JPH1028354A - Motor with torque sensor - Google Patents

Motor with torque sensor

Info

Publication number
JPH1028354A
JPH1028354A JP8198269A JP19826996A JPH1028354A JP H1028354 A JPH1028354 A JP H1028354A JP 8198269 A JP8198269 A JP 8198269A JP 19826996 A JP19826996 A JP 19826996A JP H1028354 A JPH1028354 A JP H1028354A
Authority
JP
Japan
Prior art keywords
rotating shaft
magnetostrictive
torque sensor
motor
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8198269A
Other languages
Japanese (ja)
Inventor
Mitsuaki Ikeda
満昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP8198269A priority Critical patent/JPH1028354A/en
Publication of JPH1028354A publication Critical patent/JPH1028354A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a motor with a torque sensor, capable of obtaining an accurate measured value of torque. SOLUTION: A motor with a torque sensor includes a rotating shaft 3 with a rotor 4 fixed at its central part, two bearings 13 and 14 on both sides of the rotor 4 for supporting the shaft 3, and two rows of magneto-strictive films 5A and 5B having reverse magneto-strictive effect. The films 5A and 5B have a plurality of slits, arranged along a circumferential line and located alternately opposite at a given angle in an elongated direction of the shaft 3. In addition, the motor includes two excitation and detection coils 6A and 6B, each disposing opposite to each magneto-strictive film 5A or 5B with a gap in between. The magneto-strictive films 5A and 5B are provided at the same distance from the bearing 13 or 14 on the rotor side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁性体の逆磁歪効
果を利用した磁歪式トルクセンサを内蔵したトルクセン
サ付きモータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motor having a built-in magnetostrictive torque sensor utilizing a reverse magnetostriction effect of a magnetic material.

【0002】[0002]

【従来の技術】従来、磁歪式トルクセンサを内蔵したト
ルクセンサ付きモータは、例えば図3に示すように、円
筒状のフレーム1の内側に円筒状の固定子2を設け、固
定子2の内側に回転軸3に固定された回転子4を設けて
ある。フレーム1の両端面に負荷側ブラケット11と反
負荷側ブラケット12を設け、各ブラケット11、12
にはそれぞれ軸受13、14を設けてある。回転軸3は
軸受13、14に支持されている。回転子4と軸受13
との間の回転軸3の表面には、逆磁歪効果を有する磁歪
体を設けてある。この磁歪体は、回転軸3の長さ方向に
対して互いに反対方向に傾斜し、かつ回転軸3の円周方
向に整列した複数のスリットを有する2列の磁歪膜5
A、5Bから形成されている。この磁歪膜5A、5Bの
外周には、空隙を介して磁歪膜5A、5Bにそれぞれ対
向する励磁・検出コイル6A、6Bが設けられ、支持部
7によって負荷側ブラケット11に取り付けられてい
る。トルクセンサ8は、磁歪膜5A、5Bと励磁・検出
コイル6A、6Bとを前述のように構成したものであ
る。なお、一定角度で傾斜した複数のスリットを回転軸
の長さ方向に対して互いに反対方向にする理由は、回転
軸の回転方向を検出するためである。このように、磁歪
膜と励磁・検出コイルからなる逆磁歪効果を利用したト
ルクセンサの例として、回転軸の応力によって変化する
磁歪膜の透磁率の変化を2つの検出コイルのインピーダ
ンスの変化として検出し、両検出コイルの検出値の差分
値により回転軸に加わるトルクを求める磁歪式トルクセ
ンサが多く開示されている(例えば、特開平6−291
384号公報)。また、図4に示すように、前記従来例
には、トルクセンサ8の回転子4側にもトルクセンサ専
用の軸受15を設け、支持部70によって負荷側ブラケ
ット11に取り付けたものがある。この例では、2つの
軸受13、15によって回転軸3の表面に設けられた磁
歪膜5A,5Bの両側が支持され、磁歪膜5A,5Bを
設けた部分に曲げ応力が加わらないようにしてある。
2. Description of the Related Art Conventionally, in a motor with a torque sensor having a built-in magnetostrictive torque sensor, a cylindrical stator 2 is provided inside a cylindrical frame 1 as shown in FIG. Is provided with a rotor 4 fixed to the rotating shaft 3. A load-side bracket 11 and a non-load-side bracket 12 are provided on both end surfaces of the frame 1.
Are provided with bearings 13 and 14, respectively. The rotating shaft 3 is supported by bearings 13 and 14. Rotor 4 and bearing 13
A magnetostrictive body having an inverse magnetostrictive effect is provided on the surface of the rotating shaft 3 between the two. This magnetostrictive body is composed of two rows of magnetostrictive films 5 each having a plurality of slits that are inclined in directions opposite to each other with respect to the longitudinal direction of the rotating shaft 3 and are aligned in the circumferential direction of the rotating shaft 3.
A, 5B. Excitation / detection coils 6A and 6B facing the magnetostrictive films 5A and 5B via air gaps are provided on the outer periphery of the magnetostrictive films 5A and 5B, and are attached to the load-side bracket 11 by the support portion 7. The torque sensor 8 has the magnetostrictive films 5A and 5B and the excitation / detection coils 6A and 6B configured as described above. The reason why the plurality of slits inclined at a constant angle are set in directions opposite to each other with respect to the length direction of the rotation axis is to detect the rotation direction of the rotation axis. As described above, as an example of the torque sensor using the reverse magnetostriction effect composed of the magnetostrictive film and the excitation / detection coil, the change in the magnetic permeability of the magnetostrictive film, which changes due to the stress of the rotating shaft, is detected as the change in the impedance of the two detection coils. Many magnetostrictive torque sensors that determine the torque applied to the rotating shaft based on the difference between the detection values of the two detection coils have been disclosed (for example, Japanese Patent Application Laid-Open No. 6-291).
384). As shown in FIG. 4, in the conventional example, a bearing 15 dedicated to the torque sensor is also provided on the rotor 4 side of the torque sensor 8 and attached to the load-side bracket 11 by the support 70. In this example, two bearings 13 and 15 support both sides of the magnetostrictive films 5A and 5B provided on the surface of the rotating shaft 3, so that bending stress is not applied to the portions where the magnetostrictive films 5A and 5B are provided. .

