle 3c is as described in detail in Example 1 with reference to FIGS. Becomes a continuous water droplet 13 by the high-speed negative pressure flow Q, and the suction force of the suction nozzle 3c overcomes the surface tension and viscosity of the water droplet 13 and is subdivided into fine water droplets 14 as shown in FIG.
The water droplets adhering to the are removed while being put on a high-speed negative pressure flow, sucked into the suction pipe 3a, discharged to the outside air together with the steam, and dehydrated.

【0037】次に吸出しノズル3cと吐出ノズル3d,
3dを隣接した構成体3を使用して脱水乾燥する場合の
作用は図1,図11.図12,図13により実施例2で
述べたとおりである。この脱水乾燥原理を説明すれば、
高速ジェット流Rが高速負圧流領域内で合流しその相乗
効果により負圧流は増速しながら高速負圧流となりこの
高速負圧流は繊維群内で強力な吸引力となり濡れたマッ
トの繊維1aに付着した水膜12および繊維間隙の水分
12a(図11)は連続した水滴13(図12)となり
その表面張力および粘性に打ち克って微細な多数の水滴
14(図13)に細分化し繊維1aから該水滴14を剥
離しながら高速負圧流Qに乗せて吸出しノズル3cに吸
込み水蒸気とともに外気へ放出し脱水乾燥するものであ
る。前記した吸出しノズル3cによる吸引力だけでのマ
ツト1の乾燥時間は吸出しノズル3cと吐出ノズル3
d,3dを隣接した構成体3を使用した場合に比べ数倍
の時間を要する。
Next, the suction nozzle 3c and the discharge nozzle 3d,
The operation of dehydrating and drying 3d using adjacent construction bodies 3 is shown in FIGS. This is as described in the second embodiment with reference to FIGS. Explaining this dehydration drying principle,
The high-speed jet flow R merges in the high-speed negative pressure flow region, and due to the synergistic effect, the negative pressure flow increases and becomes a high-speed negative pressure flow. This high-speed negative pressure flow becomes a strong suction force in the fiber group and adheres to the wet mat fibers 1a. The water film 12 and the water 12a in the fiber gap (FIG. 11) become continuous water droplets 13 (FIG. 12), overcome the surface tension and viscosity thereof, and are subdivided into a large number of fine water droplets 14 (FIG. 13). The water droplets 14 are separated and placed on the high-speed negative pressure flow Q, sucked into the suction nozzle 3c, discharged to the outside air together with the steam, and dehydrated and dried. The drying time of the mat 1 only by the suction force by the suction nozzle 3c is set to the suction nozzle 3c and the discharge nozzle 3
It takes several times as long as the case where the construction body 3 in which d and 3d are adjacent to each other is used.

【0038】実施例4(図20)において第二段脱水乾
燥装置40のみを使用して脱水乾燥を行った試験結果を
図29のグラフに示す。乾燥条件は被乾燥物である植毛
マツトの大きさを1m×1m、マツトの送り速度を8.
3mm/sec.、ジェット流の温度を50℃、吸出し
ノズル内の静圧を−1300mmAq、吐出ノズル内の
静圧を+1300mmAqとした条件で乾燥試験をした
結果を図29の曲線3に示す。マツトの正味重量は10
00gで洗浄後脱水前の重量は1800gであったので
水800gを含有している(最大保水量800g)。こ
こで乾燥率とは次式で示す。 図29のグラフの曲線3に示す如く96%の乾燥を行う
のに120秒要した。
The graph of FIG. 29 shows the test results of dehydration and drying using only the second stage dehydration / drying apparatus 40 in Example 4 (FIG. 20). The drying conditions are as follows: the size of the flocked mat, which is the material to be dried, is 1 m × 1 m, and the mat feeding speed is 8.
3 mm / sec. The curve 3 in FIG. 29 shows the result of the drying test under the conditions that the temperature of the jet stream was 50 ° C., the static pressure in the suction nozzle was −1300 mmAq, and the static pressure in the discharge nozzle was +1300 mmAq. The net weight of the mat is 10
Since the weight after washing with 00 g and before dehydration was 1800 g, it contained 800 g of water (maximum water retention amount 800 g). Here, the drying rate is shown by the following equation. As shown by the curve 3 in the graph of FIG. 29, it took 120 seconds to perform 96% drying.

【0039】なお比較例として図中曲線1は吸出しノズ
ル1個を用いて高速負圧流のみで脱水した時のデータ
で、曲線2は吐出ノズル1個用いて高速ジエツト流のみ
で脱水乾燥した時のデータを示す。これらのデータは乾
燥前半では吸出しノズルの高速負圧流による乾燥の方が
乾燥率が高く、乾燥後半では吐出ノズルの高速ジエツト
流による乾燥の方が乾燥率が高くなる傾向を示してい
る。
As a comparative example, curve 1 in the figure is data when dehydration is performed only by high-speed negative pressure flow using one suction nozzle, and curve 2 is data when dehydration-drying is performed only by high-speed jet flow using one discharge nozzle. Show the data. These data show that in the first half of drying, the drying rate is higher in the drying by the high-speed negative pressure flow of the suction nozzle, and in the latter half of the drying, the drying rate is higher in the drying by the high-speed jet flow of the discharge nozzle.

