JPH08145820A - Magnetostrictive strain sensor - Google Patents

Magnetostrictive strain sensor

Info

Publication number
JPH08145820A
JPH08145820A JP30960294A JP30960294A JPH08145820A JP H08145820 A JPH08145820 A JP H08145820A JP 30960294 A JP30960294 A JP 30960294A JP 30960294 A JP30960294 A JP 30960294A JP H08145820 A JPH08145820 A JP H08145820A
Authority
JP
Japan
Prior art keywords
film
magnetostrictive
shaft
strain
force transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30960294A
Other languages
Japanese (ja)
Inventor
Iwao Sasaki
巌 佐々木
Akihiko Mishima
昭彦 三嶋
Koji Kamimura
浩司 上村
Mitsuaki Ikeda
満昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP30960294A priority Critical patent/JPH08145820A/en
Publication of JPH08145820A publication Critical patent/JPH08145820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: To obtain a magnetostrictive strain sensor in which an irregularity in the characteristic of a strain output is reduced by a method wherein the direction of the finishing operation of the surface of a force transmission member is set to be the same direction as, or the right-angled direction of, the direction of a maximum strain and the face roughness of the surface and the film thickness of a magnetostrictive film are eliminated. CONSTITUTION: The surface, on which a magnetostrictive film 3 is formed, of a force transmission shaft 1 is ground by using a grinding machine in such a way that the surface becomes the direction of the maximum strain of a torque, i.e., the direction of 45 deg. with reference to the shaft. An Ni-Fe alloy film 3 is formed, by a sputtering method, on the part in a width L of the shaft 1. The film 3 by the sputtering method is formed in such a way that an ultrasonic cleaning operation is executed to the shaft 1 according to a prescribed sequence, that the shaft is set inside a vacuum tank, that the tank is evacuated, that the shaft is heated and that the Ni-Fe alloy film is formed. Then, a coil 2 for excitation and detection is formed around the film 3 in a concentric circle shape, and a torque sensor is manufactured. As the output of the torque sensor, a detectable output signal is obtained when its average face roughness is in a range which is 0.8 times or higher the film thickness of the film and the film thickness is 1μm or higher, and the direction of a load can be detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はロボット、工作機械など
のモータトルクや架空電線等の張力等を非接触で検出す
る磁歪式歪センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetostrictive strain sensor for non-contact detection of motor torque of robots, machine tools, tension of overhead wires and the like.

【0002】[0002]