【0003】[0003]

【発明が解決しようとする課題】ところが、前記図3に
示した従来技術では、回転子4によって発生する回転力
による歪みのため発生するトルクセンサの出力以外に、
回転子4のアンバランスとそれに伴う遠心力で、曲げ応
力による歪みが発生し、この歪によるトルクセンサの出
力が発生する。この曲げ応力によるトルクセンサの出力
は、2列の磁歪膜5A,5Bの位置が軸受13から異な
る距離の位置にあるため異なる出力値になり、2つの検
出値の差分値をとっても相殺されない。このため、モー
タによって回転軸4にトルクが加わっていなくても出力
が発生し、トルク値が正確に検出できないという問題が
あった。前記図4に示した従来技術では、2つの軸受1
3、15によって回転軸3の磁歪膜5A、5Bの両側を
支持し、磁歪膜5A、5Bを設けた部分に前述の曲げ応
力が加わらないようにしてあるので、トルクセンサ8か
ら曲げによる出力は発生しない。しかし、負荷側の軸受
部分の軸方向長さがほぼ2倍に大きくなるという問題が
あった。さらに、図4の構成では、ロータ4からの熱が
2つの軸受に囲まれて逃げにくく、トルクセンサ部分の
温度上昇が大きくなるとともに、2列の磁歪膜5A、5
Bの間に温度勾配が生じて、トルク検出精度が低下する
という問題があった。本発明は、回転軸に曲げ応力が加
わっても正確なトルク検出値が得られる高精度のトルク
センサ付きモータを提供することを目的とする。
However, in the prior art shown in FIG. 3, in addition to the output of the torque sensor generated due to the distortion caused by the rotational force generated by the rotor 4,
Due to the unbalance of the rotor 4 and the resulting centrifugal force, distortion due to bending stress is generated, and the output of the torque sensor is generated due to the distortion. The output of the torque sensor due to the bending stress has a different output value because the positions of the two rows of the magnetostrictive films 5A and 5B are at different distances from the bearing 13, and are not offset even if a difference value between the two detected values is taken. Therefore, there is a problem that an output is generated even when no torque is applied to the rotating shaft 4 by the motor, and the torque value cannot be accurately detected. In the prior art shown in FIG.
Since both sides of the magnetostrictive films 5A and 5B of the rotating shaft 3 are supported by 3 and 15 so that the bending stress is not applied to the portion where the magnetostrictive films 5A and 5B are provided, the output from the torque sensor 8 due to bending is Does not occur. However, there is a problem that the axial length of the bearing portion on the load side is almost doubled. Further, in the configuration shown in FIG. 4, the heat from the rotor 4 is hardly escaped by being surrounded by the two bearings, the temperature rise in the torque sensor portion becomes large, and the magnetostrictive films 5A, 5
There is a problem that a temperature gradient occurs between B and the torque detection accuracy decreases. An object of the present invention is to provide a motor with a high-precision torque sensor that can obtain an accurate torque detection value even when a bending stress is applied to a rotating shaft.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、第1の発明によるトルクセンサ付きモータは、回転
子を中央部に固定した回転軸と、前記回転軸を前記回転
子の両側で支持する2つの軸受と、前記回転軸の表面に
設けられ、前記回転軸の長さ方向に対して一定角度をな
し、前記一定角度が互いに反対方向であるとともに、前
記回転軸の円周方向に整列した複数のスリットを持ち逆
磁歪効果を有する2列の磁歪体と、前記磁歪体に空隙を
介してそれぞれ対向する2つの励磁・検出コイルとを備
えたトルクセンサ付きモータにおいて、前記磁歪体は、
前記2つの軸受から前記回転子側にそれぞれ等距離の位
置に配置してあるものである。また、第2の発明による
トルクセンサ付きモータは、前記回転軸は非磁性材料か
らなり、前記磁歪体は前記回転軸の表面に膜を形成して
あるものである。 また、第3の発明によるトルクセン
サ付きモータは、前記回転軸は逆磁歪効果を有する磁性
材料からなり、前記磁歪体は前記回転軸の表面に前記ス
リットを加工することにより形成してあるものである。
According to a first aspect of the present invention, there is provided a motor with a torque sensor according to a first aspect of the present invention, wherein a rotating shaft having a rotor fixed to a central portion and the rotating shaft supported on both sides of the rotor. And two bearings that are provided on the surface of the rotating shaft and form a certain angle with respect to the longitudinal direction of the rotating shaft, and the fixed angles are opposite to each other and are aligned in the circumferential direction of the rotating shaft. In a motor with a torque sensor including two rows of magnetostrictive bodies having a plurality of slits and having an inverse magnetostrictive effect, and two excitation / detection coils respectively opposed to the magnetostrictive body via a gap, the magnetostrictive body includes:
The two bearings are disposed at equal distances from the two bearings on the rotor side. Further, in the motor with the torque sensor according to the second invention, the rotating shaft is made of a non-magnetic material, and the magnetostrictive body has a film formed on a surface of the rotating shaft. Further, in the motor with a torque sensor according to the third invention, the rotating shaft is made of a magnetic material having an inverse magnetostrictive effect, and the magnetostrictive body is formed by processing the slit on the surface of the rotating shaft. is there.

【0005】[0005]

【発明の実施の形態】以下、本発明を図に示す実施例に
ついて説明する。図1は本発明の第1の実施例を示す側
断面図である。図に示した構成は従来例とほぼ同じであ
る。その構成は、円筒状のフレーム1の内側に円筒状の
固定子2を設け、固定子2の内側にステンレス鋼などの
非磁性材料からなる回転軸3に固定された回転子4が設
けられている。回転軸3は、フレーム1の両端面に設け
た負荷側ブラケット11と反負荷側ブラケット12に、
軸受13、14を介して支持されている。これに対し従
来例と異なる点は、逆磁歪効果を有する磁歪体として、
回転軸3の長さ方向に対して時計回りに見て互いに反対
方向に一定の角度で傾斜し、かつ回転軸3の円周方向に
整列した複数のスリットを有する磁歪膜5Aと5Bを、
回転子4の両側の軸受13と14からの距離がほぼ等し
い位置に、それぞれ真空蒸着法あるいはメッキ法などに
より形成した構成にある。すなわち、磁歪膜5Aは軸受
13の近傍の回転子4側に、磁歪膜5Bは軸受14の近
傍の回転子4側に、それぞれ中心間の距離がほぼ等しい
長さLになるように配置されている。励磁・検出コイル
6Aは、磁歪膜5Aに空隙を介して対向するように支持
部7Aによって負荷側ブラケット11に取り付けられ、
励磁・検出コイル6Bは、磁歪膜5Bに空隙を介して対
向するように支持部7Bによって反負荷側ブラケット1
2に取り付けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment shown in the drawings. FIG. 1 is a side sectional view showing a first embodiment of the present invention. The configuration shown in the figure is almost the same as the conventional example. The configuration is such that a cylindrical stator 2 is provided inside a cylindrical frame 1, and a rotor 4 fixed to a rotating shaft 3 made of a nonmagnetic material such as stainless steel is provided inside the stator 2. I have. The rotating shaft 3 is connected to a load-side bracket 11 and a non-load-side bracket 12 provided on both end surfaces of the frame 1.
It is supported via bearings 13 and 14. On the other hand, the point different from the conventional example is as a magnetostrictive body having an inverse magnetostrictive effect.
Magnetostrictive films 5A and 5B having a plurality of slits that are inclined at a fixed angle in opposite directions to each other when viewed clockwise with respect to the length direction of the rotation shaft 3 and are aligned in the circumferential direction of the rotation shaft 3,
The rotors 4 are formed at positions where the distances from the bearings 13 and 14 on both sides of the rotor 4 are substantially equal to each other by a vacuum evaporation method or a plating method. That is, the magnetostrictive film 5A is arranged on the rotor 4 side near the bearing 13 and the magnetostrictive film 5B is arranged on the rotor 4 side near the bearing 14 so that the distances between the centers are almost equal to each other. I have. The excitation / detection coil 6A is attached to the load side bracket 11 by the support portion 7A so as to face the magnetostrictive film 5A via a gap,
The excitation / detection coil 6B is opposed to the magnetostrictive film 5B via a gap by the support portion 7B by the support portion 7B.
2 attached.

