JPH06265422A - Magneto-strictive torque sensor - Google Patents

Magneto-strictive torque sensor

Info

Publication number
JPH06265422A
JPH06265422A JP8139993A JP8139993A JPH06265422A JP H06265422 A JPH06265422 A JP H06265422A JP 8139993 A JP8139993 A JP 8139993A JP 8139993 A JP8139993 A JP 8139993A JP H06265422 A JPH06265422 A JP H06265422A
Authority
JP
Japan
Prior art keywords
torque
poles
output
coil
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8139993A
Other languages
Japanese (ja)
Inventor
Makoto Usui
誠 臼井
Shinji Taniguchi
真司 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP8139993A priority Critical patent/JPH06265422A/en
Publication of JPH06265422A publication Critical patent/JPH06265422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To control the flutuation, resulting from the magnetic directional property of each crystal grain, of torque detecting output to the minimum by applying the minuter crystal grain to that in a part between both the poles of the exciting coil or detecting coil of a torque trabsmitting shaft being a measuring object. CONSTITUTION:An exciting coil 12 and a detecting coil 13 whose distances between both poles are equally 5mm are arranged on the outer periphery of a torque transmitting shaft 11. The fluctuation of the output of the coil 13 while the torque transmitting shaft 11 rotated under the torque of 15kgf m given by three torque transmitting shafts makes one rotation is measured. The result of the output fluctuation plotted to the size of a crystal grain shows that when the diameter of the crystal grain exceeds 1/50 of the distance between poles, the fluctuation rate of output exceeds 10%FS (full scale), and the stable output is not obtained. Thus in order to carry out precise torque measurement, in the case where the distance between the poles is 5mm, the diameter of the crystal grain is required to be less than about 10mum. Namely, in order to keep the fluctuation of the output of torque sensor less than 1O%FS, the diameter of crystal grain shall be 1/50 of the doistance between poles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転軸の伝達トルクを
検出する装置に関し、特に、非接触型磁歪式トルクセン
サに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for detecting a transmission torque of a rotary shaft, and more particularly to a non-contact type magnetostrictive torque sensor.

【0002】[0002]

【従来の技術】電動機、工作機械等の産業機械や自動車
等における回転駆動系のトルク伝達軸に加わるトルクを
非接触で検出するセンサとして、磁歪式トルクセンサが
ある。これは、軸表面に交番磁界を印加し、トルクによ
り軸表面に生じる透磁率の変化を電気量として検出する
ものである。磁歪式トルクセンサにも各種タイプがあ
り、励磁及び検出用としてそれぞれU字形の鉄芯を有す
るコイルを用い、これらのコイルを測定しようとするト
ルク伝達軸の近傍に配置して、トルク伝達軸の表面に生
じる主応力(軸長手方向に対して±45°方向)の透磁
率の変化を検出する磁気ヘッド型や、測定しようとする
トルク伝達軸に予め長手方向に対して傾斜した方向を磁
化容易軸とする磁気異方性を与えておき、この近傍に励
磁用ソレノイドコイル及び透磁率変化検出用のソレノイ
ドコイルを配置したもの等が知られている。
2. Description of the Related Art A magnetostrictive torque sensor is used as a sensor for non-contactly detecting a torque applied to a torque transmission shaft of a rotary drive system in an industrial machine such as an electric motor or a machine tool or an automobile. In this method, an alternating magnetic field is applied to the shaft surface, and a change in magnetic permeability caused by the torque on the shaft surface is detected as an electric quantity. There are various types of magnetostrictive torque sensors, which use coils each having a U-shaped iron core for excitation and detection, and arrange these coils in the vicinity of the torque transmission shaft to be measured. A magnetic head type that detects changes in the permeability of the principal stress (± 45 ° with respect to the longitudinal direction of the shaft) that occurs on the surface, or a torque transmission shaft that is to be measured is easy to magnetize in a direction that is pre-tilted with respect to the longitudinal direction. It is known that magnetic anisotropy as an axis is given and an exciting solenoid coil and a permeability change solenoid coil are arranged in the vicinity thereof.