【0040】次に実施例4(図20参照)において脱水
乾燥装置30,40,50を使用して構成体3A,3
B,3Bの3組用いて三段階で乾燥した場合の試験結果
を図30に示す。前述と同様マットの正味重量は100
0g、最大保水量800gの濡れたマットの重さ180
0gである被乾燥物を第一段脱水装置で脱水し、次いで
第二、第三段乾燥装置で乾燥を行った結果、91秒間で
96%の乾燥率を得た。このときの乾燥条件は吸出しノ
ズル3c内の静圧を第一段階で−1500mmAq、第
二段階で−700mmAq、第三段階で−300mmA
q、吐出ノズル3d内の静圧を第一段階で+300mm
Aq、第二段階で+1300mmAq、第三段階で+1
500mmAq、マットの送り速度を10.9mm/s
ec.、ジェット流温度を第一段で40℃、第二段で5
0℃、第三段で65℃と変化させた。このように吸出し
ノズル内の静圧を初期段階では高くして大部分の水分を
吸出しながら除去し後段階に進むに従って低く設定し、
一方吐出ノズル内の静圧を初期段階では低くし、後段階
に進むに従って高く設定し、初期段階で脱水した後の残
存水分を除去して乾燥すれば効率よく乾燥操作が行えて
省エネルギー効果が大である。
Next, in Example 4 (see FIG. 20), the dehydrating / drying apparatus 30, 40, 50 was used to construct the components 3A, 3
FIG. 30 shows the test result when three sets of B and 3B were used and drying was performed in three stages. As before, the net weight of the mat is 100
Wet mat weight of 0g and maximum water retention of 800g 180
The substance to be dried (0 g) was dehydrated by the first-stage dehydrator and then dried by the second and third-stage dehydrators, and as a result, a drying rate of 96% was obtained in 91 seconds. The drying condition at this time is that the static pressure in the suction nozzle 3c is -1500 mmAq in the first step, -700 mmAq in the second step, and -300 mmA in the third step.
q, static pressure in the discharge nozzle 3d is +300 mm in the first stage
Aq, + 1300mmAq in the second stage, +1 in the third stage
500 mmAq, mat feed rate is 10.9 mm / s
ec. , Jet flow temperature is 40 ° C in the first stage, 5 in the second stage
The temperature was changed from 0 ° C to 65 ° C in the third stage. In this way, the static pressure in the suction nozzle is increased in the initial stage, most of the water is removed while being sucked out, and it is set lower as proceeding to the later stage
On the other hand, if the static pressure in the discharge nozzle is set low in the initial stage and set higher as it progresses to the later stage, and the residual water after dehydration is removed and dried in the initial stage, the drying operation can be performed efficiently and the energy saving effect is great. Is.

【0041】これに要したエネルギーは3.3KWHの
送風機5台、ジェット流加熱ヒータが3KWH、その他
駆動モータを0.5kWHとし、合計約20KWHを要
し1KWHを20円としたとき1時間当たり400円と
なり、上記の1m×1mのマット1枚当たりの乾燥時間
は約90秒であり10円で極めて安価な電力代である。
The energy required for this is 5 blowers of 3.3 KWH, the jet flow heater is 3 KWH, the other drive motor is 0.5 kWh, and a total of about 20 KWH is required. It becomes a circle, and the drying time per 1 m × 1 m mat is about 90 seconds, which is 10 yen, which is an extremely low electricity cost.

【0042】[0042]

【発明の効果】上記実施例では基材がゴムシートからな
るマットと通気性のあるじゅうたんを被乾燥物として説
明したが、この他幅広じゅうたん、衣類、織物その他布
帛、不織布、ガラス繊維シート、合成繊維シートその他
の長尺シート、人工芝生、ゴザ、畳、厚紙、消防用ホー
ス、電子部品等の洗浄後の低温乾燥に利用でき、またこ
れらの製造工程中での乾燥に利用できるのは勿論のこと
である。
In the above examples, the mat made of the rubber sheet as the base material and the breathable carpet were explained as the material to be dried. However, other wide carpets, clothes, woven fabrics and other cloths, nonwoven fabrics, glass fiber sheets, synthetic It can be used for low-temperature drying after washing of textile sheets and other long sheets, artificial grass, moss, tatami, cardboard, fire hoses, electronic parts, etc., and of course during these manufacturing processes. That is.