【0006】このような構成により、回転軸3にアンバ
ランスや遠心力により曲げ応力が生じたとき、軸受13
から磁歪膜5Aと軸受14から磁歪膜5Bまでの距離が
同じ位置になるので、磁歪膜5Aと5Bには同じ曲げ応
力が発生する。そのため、磁歪膜5Aと5Bの検出値の
差分は零になる。また、モータの回転子4から磁歪膜5
A,5Bまでの距離もほとんど同じになるので、温度変
化も同様に起こり、検出値の差分値には影響しない。こ
のような曲げ応力や温度変化による影響を実験で確認す
るため、実験条件として、ステンレス製の回転軸3の表
面に、スパッタ法により厚さ5μmの90%Ni−Fe
膜を磁歪膜5A,5Bとして形成した。また、励磁コイ
ルを200ターン、検出コイルを600ターンとして励
磁・検出コイル6を形成した。このような条件下で、モ
ータを毎分1000回転まで回転し、出力変化を測定し
た結果、曲げに基づく出力は全く観察されなかった。ま
た、毎分1000回転で長時間連続運転を行ったが、温
度変化による出力変化も生じなかった。図2は、本発明
の第2の実施例を示す側断面図である。前記第1の実施
例では、磁歪体として回転軸3の表面に真空蒸着法ある
いはメッキ法などにより磁歪膜5A,5Bを形成した例
について説明したが、この場合は、マルエージング鋼か
らなる回転軸3の表面に直接、機械加工またはエッチン
グ加工により、回転軸3の長さ方向に対して時計回りに
見て互いに反対方向に一定の角度で傾斜し、かつ回転軸
3の円周方向に整列した複数のスリット50A,50B
を形成して磁歪体としたものである。第2の実施例の場
合の実験結果は、上記第1の実施例とほぼ同じ結果とな
った。
With this configuration, when a bending stress is generated in the rotating shaft 3 due to unbalance or centrifugal force, the bearing 13
And the distance from the bearing 14 to the magnetostrictive film 5B is the same, so that the same bending stress is generated in the magnetostrictive films 5A and 5B. Therefore, the difference between the detection values of the magnetostrictive films 5A and 5B becomes zero. In addition, the rotor 4 of the motor is moved from the magnetostrictive film 5.
Since the distances to A and 5B are almost the same, a temperature change occurs similarly, and does not affect the difference between the detected values. In order to confirm the effects of such bending stress and temperature change by experiments, as an experimental condition, a 5 μm-thick 90% Ni—Fe film was formed on the surface of the stainless steel rotating shaft 3 by sputtering.
The films were formed as magnetostrictive films 5A and 5B. Further, the excitation / detection coil 6 was formed by setting the excitation coil to 200 turns and the detection coil to 600 turns. Under these conditions, the motor was rotated up to 1000 revolutions per minute, and the output change was measured. As a result, no output based on bending was observed. Further, continuous operation was performed at 1,000 revolutions per minute for a long time, but no output change due to temperature change occurred. FIG. 2 is a side sectional view showing a second embodiment of the present invention. In the first embodiment, the example in which the magnetostrictive films 5A and 5B are formed as the magnetostrictive body on the surface of the rotating shaft 3 by a vacuum evaporation method or a plating method, but in this case, the rotating shaft made of maraging steel is used. The surface of the rotating shaft 3 is inclined directly at an angle in a direction opposite to each other when viewed clockwise with respect to the length direction of the rotating shaft 3 by machining or etching, and is aligned in the circumferential direction of the rotating shaft 3. Multiple slits 50A, 50B
To form a magnetostrictive body. The experimental result in the case of the second embodiment was almost the same as that of the first embodiment.