【従来の技術】従来、磁歪式歪センサとして小型化、高
信頼性の目的で、回転駆動系を有するロボットやマニピ
ュレータおよび工作機械等のトルクを計測するセンサ、
架空電線等の張力を測定するセンサが提案されている。
この方式は、回転軸や張力伝達軸などの力伝達軸の表面
に磁歪を有する磁性材料である磁歪膜を付着させ、力伝
達軸にトルク、あるいは、張力が負荷されたときに発生
する歪変化による磁歪膜の磁気特性の変化をインピーダ
ンスの変化として検出コイルや磁気ヘッドにより検出し
ている。この磁歪膜はスパッタ法、湿式メッキ法または
真空蒸着法などの方法により力伝達軸の表面に形成され
ている。しかし、スパッタ法、真空蒸着法、湿式メッキ
法などの方法により磁歪膜を形成して歪センサを構成す
る際、以下のような問題点がある。まず、図3に示すよ
うに力伝達軸1の表面の全周に設けた帯状の磁歪膜3を
施したトルクセンサの場合、力伝達軸1にトルクが印加
されると磁歪膜3の逆磁歪効果により透磁率が変化し検
出コイル2のインピーダンスが変化することによりトル
ク出力信号を得ることができる。しかしながら、このよ
うな構成の磁歪膜3では逆磁歪効果に影響をおよぼす磁
気異方性が図3の矢印D’に示す方向にあるため、軸に
対して左右いずれの方向のトルクが印加された時でもそ
の大きさが共に同じであれば、逆磁歪効果による透磁率
変化の量も同じになり従ってトルクの方向を検知できな
いという欠点があった。そこで、図4のように磁歪膜3
を短冊状にし、(磁気異方性)歪の検出方向を磁歪膜の
最大歪の印加方向に合わせなければならない。例えば右
に回転させてトルクを印加したときには短冊状の長手方
向つまり磁気異方性の方向に対して引張応力を、左に回
転させてトルクを印加したときには圧縮応力を受けるよ
うにしなければトルクの印加方向を検出できない(特公
平3−26339)。この様な場合、短冊状のパターン
を形成する方法が用いられており、その短冊状のパター
ン形成にマスクが用いられる。
2. Description of the Related Art Conventionally, for the purpose of miniaturization and high reliability as a magnetostrictive strain sensor, a sensor for measuring torque of a robot having a rotary drive system, a manipulator and a machine tool,
Sensors for measuring the tension of overhead wires have been proposed.
This method attaches a magnetostrictive film, which is a magnetic material having magnetostriction, to the surface of a force transmission shaft such as a rotating shaft or a tension transmission shaft, and changes the strain that occurs when torque or tension is applied to the force transmission shaft. The change in magnetic characteristics of the magnetostrictive film due to is detected as a change in impedance by a detection coil or a magnetic head. This magnetostrictive film is formed on the surface of the force transmission shaft by a method such as a sputtering method, a wet plating method or a vacuum deposition method. However, when a strain sensor is formed by forming a magnetostrictive film by a method such as a sputtering method, a vacuum deposition method, or a wet plating method, there are the following problems. First, in the case of a torque sensor having a belt-shaped magnetostrictive film 3 provided on the entire circumference of the surface of the force transmission shaft 1 as shown in FIG. 3, when torque is applied to the force transmission shaft 1, the reverse magnetostriction of the magnetostrictive film 3 is applied. Due to the effect, the magnetic permeability changes and the impedance of the detection coil 2 changes, so that a torque output signal can be obtained. However, in the magnetostrictive film 3 having such a structure, since the magnetic anisotropy affecting the inverse magnetostrictive effect is in the direction shown by the arrow D ′ in FIG. 3, the torque in either the left or right direction is applied to the axis. Even if the magnitudes are the same at all times, the amount of change in magnetic permeability due to the inverse magnetostriction effect is also the same, so that there is a drawback that the direction of torque cannot be detected. Therefore, as shown in FIG.
Must be striped, and the (magnetic anisotropy) strain detection direction must be aligned with the maximum strain application direction of the magnetostrictive film. For example, when torque is applied by rotating to the right, tensile stress is applied in the longitudinal direction of the strip, that is, the direction of magnetic anisotropy, and when torque is applied by rotating to the left, the compressive stress is applied unless torque is applied. The direction of application cannot be detected (Japanese Patent Publication No. 3-26339). In such a case, a method of forming a strip-shaped pattern is used, and a mask is used for forming the strip-shaped pattern.

【0003】[0003]