【0043】マットの乾燥においては従来の遠心力を利
用した脱水乾燥、減圧と熱風との併用による乾燥、単な
る加熱乾燥等が用いられているが均一な乾燥が得られ
ず、かつ加熱乾燥の場合には80〜120℃の比較的高
温度で乾燥しなければならず、一方生地の材質によって
は50℃以下の低温乾燥が必要であるが低温乾燥では長
時間を要する欠点があった。本発明による高速負圧流を
使用した脱水乾燥装置では繊維表面および繊維間隙に付
着した水分を蒸発するとともに吸出しノズル近傍の負圧
たとえば−300mmAq〜−1500mmAqの高速
負圧流により水分を繊維表面から物理的に剥離し微細な
水滴を高速負圧流に乗せて除去することができ、水分の
気化による被乾燥物の温度低下を防止し、大量の加熱エ
ネルギーは不要でいわゆる低温高速乾燥が可能であり、
装置の簡素化、経費節減となり、乾燥効率は極めて大き
い。
In the drying of the mat, conventional dehydration drying utilizing centrifugal force, drying by combined use of reduced pressure and hot air, simple heat drying, etc. are used, but uniform drying cannot be obtained, and in the case of heat drying Must be dried at a relatively high temperature of 80 to 120 ° C., while low temperature drying at 50 ° C. or lower is necessary depending on the material of the dough, but low temperature drying has a drawback that it takes a long time. In the dewatering / drying apparatus using the high-speed negative pressure flow according to the present invention, the water adhering to the fiber surface and the fiber gap is evaporated and the negative pressure near the suction nozzle, for example, the high-speed negative pressure flow of -300 mmAq to -1500 mmAq, causes the water to physically move from the fiber surface. It is possible to remove fine water droplets by putting it on a high-speed negative pressure flow, prevent the temperature of the material to be dried from lowering due to vaporization of water, and do not require a large amount of heating energy, so-called low-temperature high-speed drying is possible,
The equipment is simplified, the cost is reduced, and the drying efficiency is extremely large.

【0044】本発明においては吸出しノズルによる高速
負圧流と吐出ノズルからの高速ジェット流とを併用する
場合、吐出管内の静圧を+300mmAq〜+1500
mmAq、吸出し管内の静圧を−300mmAq〜−1
500mmAqとし、濡れたマットの多数の繊維の間隙
に乾燥空気を吐出ノズルから高速ジェット流として繊維
の根元まで吹き付けて乾燥を促すとともに吸出しノズル
近傍の負圧流域にジェット流を吹き込み高速負圧流と高
速ジェット流との相乗効果により高速負圧流を増速し水
分を瞬時に吸出しノズルへ移送し脱水乾燥するもので乾
燥効果は高くなる。この場合ジェット流にたとえば40
〜65℃の熱風を使用すれば乾燥効果が更に増大するの
は勿論である。たとえば同条件の乾燥を行うのに従来の
熱風乾燥を行う場合の使用エネルギーに比し本発明の吸
出しノズルと吐出ノズルを併用した脱水乾燥装置を使用
すれば使用エネルギーが半減することが解った。
In the present invention, when the high speed negative pressure flow from the suction nozzle and the high speed jet flow from the discharge nozzle are used together, the static pressure in the discharge pipe is +300 mmAq to +1500.
mmAq, static pressure in the suction pipe is -300 mmAq to -1
It is set to 500 mmAq, and dry air is blown from the discharge nozzle to the root of the fiber as a high-speed jet stream in the gaps between many fibers of the wet mat to promote drying and the jet stream is blown into the negative pressure flow area near the suction nozzle to achieve high-speed negative pressure flow and high speed. Due to the synergistic effect with the jet flow, the high-speed negative pressure flow is accelerated, moisture is instantaneously sucked and transferred to the nozzle, and dehydrated and dried, so that the drying effect is enhanced. In this case, for example, 40
It goes without saying that the drying effect is further increased by using hot air of ~ 65 ° C. For example, it has been found that the energy used is halved by using the dehydration / drying apparatus of the present invention in which the suction nozzle and the discharge nozzle are used in combination, as compared with the energy used in the case of performing conventional hot air drying for drying under the same conditions.

【0045】本発明の脱水乾燥装置を使用するに当たっ
て被乾燥物の種類によってたとえば実施例4の図24に
示す装置において吐出ノズル3dを作用させず吸出しノ
ズル3cのみを作用させることにより吸出し脱水乾燥が
でき、また逆に吸出しノズル3cを作用させず吐出ノズ
ル3dのみを作用させてもよく、また吐出ノズル3dお
よび吸出しノズル3cの静圧を適宜調整して脱水乾燥が
行える。また本発明の脱水乾燥装置を図20,図24
(実施例4)に示す如く前段領域で脱水を行う前段脱水
装置と後段領域で乾燥を行う後段乾燥装置とに分離する
ことによってそれぞれのジェット流および負圧流の圧力
を加減調整して乾燥エネルギーを節減できる。
In using the dewatering / drying apparatus of the present invention, depending on the type of the material to be dried, for example, in the apparatus shown in FIG. 24 of the fourth embodiment, the suction nozzle 3c is actuated and the suction nozzle 3c alone is actuated to effect suction dewatering / drying. Alternatively, conversely, the suction nozzle 3c may not be operated and only the discharge nozzle 3d may be operated. Further, the static pressure of the discharge nozzle 3d and the suction nozzle 3c may be appropriately adjusted to perform dehydration / drying. In addition, FIG. 20 and FIG.
As shown in (Embodiment 4), by separating the pre-stage dewatering device for dehydrating in the pre-stage region and the post-stage drying device for drying in the post-stage region, the pressures of the respective jet streams and negative pressure flows are adjusted to adjust the drying energy. You can save money.