【0007】[0007]

【発明の効果】以上述べたように、本発明によれば、ト
ルクセンサを構成する逆磁歪効果を有する磁歪体を、回
転軸を支持する2つの軸受から等距離の位置に配置し
て、トルクセンサ専用の軸受がなくても、曲げ応力の影
響を受けないようにしてあるので、トルクセンサの出力
は曲げの影響を受けることがなく、またモータの発熱に
よる精度低下も防ぐことができ、正確なトルク検出値が
得られるトルクセンサ付きモータを提供できる効果があ
る。
As described above, according to the present invention, a magnetostrictive body having a reverse magnetostrictive effect, which constitutes a torque sensor, is disposed at a position equidistant from two bearings supporting a rotating shaft. Even if there is no dedicated bearing for the sensor, it is not affected by bending stress, so the output of the torque sensor is not affected by bending, and the accuracy can be prevented from lowering due to heat generation of the motor. There is an effect that it is possible to provide a motor with a torque sensor that can obtain a high torque detection value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施例を示す側断面図であ
る。
FIG. 1 is a side sectional view showing a first embodiment of the present invention.

【図2】 本発明の第2の実施例を示す側断面図であ
る。
FIG. 2 is a side sectional view showing a second embodiment of the present invention.

【図3】 従来例を示す側断面図である。FIG. 3 is a side sectional view showing a conventional example.

【図4】 他の従来例を示す側断面図である。FIG. 4 is a side sectional view showing another conventional example.

【符号の説明】[Explanation of symbols]

1:フレーム、11:負荷側ブラケット、12:反負荷
側ブラケット、13、14:軸受、2:固定子、3:回
転軸、4:回転子、5A,5B:磁歪膜、50A,50
B:スリット、6A,6B:励磁・検出コイル、7A,
7B:支持部、8:トルクセンサ
1: frame, 11: load side bracket, 12: anti-load side bracket, 13, 14: bearing, 2: stator, 3: rotating shaft, 4: rotor, 5A, 5B: magnetostrictive film, 50A, 50
B: slit, 6A, 6B: excitation / detection coil, 7A,
7B: Support, 8: Torque sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 回転子を中央部に固定した回転軸と、前
記回転軸を前記回転子の両側で支持する2つの軸受と、
前記回転軸の表面に設けられ、前記回転軸の長さ方向に
対して一定角度をなし、前記一定角度が互いに反対方向
であるとともに、前記回転軸の円周方向に整列した複数
のスリットを持ち逆磁歪効果を有する2列の磁歪体と、
前記磁歪体に空隙を介してそれぞれ対向する2つの励磁
・検出コイルとを備えたトルクセンサ付きモータにおい
て、前記磁歪体は、前記2つの軸受から前記回転子側に
それぞれ等距離の位置に配置してあることを特徴とする
トルクセンサ付きモータ。
A rotating shaft having a rotor fixed at a central portion, two bearings supporting the rotating shaft on both sides of the rotor,
A plurality of slits are provided on the surface of the rotating shaft, form a certain angle with respect to the longitudinal direction of the rotating shaft, the fixed angles are opposite to each other, and are aligned in the circumferential direction of the rotating shaft. Two rows of magnetostrictive bodies having an inverse magnetostrictive effect;
In a motor with a torque sensor including two excitation / detection coils opposed to the magnetostrictive body via a gap, respectively, the magnetostrictive bodies are arranged at equal distances from the two bearings to the rotor. A motor with a torque sensor.
【請求項2】 前記回転軸は非磁性材料からなり、前記
磁歪体は前記回転軸の表面に膜を形成してある請求項1
記載のトルクセンサ付きモータ。
2. The rotating shaft is made of a non-magnetic material, and the magnetostrictive body has a film formed on the surface of the rotating shaft.
A motor with a torque sensor as described.
【請求項3】 前記回転軸は逆磁歪効果を有する磁性材
料からなり、前記磁歪体は前記回転軸の表面に前記スリ
ットを加工することにより形成してある請求項1記載の
トルクセンサ付きモータ。
3. The motor with a torque sensor according to claim 1, wherein the rotating shaft is made of a magnetic material having an inverse magnetostrictive effect, and the magnetostrictive body is formed by processing the slit on a surface of the rotating shaft.
JP8198269A 1996-07-08 1996-07-08 Motor with torque sensor Pending JPH1028354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8198269A JPH1028354A (en) 1996-07-08 1996-07-08 Motor with torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8198269A JPH1028354A (en) 1996-07-08 1996-07-08 Motor with torque sensor