【発明が解決しようとする課題】ところが、このトルク
センサの磁歪膜をマスクを用いて形成する場合、このマ
スクがずれパターンが乱れるため、トルクの印加方向を
検出できないという問題点があった。また、張力センサ
の場合、パターン形成は行わないが、歪出力特性のばら
つきが大きいという問題があった。この張力センサの原
因も磁歪膜の異方性の付き方と考えられた。ビッタ法に
よって調べてみると、図5に示すように、磁歪膜3の異
方性は主として軸の周方向(実線矢印方向)についてい
るが、その方向とずれた乱れが(破線矢印方向)あるこ
とがわかった。この磁気異方性の方向のばらつきによ
り、出力にもばらつきが発生している。そこで、本発明
は歪出力特性のばらつきを少なくし、安定した出力特性
をもつ磁歪膜利用の磁歪式歪センサを提供することを目
的とする。
However, when the magnetostrictive film of the torque sensor is formed by using a mask, there is a problem that the mask application pattern cannot be detected because the mask shift pattern is disturbed. Further, in the case of the tension sensor, although the pattern is not formed, there is a problem that the strain output characteristics vary widely. The cause of this tension sensor was also considered to be the anisotropy of the magnetostrictive film. When examined by the Bitter method, as shown in FIG. 5, the anisotropy of the magnetostrictive film 3 is mainly in the circumferential direction of the axis (the direction of the solid line arrow), but there is a disturbance deviated from that direction (the direction of the broken line arrow). I understand. Due to the variation in the direction of the magnetic anisotropy, the output also varies. Therefore, it is an object of the present invention to provide a magnetostrictive strain sensor using a magnetostrictive film, which has a stable output characteristic with less variation in strain output characteristic.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明は力伝達軸の表面に帯状の磁歪膜を形成し、
前記磁歪膜の近傍に励磁、検出を行うソレノイドコイル
が配置され、前記力伝達軸の表面に発生する歪に基づく
前記磁歪膜の変化を検出コイルのインピーダンス変化と
してとらえ、前記力伝達軸の表面に発生した歪を検出す
る磁歪式歪センサにおいて、前記力伝達軸の前記磁歪膜
を付着する範囲の表面の最終加工方向を最大歪を感知す
る主方向かまたは最大歪を感知する主方向と直角方向に
一致させた構成にしている。なお、前記磁歪膜の膜厚t
を少なくとも1μmとし、かつ、前記最終加工面の平均
面粗さを少なくとも0.8tとすればさらによい。
In order to solve the above problems, the present invention forms a band-shaped magnetostrictive film on the surface of a force transmission shaft,
A solenoid coil for excitation and detection is arranged in the vicinity of the magnetostrictive film, and a change in the magnetostrictive film based on a strain generated on the surface of the force transmission shaft is detected as an impedance change of the detection coil, and the surface of the force transmission shaft is detected. In the magnetostrictive strain sensor for detecting the generated strain, the final processing direction of the surface of the range where the magnetostrictive film of the force transmission shaft is attached is the main direction that senses the maximum strain or a direction perpendicular to the main direction that senses the maximum strain. It is configured to match. The film thickness t of the magnetostrictive film
Is at least 1 μm, and the average surface roughness of the final processed surface is at least 0.8 t.

【0005】[0005]

【作用】上記手段により、加工キズの方向を力伝達方向
に揃えたことにより、トルクセンサの場合、歪の方向
(符号) が変わることによって磁歪膜の透磁率の変化分
の符号も変わるので、回転方向が検出できる。一方、張
力センサの場合、磁歪膜の磁気異方性の方向が一方向に
揃うので、ばらつきのない出力特性が得られ、出力感度
が安定した特性が得られる。
By aligning the direction of the machining flaw with the force transmission direction by the above means, in the case of the torque sensor, the sign of the change in the magnetic permeability of the magnetostrictive film also changes due to the change of the strain direction (sign). The direction of rotation can be detected. On the other hand, in the case of the tension sensor, since the directions of magnetic anisotropy of the magnetostrictive film are aligned in one direction, output characteristics without variations can be obtained, and stable output sensitivity characteristics can be obtained.

【0006】[0006]