【0003】一方、形態的には、回転動力(エンジン、
モータ等)と負荷との間に着脱可能に接続することによ
り、動力と負荷との間に伝達されるトルクを検出するユ
ニット型(単体型)のトルクセンサが最近広く用いられ
るようになっている。
On the other hand, in terms of form, rotational power (engine,
Recently, a unit type (single type) torque sensor has been widely used by detecting the torque transmitted between the power and the load by detachably connecting the motor and the load to each other. .

【0004】[0004]

【発明が解決しようとする課題】磁気ヘッド型の磁歪式
トルクセンサでは、測定対象であるトルク伝達軸と検出
器である励磁コイル、検出コイル等の間隔が検出信号の
強度に大きな影響を与える。この間隔がトルク伝達軸の
1回転中に変化すると、検出出力が変動し、高精度のト
ルク検出が不可能となる。このため、従来のトルクセン
サでは、トルク伝達軸及び両コイルの位置は非常に注意
深く、高精度に組み立てられている。
In the magnetic head type magnetostrictive torque sensor, the distance between the torque transmission shaft to be measured and the exciting coil, the detecting coil and the like has a great influence on the strength of the detection signal. If this interval changes during one rotation of the torque transmission shaft, the detection output fluctuates, and highly accurate torque detection becomes impossible. Therefore, in the conventional torque sensor, the positions of the torque transmission shaft and both coils are assembled very carefully and with high precision.

【0005】しかし、従来、このように組立の機械的精
度を向上させても、なお、検出出力が僅かに変動すると
いう現象を避けることができなかった。本発明はこのよ
うな課題を解決するために成されたものであり、その目
的とするところは、検出出力を安定させ、高精度のトル
ク測定を可能にするトルクセンサを提供することにあ
る。
However, conventionally, even if the mechanical precision of the assembly is improved in this way, the phenomenon that the detection output slightly fluctuates cannot be avoided. The present invention has been made to solve such a problem, and an object thereof is to provide a torque sensor that stabilizes a detection output and enables highly accurate torque measurement.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に成された本発明では、回転軸の周辺にU字形鉄芯を有
する励磁コイル及び検出コイルを配置し、回転軸に印加
されるトルクによる回転軸の歪に起因する軸材料の磁気
的特性の変化を検出することにより伝達トルクを測定す
る磁気ヘッド型磁歪式トルクセンサにおいて、回転軸を
構成する金属材料の少なくとも表面部分の結晶粒の大き
さを、励磁コイル又は検出コイルの極間の距離の50分
の1以下としたことを特徴とする。
According to the present invention, which has been made to solve the above problems, an excitation coil and a detection coil having a U-shaped iron core are arranged around a rotary shaft, and a torque applied to the rotary shaft is set. In a magnetic head type magnetostrictive torque sensor that measures the transfer torque by detecting the change in the magnetic characteristics of the shaft material due to the distortion of the rotating shaft due to, the magnetic grains of at least the surface part of the metal material that constitutes the rotating shaft It is characterized in that the size is one-fifth or less of the distance between the poles of the exciting coil or the detecting coil.

【0007】[0007]