【0046】また本発明では高温加熱エネルギーを使用
しないので被乾燥物の劣化が皆無で摩擦による損傷も全
ったくなく被乾燥物にしわを生ずる恐れもなく、更に水
滴の除去とともに被乾燥物に付着している塵埃特にダ
ニ、シラミその他の害虫およびその卵等の異物も水滴と
ともに高速負圧流に乗って完全に吸引除去されるので清
掃、無菌化の効果をも発揮することができ清潔で乾いた
じゅうたん、マット等が得られる。
Further, in the present invention, since high temperature heating energy is not used, there is no deterioration of the material to be dried, damage due to friction is not great and there is no fear of wrinkling on the material to be dried. Dust that adheres, especially mites, lice and other harmful insects and their foreign substances such as eggs, are completely sucked and removed along with high-speed negative pressure flow along with water droplets, so cleaning and sterilization effects can also be exerted and it is clean and dry. You can get carpets, mats, etc.

【0047】また乾燥しにくいたとえば目の詰まった織
物その他布帛等を乾燥する場合は、実施例4(図20)
で説明した如く第一段領域では被乾燥物の水分が多いた
め吸出し管内の圧力即ち負圧の値を高くして負圧流によ
る吸引力を上げ、また吐出管内の圧力を低くしてジェッ
ト流の吐出圧を低く設定し、第二段、第三段領域に進む
に従って逆にジェット流の圧力を高く、負圧流の圧力を
低く設定して脱水乾燥を行えば乾燥効率がよく、かつ省
エネルギー効果が大きい。
Further, in the case of drying a fabric which is difficult to dry, for example, a clogged woven fabric or a fabric, the embodiment 4 (FIG. 20) is used.
As described above, in the first-stage area, the amount of water to be dried is large, so that the pressure in the suction pipe, that is, the value of the negative pressure is increased to increase the suction force by the negative pressure flow, and the pressure in the discharge pipe is decreased to reduce the jet flow. If the discharge pressure is set low and the jet flow pressure is set high and the negative pressure flow is set low to perform dehydration and drying, the drying efficiency is improved and the energy saving effect is improved. large.

【0048】以上本発明を主に水で濡れた被乾燥物の乾
燥について詳述したが、水以外の揮発性液体たとえばト
リクロロエチレンその他有機溶剤または該液体と水との
混合物を使用して洗浄し乾燥する場合においても上記水
滴分離槽を溶剤その他の液滴分離槽として使用し、除湿
機に代えてまたは除湿機とともに溶剤蒸気吸着除去装置
を使用して溶剤を濃縮回収し、あるいは燃料として使用
することにより全く同様に低温急速乾燥装置として使用
し得るものである。
The present invention has been described in detail above mainly with respect to the drying of the material to be dried which has been wet with water. It is washed and dried by using a volatile liquid other than water such as trichlorethylene or an organic solvent or a mixture of the liquid and water. When using the above-mentioned water droplet separation tank as a solvent and other droplet separation tank, instead of the dehumidifier or by using a solvent vapor adsorption removal device together with the dehumidifier to concentrate and recover the solvent, or use it as a fuel Therefore, it can be used as a low temperature rapid drying device in the same manner.

【図面の簡単な説明】[Brief description of drawings]

【図1】吸出しノズルと吐出ノズルを有する構成体を用
いた本発明の第2実施例の脱水乾燥装置の例を示す断面
説明図である。
FIG. 1 is a cross-sectional explanatory view showing an example of a dehydration / drying apparatus of a second embodiment of the present invention using a structure having a suction nozzle and a discharge nozzle.

【図2】本発明の第2実施例の脱水乾燥装置における図
1で使用した構成体の斜視図である。
FIG. 2 is a perspective view of a structure used in FIG. 1 in a dehydration / drying apparatus according to a second embodiment of the present invention.

【図3】吸出しノズルだけを用いた本発明の第1実施例
の脱水装置を示す説明図である。
FIG. 3 is an explanatory diagram showing a dehydrator according to a first embodiment of the present invention using only a suction nozzle.

【図4】第1実施例で使用した吸出しノズルの斜視図で
ある。
FIG. 4 is a perspective view of a suction nozzle used in the first embodiment.

【図5】本発明の第1実施例で使用した吸出しノズルの
内径Dを説明する垂直断面図である。
FIG. 5 is a vertical sectional view for explaining the inner diameter D of the suction nozzle used in the first embodiment of the present invention.

【図6】繊維が水膜で覆われたマットに吸出しノズルを
接触させた状態の拡大図である。
FIG. 6 is an enlarged view of a state in which a suction nozzle is brought into contact with a mat in which fibers are covered with a water film.

【図7】吸出しノズルの負圧流によりマットの繊維表面
が連続した水滴で覆われた状態を示す拡大図である。
FIG. 7 is an enlarged view showing a state where the fiber surface of the mat is covered with continuous water droplets by the negative pressure flow of the suction nozzle.

【図8】吸出しノズルの負圧流により微細な水滴となっ
た状態を示す拡大図である。
FIG. 8 is an enlarged view showing a state in which fine water droplets are formed by a negative pressure flow of a suction nozzle.

【図9】水滴分離槽の断面図である。FIG. 9 is a cross-sectional view of a water drop separation tank.