【実施例】本発明の実施例を図に基づいて説明する。図
1は本発明の第一の実施例を示すトルクセンサの説明図
である。図において、1は力伝達軸である回転軸、2は
励磁および検出用のコイル、3は帯状の磁歪膜である。
回転軸1は直径20mmのSUS304からなり、磁歪
膜3を形成する表面は研削盤を用いて、トルクの最大歪
の方向すなわち軸に対して45°の方向(矢印C)にな
るよう研削加工を行った。表面の面粗さは0.8μm、
4μm、8μm、16μm、40μmの5種類とした。
この回転軸1の幅Lの部分にスパッタ法によりNi−F
e合金の磁歪膜3を形成した。スパッタ法による磁歪膜
の形成はSUS304の張力伝達軸を中性洗剤、純水、
アルコールの順に超音波洗浄を施した後、真空槽内にセ
ットし、5×10-4Pa以下に排気した後、加熱し、4
00℃にてNi−Fe合金膜を形成した。スパッタ条件
はターゲット電圧325V、ターゲット電流1Aとし
た。膜厚は0.5、1.0、5、10、20、50μm
の6種類とした。つぎに、磁歪膜3の周囲に同心円状に
励磁・検出用のコイル2を設けてトルクセンサを作製
し、負荷を加えた場合の出力とその方向の検出可否を調
べた。その出力特性の結果を表1に示す。なお、従来例
として、回転軸の研削スジの方向が軸に対して垂直(図
3D’方向)で、表面の面粗さが0.4μmのものを加
えた。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram of a torque sensor showing a first embodiment of the present invention. In the figure, 1 is a rotating shaft which is a force transmitting shaft, 2 is a coil for excitation and detection, and 3 is a strip-shaped magnetostrictive film.
The rotating shaft 1 is made of SUS304 having a diameter of 20 mm, and the surface on which the magnetostrictive film 3 is formed is grinded by using a grinder so that the direction of the maximum strain of torque, that is, the direction of 45 ° with respect to the shaft (arrow C). went. The surface roughness is 0.8 μm,
There are five types, 4 μm, 8 μm, 16 μm, and 40 μm.
Ni-F is sputtered on the portion of the rotary shaft 1 having a width L.
An e-alloy magnetostrictive film 3 was formed. The formation of the magnetostrictive film by the sputtering method uses a SUS304 tension transmission shaft with a neutral detergent, pure water,
After ultrasonic cleaning in the order of alcohol, set in a vacuum tank, evacuate to 5 × 10 -4 Pa or less, and heat to 4
A Ni-Fe alloy film was formed at 00 ° C. The sputtering conditions were a target voltage of 325V and a target current of 1A. Film thickness is 0.5, 1.0, 5, 10, 20, 50 μm
There are 6 types. Next, the excitation / detection coil 2 was concentrically provided around the magnetostrictive film 3 to fabricate a torque sensor, and the output when a load was applied and the detection feasibility of the direction were examined. The results of the output characteristics are shown in Table 1. In addition, as a conventional example, the one in which the direction of the grinding streak on the rotating shaft is perpendicular to the shaft (direction of FIG. 3D ′) and the surface roughness of the surface is 0.4 μm is added.

【0007】[0007]

【表1】 [Table 1]

【0008】表1から分かるように、本発明のトルクセ
ンサの出力は平均面粗さが磁歪膜の膜厚の0.8倍以上
の範囲で膜厚が1μm以上であれば、検出可能な出力信
号が得られ、負荷の方向の検出が可能となった。これに
比べて、従来例のものでは平均面粗さ0.4μmで、膜
厚1〜50μmのもので負荷の方向の検出ができない。
このように、短冊状のパターンを形成せずに帯状の磁歪
膜を用いても、研削スジの方向(矢印C)により異方性
をもたせることができる。図2は本発明の第二の実施例
を示す張力センサの図である。張力センサの作製はSU
S304からなる直径20mmの張力伝達軸1を研削盤
を用いて、軸の周方向に研削スジが入るような加工を行
った。このような加工をした張力伝達軸の幅Lの部分
に、スパッタ法によりNi−Fe合金からなる帯状の磁
歪膜3を形成した。磁歪膜3の周囲に第一の実施例と同
様に励磁・検出用のコイル2を設けて張力センサを作製
し、負荷を加えた場合の出力とそのばらつきを調べた。
その結果を表2に示す。なお、従来例として、回転軸の
研削スジの方向が研磨により乱されたもの(図5)を加
えた。
As can be seen from Table 1, the output of the torque sensor of the present invention can be detected when the average surface roughness is 0.8 times or more the thickness of the magnetostrictive film and the film thickness is 1 μm or more. A signal was obtained and it was possible to detect the direction of the load. In contrast, the conventional example has an average surface roughness of 0.4 μm and a film thickness of 1 to 50 μm, and cannot detect the direction of the load.
Thus, even if the strip-shaped magnetostrictive film is used without forming the strip-shaped pattern, anisotropy can be provided depending on the direction of the grinding stripe (arrow C). FIG. 2 is a diagram of a tension sensor showing a second embodiment of the present invention. The tension sensor is made by SU
The tension transmission shaft 1 made of S304 and having a diameter of 20 mm was processed using a grinder so that grinding streaks were formed in the circumferential direction of the shaft. A band-shaped magnetostrictive film 3 made of a Ni—Fe alloy was formed by a sputtering method in the portion having the width L of the tension transmission shaft thus processed. An excitation / detection coil 2 was provided around the magnetostrictive film 3 in the same manner as in the first embodiment to fabricate a tension sensor, and the output and its variation when a load was applied were examined.
The results are shown in Table 2. Incidentally, as a conventional example, the one in which the direction of the grinding streak on the rotating shaft was disturbed by polishing was added (FIG. 5).