【作用】磁歪式トルクセンサでは、励磁コイルの両極間
の磁束により回転軸(トルク伝達軸)を磁化し、その両
極間の軸材料のフェライト相の磁気特性の非対称な変化
を検出コイルにより検出する。回転軸材料である金属材
料は一般に多結晶であり、各結晶粒の方位は通常はラン
ダムである。各フェライト結晶粒(単結晶)の磁気的特
性はその方位に依存するため、励磁コイルの両極間の結
晶粒の数が少なくなると、各結晶粒毎の磁気的特性が相
対的に大きく現われるようになり、トルク伝達軸全体と
して、磁気的方向性を現わすようになる。この磁気的方
向性は場所毎に異なるため、トルク伝達軸が回転する際
には、検出出力の変動として現われる。そこで、励磁コ
イルの両極間の結晶粒の数を50個程度以上とすること
により、各結晶粒の方位のバラツキが平均化され、場所
毎の違いもほぼ無視し得る程度となるため、検出出力の
変動が抑えられる。検出コイルの極間についても同様の
議論が成り立つ。
[Function] In the magnetostrictive torque sensor, the rotating shaft (torque transmission shaft) is magnetized by the magnetic flux between the two poles of the exciting coil, and the detection coil detects an asymmetric change in the magnetic characteristics of the ferrite phase of the shaft material between the two poles. . The metal material that is the material of the rotating shaft is generally polycrystalline, and the orientation of each crystal grain is usually random. Since the magnetic characteristics of each ferrite crystal grain (single crystal) depend on its orientation, when the number of crystal grains between the two poles of the exciting coil decreases, the magnetic characteristics of each crystal grain appear relatively large. Therefore, the torque transmission shaft as a whole exhibits magnetic directionality. Since this magnetic directivity varies from place to place, it appears as a fluctuation in the detected output when the torque transmission shaft rotates. Therefore, by setting the number of crystal grains between the two poles of the exciting coil to about 50 or more, the variation in the orientation of each crystal grain is averaged, and the difference between the locations can be almost ignored. Fluctuation can be suppressed. The same argument holds for the gap between the detection coils.

【0008】[0008]

【実施例】本発明の一実施例を図1〜図3及び図5によ
り説明する。本実施例では、磁気ヘッド型磁歪式トルク
センサを対象に、トルク伝達軸の表層(表面から500
μm以内)のフェライト結晶粒の大きさと、トルク検出
出力の(軸回転時の)変動との関係を測定する実験を行
なった。磁気ヘッド型トルクセンサとは、図3(a)に
示すように、単ヨーク形の励磁コイル12及び検出コイ
ル13をトルク伝達軸の外周に配置したものであり、励
磁コイル12及び検出コイル13の両極121,122
/131,132は、図3(b)に示すように、トルク
伝達軸11の表面直上で、互いに90°で交差するよう
に、かつ、一方が軸方向に並び、他方が回転方向に並ぶ
ように、配置される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. In this embodiment, the magnetic head type magnetostrictive torque sensor is targeted, and the surface layer of the torque transmission shaft (500 from the surface)
An experiment was conducted to measure the relationship between the size of the ferrite crystal grains (within μm) and the fluctuation (during shaft rotation) of the torque detection output. The magnetic head type torque sensor is, as shown in FIG. 3A, a single yoke type excitation coil 12 and a detection coil 13 arranged on the outer periphery of a torque transmission shaft. Both poles 121 and 122
As shown in FIG. 3 (b), / 131 and 132 are arranged on the surface of the torque transmission shaft 11 so as to intersect with each other at 90 °, and one of them is arranged in the axial direction and the other is arranged in the rotational direction. Will be placed.

【0009】図3(b)に示すように、隣接する極12
1,131,122,132に挟まれるトルク伝達軸1
1の表面の領域をそれぞれA,B,C,Dとすると、こ
れらの領域A,B,C,Dは磁気的には図3(c)のよ
うに結合されることになる。すなわち、励磁コイル12
の両極121,122により、領域A−領域Bのルート
及び領域C−領域Dのルートで磁路が形成され、検出コ
イル13の両極131,132により両ルートの中間点
における磁位の変化が検出される。トルク伝達軸11に
トルクが印加され、図3(a)に示すように、軸表面の
主応力方向(軸方向に対して±45°傾いた方向)に+
σ及び−σの引張(圧縮)応力が発生すると、両ルート
の間のバランスが崩れ、検出コイル13によりその量が
検出されて、トルクに換算される。
As shown in FIG. 3B, the adjacent poles 12
Torque transmission shaft 1 sandwiched between 1, 131, 122 and 132
Assuming that the areas of the surface of 1 are A, B, C, and D, these areas A, B, C, and D are magnetically coupled as shown in FIG. That is, the exciting coil 12
A magnetic path is formed by the two poles 121, 122 of the region A-region B and the route of the region C-region D, and the change of the magnetic potential at the intermediate point of both routes is detected by the two poles 131, 132 of the detection coil 13. To be done. As torque is applied to the torque transmission shaft 11, as shown in FIG. 3A, + is applied in the principal stress direction of the shaft surface (direction inclined by ± 45 ° with respect to the axial direction).
When the σ and −σ tensile (compressive) stresses are generated, the balance between both routes is lost, and the amount is detected by the detection coil 13 and converted into torque.