Publications (1)

Publication Number Publication Date
JPH1028354A true JPH1028354A (en) 1998-01-27

Family

ID=16388333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8198269A Pending JPH1028354A (en) 1996-07-08 1996-07-08 Motor with torque sensor

Country Status (1)

Country Link
JP (1) JPH1028354A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168582A1 (en) * 2000-06-21 2002-01-02 Meritor Light Vehicle Systems, Inc. Method and system for detecting a resistive force applied against an automotive power window
JP2008070379A (en) * 2007-10-22 2008-03-27 Honda Motor Co Ltd Torque detecting mechanism and electric power steering apparatus
JP2010235113A (en) * 2009-03-30 2010-10-21 General Electric Co <Ge> Device and method for braking and driving force control for advanced type slip prevention mechanism
KR20170067446A (en) * 2015-12-08 2017-06-16 현대모비스 주식회사 Motors for eco-friendly vehicle
CN108429408A (en) * 2017-02-15 2018-08-21 住友重机械工业株式会社 Motor
US10072993B2 (en) 2014-01-13 2018-09-11 Nissan Motor Co., Ltd. Torque estimating system for synchronous electric motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168582A1 (en) * 2000-06-21 2002-01-02 Meritor Light Vehicle Systems, Inc. Method and system for detecting a resistive force applied against an automotive power window
US6448729B1 (en) 2000-06-21 2002-09-10 Meritor Light Vehicle Systems, Inc. Method and system for detecting a resistive force applied against an automotive power window
JP2008070379A (en) * 2007-10-22 2008-03-27 Honda Motor Co Ltd Torque detecting mechanism and electric power steering apparatus
JP2010235113A (en) * 2009-03-30 2010-10-21 General Electric Co <Ge> Device and method for braking and driving force control for advanced type slip prevention mechanism
US10072993B2 (en) 2014-01-13 2018-09-11 Nissan Motor Co., Ltd. Torque estimating system for synchronous electric motor
KR20170067446A (en) * 2015-12-08 2017-06-16 현대모비스 주식회사 Motors for eco-friendly vehicle
CN108429408A (en) * 2017-02-15 2018-08-21 住友重机械工业株式会社 Motor

Similar Documents

Publication Publication Date Title
US7639004B2 (en) Apparatus for sensing angular displacement between first and second rotating shafts including flux collectors
JP4936299B2 (en) Magnetic field direction detection sensor
EP1188943B1 (en) Magnetic levitation rotating machine
US4803885A (en) Torque measuring apparatus
JP4965074B2 (en) Rolling bearing with measuring function and electric motor provided with the same
JPH0672825B2 (en) Torque measuring device
US5705756A (en) Differential torque measuring device
JPH1028354A (en) Motor with torque sensor
JP4165260B2 (en) Rolling bearing unit with sensor
JP4139444B2 (en) Method and structure for exciting shaft winding and drive winding system of electric machine having magnetic bearing and electric drive device
JP3094049B2 (en) Torque sensor
JP3692494B2 (en) Torque sensor
JPH01318901A (en) Magnetic induction type sensor
JP3702451B2 (en) Magnetostrictive torque sensor
JPS62185120A (en) Resolver
JPS6044839A (en) Torque detecting device
JPH0865975A (en) Induction motor provided with detector for axial displacement of rotor
JP4001849B2 (en) Magnetic rotary position sensor
JP2003232601A (en) Attaching structure of displacement detecting sensor of rotator
JP2008039673A (en) Magnetic encoder system
JPS59188968A (en) Torque sensor made of double layer structural amorphous magnetic thin band
JPS62104453A (en) Temperature detector for rotor
JP2000356531A (en) Device and measuring motion state of rolling element for rolling bearing
JP2020012783A (en) Distortion sensor structure and distortion detection method
JP2006023172A (en) Absolute angle detection rotary sensor and bearing with sensor using the same