【0009】[0009]

【表2】 [Table 2]

【0010】表2から分かるように、本発明の張力セン
サの出力は平均面粗さが磁歪膜3の膜厚の0.8倍以上
の範囲で膜厚が1μm以上であれば、検出可能な出力信
号が得られ、ばらつきも2%以内であった。ばらつき良
の評価は2%以内とした。これに比べて、従来例の出力
のばらつきは本発明のものより4%以上と大きい。すな
わち、本発明の張力センサは従来のものより優れている
ことがわかる。なお、本実施例では磁歪膜3の作製方法
をスパッタ法について述べたが、真空蒸着法、湿式メッ
キ法でも同様の結果が得られた。
As can be seen from Table 2, the output of the tension sensor of the present invention can be detected if the average surface roughness is 0.8 times or more the thickness of the magnetostrictive film 3 and the film thickness is 1 μm or more. An output signal was obtained, and the variation was within 2%. The evaluation of good variation was within 2%. On the other hand, the variation in the output of the conventional example is as large as 4% or more than that of the present invention. That is, the tension sensor of the present invention is superior to the conventional one. In this embodiment, the method of forming the magnetostrictive film 3 is described by the sputtering method, but similar results were obtained by the vacuum evaporation method and the wet plating method.

【0011】[0011]

【発明の効果】以上述べたように、本発明によれば、力
伝達部材の表面の仕上げ加工の方向を最大歪みの方向と
同方向または直角方向に揃え、表面の面粗さと磁歪膜の
膜厚を限定したので、短冊状のパターンを形成するこな
くトルクの方向が検出できるトルクセンサおよび出力特
性のばらつきが少ない安定した張力センサを提供できる
効果がある。
As described above, according to the present invention, the direction of finishing of the surface of the force transmission member is aligned with the direction of maximum strain or the direction at right angles, and the surface roughness of the surface and the film of the magnetostrictive film are aligned. Since the thickness is limited, it is possible to provide a torque sensor that can detect the direction of torque without forming a strip pattern and a stable tension sensor with less variation in output characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のトルクセンサを示す部分平面図であ
る。
FIG. 1 is a partial plan view showing a torque sensor of the present invention.

【図2】本発明の張力センサを示す部分平面図である。FIG. 2 is a partial plan view showing a tension sensor of the present invention.

【図3】従来のトルクセンサの磁気異方性の方向を示す
説明図である。
FIG. 3 is an explanatory diagram showing directions of magnetic anisotropy of a conventional torque sensor.

【図4】従来のトルクセンサの磁歪膜の形状を示す部分
平面図である。
FIG. 4 is a partial plan view showing the shape of a magnetostrictive film of a conventional torque sensor.

【図5】従来の張力センサの磁気異方性の方向を示す説
明図である。
FIG. 5 is an explanatory diagram showing directions of magnetic anisotropy of a conventional tension sensor.