【0010】このような構成を有する磁気ヘッド型磁歪
式トルクセンサでは、励磁コイル12及び検出コイル1
3の各極の間の領域A,B,C,Dにおいて、トルク伝
達軸11の材料(特に、表面層)の磁気的特性が均一で
ないと、トルク伝達軸11が1回転する間に検出コイル
13からの出力が変動する。トルク伝達軸11は、通
常、強度的観点から、炭素鋼又は低合金鋼の焼入・焼も
どし材が使用されるが、これらの材料は多結晶体であ
り、全体としての磁気特性は各単結晶の磁気特性を(ベ
クトル的に)加算したものとなる。従って、各コイル1
2、13の極121,131,122,132に挟まれ
る部分の結晶粒の数が少なくなると、各個の結晶粒の方
向性が全体としての特性に大きく影響するようになる。
そこで、トルク伝達軸11の結晶粒の大きさと出力の変
動との関係を次のようにして調査した。
In the magnetic head type magnetostrictive torque sensor having such a structure, the exciting coil 12 and the detecting coil 1
In the regions A, B, C, D between the poles of No. 3, if the magnetic characteristics of the material (particularly the surface layer) of the torque transmission shaft 11 are not uniform, the detection coil is rotated during one rotation of the torque transmission shaft 11. The output from 13 varies. From the viewpoint of strength, the torque transmission shaft 11 is usually made of a quenching / tempering material of carbon steel or low alloy steel, but these materials are polycrystalline and the magnetic characteristics as a whole are individual. The magnetic properties of the crystal are added (in vector terms). Therefore, each coil 1
When the number of crystal grains in the portion sandwiched between the poles 121, 131, 122 and 132 of 2 and 13 decreases, the directionality of each crystal grain has a great influence on the characteristics as a whole.
Therefore, the relationship between the size of the crystal grains of the torque transmission shaft 11 and the fluctuation of the output was investigated as follows.