【図10】ハニカムロータを使用した除湿機の一部欠截
斜視図である。
FIG. 10 is a partially cutaway perspective view of a dehumidifier using a honeycomb rotor.

【図11】繊維表面が水膜で覆われたマットに構成体を
接触させた状態の拡大図である。
FIG. 11 is an enlarged view of a state in which the structure is brought into contact with a mat whose fiber surface is covered with a water film.

【図12】構成体からの負圧流とジェット流によりマッ
トの繊維表面が連続した水滴で覆われた状態を示す拡大
図である。
FIG. 12 is an enlarged view showing a state where the fiber surface of the mat is covered with continuous water droplets by the negative pressure flow and the jet flow from the structural body.

【図13】構成体からの負圧流とジェット流により微細
な水滴がマットの繊維表面に生成した状態を示す拡大図
である。
FIG. 13 is an enlarged view showing a state in which fine water droplets are generated on the fiber surface of the mat due to the negative pressure flow and the jet flow from the structural body.

【図14】送風機1台を使用した場合のフローパターン
を示す本発明の第2実施例を示す脱水乾燥装置の模式図
である。
FIG. 14 is a schematic diagram of a dewatering / drying apparatus showing a second embodiment of the present invention showing a flow pattern when one blower is used.

【図15】吐出用送風機と吸出し用送風機との2台の送
風機を使用した場合のフローパターンを示す本発明の第
2実施例を示す脱水乾燥装置の模式図である。
FIG. 15 is a schematic view of a dewatering / drying apparatus showing a second embodiment of the present invention showing a flow pattern when two blowers, a blower for discharge and a blower for suction, are used.

【図16】吸出し管内に吐出管を内蔵した構成体を使用
した第2実施例を示す脱水乾燥装置の断面図である。
FIG. 16 is a cross-sectional view of a dewatering / drying apparatus showing a second embodiment in which a constituent body in which a discharge pipe is built in a suction pipe is used.

【図17】本発明の第3実施例を示す脱水乾燥装置の断
面図である。
FIG. 17 is a sectional view of a dehydration / drying apparatus showing a third embodiment of the present invention.

【図18】線条エンドレスコンベアの平面図である。FIG. 18 is a plan view of the linear endless conveyor.

【図19】網条エンドレスコンベアの平面図である。FIG. 19 is a plan view of a mesh endless conveyor.

【図20】本発明の第4実施例を示す三段階脱水乾燥装
置の断面図である。
FIG. 20 is a sectional view of a three-stage dewatering / drying apparatus showing a fourth embodiment of the present invention.

【図21】第4実施例で使用した構成体の変形例を示す
垂直断面図である。
FIG. 21 is a vertical cross-sectional view showing a modified example of the structure used in the fourth embodiment.

【図22】ジェット流の合成ベクトルRをベクトル
,ベクトルRに分解して説明した図21における
吐出ノズルの拡大図である。
22 is an enlarged view of the discharge nozzle in FIG. 21 in which the combined vector R of the jet flow is decomposed into the vectors R 1 and R 2 .

【図23】第4実施例で使用した構成体の変形例を示す
垂直断面図である。
FIG. 23 is a vertical cross-sectional view showing a modified example of the structure used in the fourth embodiment.

【図24】本発明の第4実施例を示す脱水乾燥装置の変
形例を示す断面図である。
FIG. 24 is a sectional view showing a modified example of the dehydration / drying apparatus showing the fourth embodiment of the present invention.

【図25】本発明の第5実施例を示す脱水乾燥装置の断
面図である。
FIG. 25 is a sectional view of a dehydration / drying apparatus showing a fifth embodiment of the present invention.

【図26】図25における被乾燥物を脱水乾燥する構成
体部分の拡大図である。
26 is an enlarged view of a structural body portion for dehydrating and drying the material to be dried in FIG. 25.

【図27】本発明の第6実施例を示す断面図である。FIG. 27 is a sectional view showing a sixth embodiment of the present invention.

【図28】マットの拡大断面図である。FIG. 28 is an enlarged sectional view of the mat.

【図29】本発明の構成体1組を使用した脱水乾燥装置
の乾燥成績を示すグラフである。
FIG. 29 is a graph showing the drying results of a dehydration / drying apparatus using one set of the constitutional body of the present invention.

【図30】本発明の構成体3組を使用した三段階による
脱水乾燥装置の乾燥成績を示すグラフである。
FIG. 30 is a graph showing the drying results of a three-stage dehydration / drying apparatus using three sets of the constructs of the present invention.