【符号の説明】[Explanation of symbols]

1 力伝達軸 2 コイル 3 磁歪膜 1 Force transmission shaft 2 Coil 3 Magnetostrictive film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 満昭 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuaki Ikeda No. 2 Kurosaki Shiroishi, Yawatanishi-ku, Kitakyushu, Fukuoka Prefecture Yasukawa Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 力伝達軸の表面に帯状の磁歪膜を形成
し、前記磁歪膜の近傍に励磁、検出を行うソレノイドコ
イルが配置され、前記力伝達軸の表面に発生する歪に基
づく前記磁歪膜の変化を検出コイルのインピーダンス変
化としてとらえ、前記力伝達軸の表面に発生した歪を検
出する磁歪式歪センサにおいて、前記力伝達軸の前記磁
歪膜を付着する範囲の表面の最終加工方向を最大歪を感
知する主方向かまたは最大歪を感知する主方向と直角方
向に一致させるとしたことを特徴とする磁歪式歪セン
サ。
1. A magnetostrictive film having a strip shape is formed on the surface of the force transmission shaft, and a solenoid coil for exciting and detecting is arranged in the vicinity of the magnetostrictive film, and the magnetostriction based on the strain generated on the surface of the force transmission shaft. By grasping the change of the film as the impedance change of the detection coil, in the magnetostrictive strain sensor for detecting the strain generated on the surface of the force transmission shaft, the final processing direction of the surface of the range of the force transmission shaft to which the magnetostrictive film is attached is A magnetostrictive strain sensor, characterized in that a main direction for sensing maximum strain or a direction perpendicular to the main direction for sensing maximum strain is made to coincide.
【請求項2】 前記磁歪膜の膜厚tが少なくとも1μm
であり、かつ、前記最終加工面の平均面粗さが少なくと
も0.8tである請求項1記載の磁歪式歪センサ。
2. The thickness t of the magnetostrictive film is at least 1 μm.
And the average surface roughness of the final processed surface is at least 0.8 t.
【請求項3】 前記力伝達軸がトルクを検出する回転軸
である請求項1または2記載の磁歪式歪センサ。
3. The magnetostrictive strain sensor according to claim 1, wherein the force transmission shaft is a rotating shaft that detects torque.
【請求項4】 前記力伝達軸が張力を検出する張力伝達
軸である請求項1または2記載の磁歪式歪センサ。
4. The magnetostrictive strain sensor according to claim 1, wherein the force transmission shaft is a tension transmission shaft that detects tension.
JP30960294A 1994-11-18 1994-11-18 Magnetostrictive strain sensor Pending JPH08145820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30960294A JPH08145820A (en) 1994-11-18 1994-11-18 Magnetostrictive strain sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30960294A JPH08145820A (en) 1994-11-18 1994-11-18 Magnetostrictive strain sensor

Publications (1)

Publication Number Publication Date
JPH08145820A true JPH08145820A (en) 1996-06-07

Family

ID=17995013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30960294A Pending JPH08145820A (en) 1994-11-18 1994-11-18 Magnetostrictive strain sensor

Country Status (1)

Country Link
JP (1) JPH08145820A (en)

Similar Documents

Publication Publication Date Title
JPH08145820A (en) Magnetostrictive strain sensor
JPH05231967A (en) Magnetostrictive torque sensor
JPH10176966A (en) Magnetostriction-detecting body for torque sensor
US5703298A (en) Magnetostrictive torque sensing device
JP3702451B2 (en) Magnetostrictive torque sensor
JPH1028354A (en) Motor with torque sensor
JPS61195323A (en) Torque sensor utilizing magnetostriction
JPH09159551A (en) Magnetostrictive torque sensor
JPS63117230A (en) Torque detector
JP4876393B2 (en) Torque detection device
JPH05187934A (en) Magnetostriction type strain sensor
JPH03282338A (en) Manufacture of torque sensor
JP3663517B2 (en) Magnetostrictive tension sensor
JPH09166505A (en) Manufacture of magnetostrictive torque sensor
JPH05231966A (en) Magnetostrictive torque sensor
JPH08145821A (en) Magnetostrictive torque sensor and torque measuring method
JP2582161B2 (en) Manufacturing method of torque sensor
JPH02118427A (en) Torque detecting device
JPH0626951A (en) Magnetostrictive torque sensor
JPH08219908A (en) Magnetstrictive strain sensor
JP2002228526A (en) Torque sensor
JP3166938B2 (en) Magnetostrictive strain sensor
JPH06265422A (en) Magneto-strictive torque sensor
JP2002107241A (en) Torque transmission shaft and torque sensor using it
JPH0526747A (en) Magnetostriction-type torque sensor