【0011】材料として径36mmの炭素鋼S25C及
びマンガン鋼SMn40を用い、これに各種熱処理を施
すことにより、結晶粒径を変化させた。これらの材料を
径35mmの精密丸棒に機械加工し、図3に示す磁気ヘ
ッド型トルクセンサのトルク伝達軸11を作成した。そ
して、このトルク伝達軸11の外周に、両極間121,
122/131,132の距離が共に5mmである励磁
コイル12と検出コイル13とを配置した。これら3種
のトルク伝達軸11を用いて、15kgf・mのトルクを加
えて回転させた場合における、トルク伝達軸11が1回
転する間の検出コイル13の出力の変動を測定した。ト
ルク伝達軸11が1回転する間の検出出力の変動の様子
の一例を図2に示す。出力の変動を結晶粒の大きさに対
してプロットした結果は図1に示す通りである。なお、
フェライト結晶粒径は、機械加工後、その表面の一部を
切り出して、表面から500μm以下の表層部分につい
て測定したものである。図1より、結晶粒径が極間距離
の1/50を超えると、出力の変動率は10%FS(フ
ルスケール)を超え、安定した出力が得られないことが
わかる。従って、精密なトルク測定を行なうためには、
上記極間距離(5mm)の場合には、結晶粒径は約10
0μm以下とする必要がある。
Carbon steel S25C and manganese steel SMn40 having a diameter of 36 mm were used as materials, and various heat treatments were applied to the grains to change the crystal grain size. These materials were machined into a precision round bar having a diameter of 35 mm to prepare the torque transmission shaft 11 of the magnetic head type torque sensor shown in FIG. Then, on the outer circumference of the torque transmission shaft 11, a gap between both poles 121,
The excitation coil 12 and the detection coil 13 in which the distances 122/131 and 132 are both 5 mm are arranged. The fluctuation of the output of the detection coil 13 during one rotation of the torque transmission shaft 11 was measured when the torque transmission shaft 11 was rotated by applying a torque of 15 kgf · m. FIG. 2 shows an example of how the detection output fluctuates during one rotation of the torque transmission shaft 11. The result of plotting the fluctuation of the output against the size of the crystal grain is as shown in FIG. In addition,
The ferrite crystal grain size is obtained by cutting a part of the surface after machining and measuring the surface layer portion of 500 μm or less from the surface. It can be seen from FIG. 1 that when the crystal grain size exceeds 1/50 of the inter-electrode distance, the output fluctuation rate exceeds 10% FS (full scale), and a stable output cannot be obtained. Therefore, in order to perform accurate torque measurement,
In the case of the distance between the electrodes (5 mm), the crystal grain size is about 10
It should be 0 μm or less.

【0012】上述の通り、出力の安定性は軸材料の表層
部分の結晶粒の大きさと極間距離との相対的な関係に依
存するため、トルクセンサ全体の大きさが変化し、励磁
コイル(及び/又は検出コイル)の極間距離が変化する
場合には、許容される結晶粒の大きさもそれに応じて変
化する。上記実験結果より、トルクセンサの出力の変動
を10%FS以下に抑えるためには、結晶粒径は極間距
離の1/50とすべきことがわかる。
As described above, since the output stability depends on the relative relationship between the size of the crystal grains in the surface layer of the shaft material and the distance between the poles, the size of the entire torque sensor changes and the exciting coil ( And / or if the interelectrode distance of the detection coil) changes, the allowed grain size also changes accordingly. From the above experimental results, it is understood that the crystal grain size should be 1/50 of the inter-electrode distance in order to suppress the fluctuation of the output of the torque sensor to 10% FS or less.

【0013】[0013]

【発明の効果】本発明に係る磁歪センサでは、測定対象
であるトルク伝達軸の励磁コイル又は検出コイルの両極
間の部分の結晶粒を微細にすることにより、各結晶粒の
磁気的方向性に起因するトルク検出出力の変動を最小限
に抑える。このため、安定した出力が得られ、精密な軸
伝達トルクの検出・測定が可能となる。
In the magnetostrictive sensor according to the present invention, by making the crystal grains in the portion between the two poles of the excitation coil or the detection coil of the torque transmission shaft to be measured finer, the magnetic directionality of each crystal grain can be improved. Minimize the fluctuation of torque detection output caused by it. Therefore, a stable output can be obtained, and precise shaft transmission torque can be detected and measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 磁気ヘッド型磁歪式トルクセンサにおいて、
トルク伝達軸の材料の結晶粒の大きさを変化させたとき
のトルク出力の変動を示すグラフ。
FIG. 1 shows a magnetic head type magnetostrictive torque sensor.
The graph which shows the fluctuation | variation of a torque output when changing the size of the crystal grain of the material of a torque transmission shaft.

【図2】 トルク伝達軸が1回転する間の検出コイルの
出力の変動を示すグラフ。
FIG. 2 is a graph showing variations in the output of the detection coil during one rotation of the torque transmission shaft.