【符号の説明】[Explanation of symbols]

1 マット 1a マットの繊維 1b マット基材 2 移動載置台 3a 吸出し管 3b 吐出管 3c 吸出しノズル 3d 吐出ノズル 4 送風機 5 水滴分離槽 6 除湿機 12 水膜 13 連続した水滴 14 微細な水滴 P マット移動方向 Q 高速負圧流 R 高速ジェット流 1 mat 1a mat fiber 1b mat base 2 moving mounting table 3a suction pipe 3b discharge pipe 3c suction nozzle 3d discharge nozzle 4 blower 5 water drop separation tank 6 dehumidifier 12 water film 13 continuous water drop 14 fine water drop P mat movement direction Q High-speed negative pressure flow R High-speed jet flow

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】移送中の濡れた被乾燥物を吸出しノズルお
よび吐出ノズルの先端部に接近または摺動するように配
置し、高速ジェット流と高速負圧流とを濡れた被乾燥物
に作用させ両高速流がその相乗効果によって増速しなが
ら被乾燥物よりじかに強力に水滴および水蒸気を吸出し
ながら乾燥することを特徴とする低温急速脱水乾燥の方
法および装置。
1. A wet material to be dried which is being transferred is arranged so as to approach or slide to the tips of a suction nozzle and a discharge nozzle, and a high-speed jet stream and a high-speed negative pressure flow act on the wet material to be dried. A method and an apparatus for low-temperature rapid dewatering and drying, characterized in that both high-velocity streams are accelerated by their synergistic effect while directly sucking water droplets and water vapor more strongly than the material to be dried.
【請求項2】単数または複数の吸出しノズルおよび単数
または複数の吐出ノズルを交互に組合わせ配置し、移送
中の濡れた被乾燥物を該吸出しノズルおよび該吐出ノズ
ルの先端部に接近または摺動するように配置し作用させ
ることにより脱水乾燥時間を短縮することを特徴とする
請求項1記載の低温急速脱水乾燥の方法および装置。
2. A single or a plurality of suction nozzles and a single or a plurality of discharge nozzles are alternately arranged in combination, and a wet material to be dried which is being transferred approaches or slides on the tip portions of the suction nozzle and the discharge nozzle. The method and apparatus for low-temperature rapid dehydration and drying according to claim 1, wherein the dehydration and drying time is shortened by arranging and operating as described above.
【請求項3】移送中の濡れた被乾燥物の表面に複数の吸
出しノズルおよび/または複数の吐出ノズルを接近また
は摺動させて脱水乾燥する場合、被乾燥物が大量に水分
を含む初期段階では吸出しノズルの吸出し圧力を強くし
被乾燥物より水滴状態で吸出し脱水し、次に被乾燥物の
脱水が充分行なわれた段階では吐出圧力を強めかつ被乾
燥物が熱劣化を起こさない程度にジェット流の温度を上
昇し乾燥を促進する請求項1または請求項2記載の低温
急速脱水乾燥の方法および装置。
3. An initial stage in which the material to be dried contains a large amount of water when a plurality of suction nozzles and / or a plurality of discharge nozzles are brought close to or slid on the surface of the material to be dried during transfer to dehydrate and dry. Then, the suction pressure of the suction nozzle is increased to suck and dehydrate the material to be dried in the form of water droplets. Next, when the material to be dried is sufficiently dehydrated, the discharge pressure is strengthened and heat deterioration of the material to be dried does not occur. The method and apparatus for low-temperature rapid dehydration drying according to claim 1 or 2, wherein the temperature of the jet stream is increased to accelerate the drying.
【請求項4】吸出しノズルを有する吸出し管内に吐出ノ
ズルを有する吐出管を内蔵させ、両ノズルの高速ジェッ
ト流と高速負圧流とを接近させた状態で移送中の濡れた
被乾燥物に作用させ両高速流の相乗効果によって増速し
ながら被乾燥物よりじかに強力に水滴および水蒸気を吸
出し乾燥することを特徴とする低温急速脱水乾燥の方法
および装置。
4. A discharge pipe having a discharge nozzle is built in a suction pipe having a suction nozzle, and a high-speed jet flow and a high-speed negative pressure flow of both nozzles are made to act on a wet material to be dried during transfer. A method and an apparatus for low-temperature rapid dehydration drying, characterized in that water droplets and water vapor are sucked and strongly dried directly from an object to be dried while being accelerated by a synergistic effect of both high-speed flows.
【請求項5】吐出ノズルを有する吐出管内に吸出しノズ
ルを有する吸出し管を内蔵させ、両ノズルの高速ジェッ
ト流と高速負圧流とを接近させた状態で移送中の濡れた
被乾燥物に作用させ両高速流の相乗効果によって増速し
ながら被乾燥物よりじかに強力に水滴および水蒸気を吸
出し乾燥することを特徴とする低温急速脱水乾燥の方法
および装置。
5. A suction pipe having a suction nozzle is incorporated in a discharge pipe having a discharge nozzle, and a high speed jet flow and a high speed negative pressure flow of both nozzles are made to act on a wet material to be dried during transfer. A method and an apparatus for low-temperature rapid dehydration drying, characterized in that water droplets and water vapor are sucked and strongly dried directly from an object to be dried while being accelerated by a synergistic effect of both high-speed flows.