【図3】 本発明の一実施例である磁気ヘッド型磁歪式
トルクセンサの構成を示す斜視図(a)、励磁コイル及
び検出コイルの極の配置を示す説明図(b)、及び、磁
路の構成を示す回路図(c)。
FIG. 3 is a perspective view showing a configuration of a magnetic head type magnetostrictive torque sensor which is an embodiment of the present invention (a), an explanatory view showing an arrangement of poles of an exciting coil and a detecting coil (b), and a magnetic path. 3C is a circuit diagram showing the configuration of FIG.

【符号の説明】[Explanation of symbols]

11…トルク伝達軸 12…励磁コイル 121,122…励磁コイル
の極 13…検出コイル 131,132…検出コイル
の極
11 ... Torque transmission shaft 12 ... Excitation coil 121, 122 ... Excitation coil pole 13 ... Detection coil 131, 132 ... Detection coil pole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 回転軸の周辺にU字形鉄芯を有する励磁
コイル及び検出コイルを配置し、回転軸に印加されるト
ルクによる回転軸の歪に起因する軸材料の磁気的特性の
変化を検出することにより伝達トルクを測定する磁気ヘ
ッド型磁歪式トルクセンサにおいて、 回転軸を構成する金属材料の少なくとも表面部分の結晶
粒の大きさを、励磁コイル又は検出コイルの極間の距離
の50分の1以下としたことを特徴とする磁歪式トルク
センサ。
1. An excitation coil and a detection coil having a U-shaped iron core are arranged around the rotary shaft to detect a change in magnetic characteristics of the shaft material due to distortion of the rotary shaft due to torque applied to the rotary shaft. In a magnetic head type magnetostrictive torque sensor that measures the transmitted torque by doing so, the size of the crystal grains of at least the surface portion of the metal material forming the rotating shaft is set to 50 minutes of the distance between the poles of the exciting coil or the detecting coil. A magnetostrictive torque sensor characterized in that it is 1 or less.
JP8139993A 1993-03-15 1993-03-15 Magneto-strictive torque sensor Pending JPH06265422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8139993A JPH06265422A (en) 1993-03-15 1993-03-15 Magneto-strictive torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8139993A JPH06265422A (en) 1993-03-15 1993-03-15 Magneto-strictive torque sensor

Publications (1)

Publication Number Publication Date
JPH06265422A true JPH06265422A (en) 1994-09-22

Family

ID=13745239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8139993A Pending JPH06265422A (en) 1993-03-15 1993-03-15 Magneto-strictive torque sensor

Country Status (1)

Country Link
JP (1) JPH06265422A (en)

Similar Documents

Publication Publication Date Title
EP0525551B1 (en) Circularly magnetized non-contact torque sensor,method, and transducer ring
US4506554A (en) Magnetoelastic torque transducer
JP4917662B2 (en) Force sensor device
CA2381077C (en) Circularly magnetized disk-shaped torque transducer and method for measuring torque using same
US5591925A (en) Circularly magnetized non-contact power sensor and method for measuring torque and power using same
US6220105B1 (en) Magnetoelastic disc-shaped load cell having spiral spokes
US7584672B2 (en) Magnetostrictive torque sensor
JPS62249026A (en) Torque measuring instrument
JPH01187424A (en) Torque sensor
EP1504246B1 (en) Eddy current sensor assembly for shaft torque measurement
EP0700509B1 (en) Magnetoelastic contactless torque transducer with a shaft with a duplex anisotropic microstructure
EP0868659B1 (en) Torque transducer
JPH06265422A (en) Magneto-strictive torque sensor
JP5081353B2 (en) Torque transducer
JPH0745704B2 (en) Measured shaft for torque sensor
JP2566640B2 (en) Torque measuring device
GB2140565A (en) Magnetoelastic torque transducer
JP4876393B2 (en) Torque detection device
JPH06313741A (en) Magnetostriction type torque sensor
JP2002228526A (en) Torque sensor
JPS6050429A (en) Torque sensor
JPH01225181A (en) Torque sensor
JPS6320030B2 (en)
JPH0522859B2 (en)
JPS5956130A (en) Torque detector