【請求項6】請求項4または請求項5記載の吐出管を内
蔵した吸出し管または吸出し管を内蔵した吐出管を多数
配置してなる低温急速脱水乾燥の方法および装置。
6. A low-temperature rapid dewatering / drying method and apparatus comprising a suction pipe having the discharge pipe according to claim 4 or 5, and a plurality of discharge pipes having the suction pipe.
【請求項7】吐出ノズルからのジェット流を被乾燥物の
表面に対して斜めに噴射することを特徴とする請求項1
乃至請求項6記載の低温急速脱水乾燥の方法および装
置。
7. A jet flow from a discharge nozzle is jetted obliquely to the surface of the object to be dried.
7. A method and an apparatus for low temperature rapid dehydration drying according to claim 6.
【請求項8】移送中の濡れた被乾燥物を1個または複数
個の吸出しノズルの先端部に接近または摺動するように
配置し、高速負圧流によって被乾燥物よりじかに水滴お
よび水蒸気を吸出しながら乾燥することを特徴とする低
温急速脱水乾燥の方法および装置。
8. A wet material to be dried during transfer is arranged so as to approach or slide to the tip of one or more suction nozzles, and water droplets and water vapor are directly sucked from the material to be dried by a high-speed negative pressure flow. A method and an apparatus for low-temperature rapid dehydration drying, which comprises drying while drying.
【請求項9】被乾燥物を水以外の揮発性液体または該液
体と水との混合物で濡れた被乾燥物とした請求項1乃至
請求項8記載の低温急速乾燥の方法および装置。
9. The method and apparatus for low temperature rapid drying according to claim 1, wherein the material to be dried is a material to be dried which is wet with a volatile liquid other than water or a mixture of the liquid and water.
【請求項10】請求項1乃至請求項8記載の吸出しノズ
ルと送風機の吸込口との間に水滴分離槽を配置してなる
低温急速脱水乾燥の方法および装置。
10. A low-temperature rapid dewatering / drying method and apparatus comprising a water droplet separation tank disposed between the suction nozzle according to claim 1 and the suction port of a blower.
【請求項11】吐出用送風機の吸込口前段に除湿機を配
置してなる請求項1乃至請求項8および請求項10記載
の低温急速脱水乾燥の方法および装置。
11. The method and apparatus for low-temperature rapid dehydration drying according to claim 1, wherein a dehumidifier is arranged in front of the suction port of the blower for discharge.
【請求項12】被乾燥物を水以外の揮発性液体または該
液体と水との混合物で濡れた被乾燥物とし、吸出しノズ
ルと送風機の吸込口との間に気液分離槽を配置してなる
請求項9記載の低温急速乾燥の方法および装置。
12. The material to be dried is a material to be dried which is wet with a volatile liquid other than water or a mixture of the liquid and water, and a gas-liquid separation tank is disposed between the suction nozzle and the suction port of the blower. The method and apparatus for low temperature rapid drying according to claim 9.
【請求項13】被乾燥物を水以外の揮発性液体または該
液体と水との混合物で濡れた被乾燥物とし、吸出し用兼
吐出用として一台の送風機を使用して空気流を循環する
場合、送風機の吸込口と吸出しノズルとの間に揮発性液
体蒸気吸着除去装置を配置してなる請求項9および請求
項12記載の低温急速乾燥の方法および装置。
13. An article to be dried is a article to be dried which is wet with a volatile liquid other than water or a mixture of the liquid and water, and an air flow is circulated by using one blower for both suction and discharge. In this case, the method and apparatus for low-temperature rapid drying according to claims 9 and 12, wherein a volatile liquid vapor adsorption / removal device is arranged between the suction port and the suction nozzle of the blower.
【請求項14】被乾燥物を移送する手段が下方は多数の
線条を適宜間隔に平行状に配列したエンドレスコンベア
または網状エンドレスコンベアまたは多孔質エンドレス
ベルトコンベアまたはローラを使用したエンドレスコン
ベアからなり上方はローラまたはエンドレスベルトコン
ベアからなり被乾燥物を押圧挟持して移送する請求項1
乃至請求項13記載の低温急速乾燥の方法および装置。
14. The means for transferring the material to be dried is composed of an endless conveyor having a large number of filaments arranged in parallel at appropriate intervals, a mesh endless conveyor, a porous endless belt conveyor, or an endless conveyor using rollers. Is a roller or an endless belt conveyor, and presses and holds the material to be dried for transfer.
14. A method and apparatus for low temperature rapid drying according to claim 13.
JP7141051A 1994-04-30 1995-04-28 Method and apparatus for low-temperature rapid dehydration and drying by high-speed fluid Pending JPH0814737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7141051A JPH0814737A (en) 1994-04-30 1995-04-28 Method and apparatus for low-temperature rapid dehydration and drying by high-speed fluid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-126742 1994-04-30
JP12674294 1994-04-30
JP7141051A JPH0814737A (en) 1994-04-30 1995-04-28 Method and apparatus for low-temperature rapid dehydration and drying by high-speed fluid

Publications (1)

Publication Number Publication Date
JPH0814737A true JPH0814737A (en) 1996-01-19

Family

ID=26462875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7141051A Pending JPH0814737A (en) 1994-04-30 1995-04-28 Method and apparatus for low-temperature rapid dehydration and drying by high-speed fluid

Country Status (1)

Country Link
JP (1) JPH0814737A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9914011B2 (en) 2015-06-25 2018-03-13 Pliteq Inc. Impact damping mat, equipment accessory and flooring system

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48110757U (en) * 1972-03-24 1973-12-19
JPS5339660A (en) * 1976-09-24 1978-04-11 Hitachi Ltd Dust removing device
JPS56972A (en) * 1979-06-14 1981-01-08 Santo Tekkosho Kk Method and device for continuous shrinkage drying of dishcloth
JPS5835374A (en) * 1981-08-28 1983-03-02 株式会社日立製作所 Drier
JPS63125511U (en) * 1987-02-10 1988-08-16
JPH0116790Y2 (en) * 1985-12-28 1989-05-17
JPH0252436U (en) * 1988-10-05 1990-04-16
JPH0318493U (en) * 1989-06-29 1991-02-22
JPH0456752U (en) * 1990-09-17 1992-05-15
JPH0517484U (en) * 1991-07-31 1993-03-05 石川島播磨重工業株式会社 Nozzle structure of attached water suction device
JPH0615776U (en) * 1992-07-31 1994-03-01 ソニック・フエロー株式会社 Gas nozzle structure
JPH0699150A (en) * 1992-09-21 1994-04-12 Toray Ind Inc Apparatus for removing liquid
JPH06146158A (en) * 1992-10-29 1994-05-27 Hirano Tecseed Co Ltd Device for thermally treating web
JPH07101609A (en) * 1993-10-04 1995-04-18 Hirano Tecseed Co Ltd Heat treating device
JPH07503891A (en) * 1992-02-12 1995-04-27 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチェン Process for producing granules suitable as wetting agents, cleaning agents and/or cleaning agents
JPH08503900A (en) * 1992-11-25 1996-04-30 スジェベルイ,スタッファン Cleaning device for moving objects

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48110757U (en) * 1972-03-24 1973-12-19
JPS5339660A (en) * 1976-09-24 1978-04-11 Hitachi Ltd Dust removing device
JPS56972A (en) * 1979-06-14 1981-01-08 Santo Tekkosho Kk Method and device for continuous shrinkage drying of dishcloth
JPS5835374A (en) * 1981-08-28 1983-03-02 株式会社日立製作所 Drier
JPH0116790Y2 (en) * 1985-12-28 1989-05-17
JPS63125511U (en) * 1987-02-10 1988-08-16
JPH0252436U (en) * 1988-10-05 1990-04-16
JPH0318493U (en) * 1989-06-29 1991-02-22
JPH0456752U (en) * 1990-09-17 1992-05-15
JPH0517484U (en) * 1991-07-31 1993-03-05 石川島播磨重工業株式会社 Nozzle structure of attached water suction device
JPH07503891A (en) * 1992-02-12 1995-04-27 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチェン Process for producing granules suitable as wetting agents, cleaning agents and/or cleaning agents
JPH0615776U (en) * 1992-07-31 1994-03-01 ソニック・フエロー株式会社 Gas nozzle structure
JPH0699150A (en) * 1992-09-21 1994-04-12 Toray Ind Inc Apparatus for removing liquid
JPH06146158A (en) * 1992-10-29 1994-05-27 Hirano Tecseed Co Ltd Device for thermally treating web
JPH08503900A (en) * 1992-11-25 1996-04-30 スジェベルイ,スタッファン Cleaning device for moving objects
JPH07101609A (en) * 1993-10-04 1995-04-18 Hirano Tecseed Co Ltd Heat treating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9914011B2 (en) 2015-06-25 2018-03-13 Pliteq Inc. Impact damping mat, equipment accessory and flooring system

Similar Documents

Publication Publication Date Title
KR100369200B1 (en) Method of low temperature rapid dehydration drying by high speed fluid
US4352249A (en) Fruit dryer
EP1398407A2 (en) Heatless and reduced-heat drying systems
JP5416007B2 (en) Filter cleaning and drying system and filter cleaning and drying method
RU2753852C1 (en) Device for cleaning dust screen of dryer by back purge, dust protection equipment and dryer
JP4989192B2 (en) Clothes dry finishing device, clothing deposit removing method and deposit removing device
CN208825114U (en) A kind of cleaner for clean indoor equipment
KR101881958B1 (en) The dust collector having fly collection and filtration functions
US5581907A (en) Rapid dehydrating/drying device usable in low temperature
US20140041692A1 (en) Apparatus for cleaning a surface
JP2950466B2 (en) Dehydration apparatus and dehydration method
JPH0814737A (en) Method and apparatus for low-temperature rapid dehydration and drying by high-speed fluid
CN114838441B (en) Internet of things air purifier based on artificial intelligence control
JP4669325B2 (en) Mat vacuum washer
JP3880803B2 (en) Steel plate cleaner and foreign matter removal method
KR100811921B1 (en) Water flush type painting booth
CN209609751U (en) A kind of novel tea damping machine
JP2002346328A (en) Apparatus for removing fine powder from semiconductor exhaust gas
JP3199219B2 (en) Dehydration drying equipment
CN208379179U (en) A kind of efficient cloth continuous cleaning device
JPS5843936Y2 (en) Dehydration equipment
WO2001034905A1 (en) Method and device for pulp web production
WO2024045205A1 (en) Damp-proof storage device for knitted products
CZ93297A3 (en) Process and apparatus for for purifying waste air
KR930001583Y1 (en) Drying machine scattering themal-wind