JPH06313741A - Magnetostriction type torque sensor - Google Patents

Magnetostriction type torque sensor

Info

Publication number
JPH06313741A
JPH06313741A JP12552993A JP12552993A JPH06313741A JP H06313741 A JPH06313741 A JP H06313741A JP 12552993 A JP12552993 A JP 12552993A JP 12552993 A JP12552993 A JP 12552993A JP H06313741 A JPH06313741 A JP H06313741A
Authority
JP
Japan
Prior art keywords
shaft
torque
torque sensor
magnetic
solenoid coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12552993A
Other languages
Japanese (ja)
Inventor
Makoto Usui
誠 臼井
Shinji Taniguchi
真司 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP12552993A priority Critical patent/JPH06313741A/en
Publication of JPH06313741A publication Critical patent/JPH06313741A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce hysteresis and to measure torque accurately by setting the diameter of a crystal particle at least on the surface of a metal material with a magnetic anisotropy constituting a rotary shaft to a specific value or less. CONSTITUTION:An excitation coil 12 and a detection coil 13 are laid out coaxially around a torque transmission shaft 11 (rotary shaft). Permeability change due to tensile and compression stress generated at rhombic groove machining parts 14 and 15 provided at the shaft 11 is detected. A shield yoke 16 is provided outside the coils 12 and 13 to prevent external leakage of magnetic field and to increase detection sensitivity. A metal material which has magnetic anisotropy and where the diameter of a crystal particle of the ferrite phase at least on the surface part is micronized to 50mum or less is used for the shaft 11, thus suppressing the magnetic directionality of the shaft material to be small and suppressing the hysteresis of the detection output to a level without any problem and hence improving a solenoid coil type magnetostriction type torque sensor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転軸の伝達トルクを
検出する装置に関し、特に、非接触型磁歪式トルクセン
サに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for detecting a transmission torque of a rotary shaft, and more particularly to a non-contact type magnetostrictive torque sensor.

【0002】[0002]

【従来の技術】電動機、工作機械等の産業機械や自動車
等における回転駆動系のトルク伝達軸に加わるトルクを
非接触で検出するセンサとして、軸表面に交番磁界を印
加し、回転軸にトルクが加わることにより軸表面に生じ
る透磁率の変化を電気量として検出するようにした磁歪
式トルクセンサが広く使用されている。
2. Description of the Related Art As a sensor for contactlessly detecting torque applied to a torque transmission shaft of a rotary drive system in an industrial machine such as an electric motor and a machine tool, an automobile, etc., an alternating magnetic field is applied to the shaft surface so that the torque is applied to the rotary shaft. A magnetostrictive torque sensor has been widely used, which detects a change in magnetic permeability caused on the shaft surface by being applied as an electric quantity.

【0003】磁歪式トルクセンサには、励磁・検出手段
として、開磁路鉄心であるU字状鉄心を有する巻線(磁
気ヘッド)を軸近傍に設置し、トルク印加により軸表面
に生じる主応力方向(軸方向に対し±45°方向)の透
磁率の変化を検出するようにしたものや、または回転軸
の表面に軸方向に対し傾斜する方向を磁化容易軸とする
磁気異方性を付与しておき、これに隣接して励磁用ソレ
ノイドコイル(励磁巻線)と、透磁率変化を検出するソ
レノイドコイル(検出巻線)を配置し、トルク印加によ
り生じる軸方向の透磁率変化を検出するようにしたもの
等が知られている。
In the magnetostrictive torque sensor, a winding (magnetic head) having a U-shaped core, which is an open magnetic circuit core, is installed near the shaft as an excitation / detection means, and the main stress generated on the shaft surface by the torque application. That detects the change in magnetic permeability in the direction (± 45 ° to the axial direction), or imparts magnetic anisotropy to the surface of the rotating shaft with the easy axis of magnetization as the direction inclined with respect to the axial direction. Next, an exciting solenoid coil (exciting winding) and a solenoid coil (detecting winding) that detects a change in magnetic permeability are arranged adjacent to this, and the change in magnetic permeability in the axial direction caused by torque application is detected. It is known that such a thing.

【0004】なお、ソレノイドコイル型の磁歪式トルク
センサにおける回転軸表面の磁気異方性の導入方式とし
ては、例えばレーザ焼入れ法により軸方向に対し傾斜す
る方向に互いに平行な複数条の帯条焼入れ部を形成して
残留応力を生じさせ、その応力効果として軸表面に磁気
異方性を付与する方法、あるいは軸表面に転造加工法等
により複数条の互いに平行な螺旋溝を形成し、その形状
効果として軸表面に磁気異方性をもたせる方法等(特開
昭63ー252487号、特許第169326号等)が
知られている。
A method of introducing magnetic anisotropy on the surface of a rotary shaft in a solenoid coil type magnetostrictive torque sensor is, for example, a laser hardening method in which a plurality of strips are hardened parallel to each other in a direction inclined with respect to the axial direction. Part to form residual stress, and as a stress effect, magnetic anisotropy is given to the shaft surface, or a plurality of parallel spiral grooves are formed on the shaft surface by a rolling method or the like. As a shape effect, a method of giving magnetic anisotropy to the shaft surface is known (Japanese Patent Laid-Open No. 252487/1988, Japanese Patent No. 169326, etc.).

【0005】[0005]

【発明が解決しようとする課題】前述の磁歪式トルクセ
ンサのうち、ソレノイドコイル型の磁歪式トルクセンサ
においては、トルク測定時のおいて、図3に示されるよ
うに、トルク増加時と減少時において検出出力に差(ヒ
ステリシス)が生じる。従って、トルク変化の比較的小
さい部位の測定には適しているが、産業機械や自動車等
の回転駆動系のトルク伝達軸等のように、常に複雑に変
動するトルクを測定する場合には、ヒステリシスが大き
くなると、検出精度が著しく悪化するという問題があ
る。
Among the above-described magnetostrictive torque sensors, the solenoid coil type magnetostrictive torque sensor has a torque measuring time, as shown in FIG. At, a difference (hysteresis) occurs in the detection output. Therefore, it is suitable for measurement of a part where the torque change is relatively small, but when measuring a torque that constantly fluctuates in a complicated manner such as a torque transmission shaft of a rotary drive system of an industrial machine or an automobile, a hysteresis Is larger, there is a problem that the detection accuracy is significantly deteriorated.

【0006】本発明は前記課題を解決するために成され
たもので、その目的とするところは、ヒステリシスを低
減させ、変動の激しい部位に対しても高精度のトルク測
定を可能にするソレノイドコイル型磁歪式トルクセンサ
を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to reduce the hysteresis and to enable a highly accurate torque measurement even in a region where fluctuations are large. A type magnetostrictive torque sensor is provided.

【0007】[0007]

【課題を解決するための手段】ソレノイドコイル型磁歪
式トルクセンサでは、励磁用ソレノイドコイルによって
トルクを伝達するための回転軸を磁化し、トルク印加に
より得られる透磁率変化を検出用ソレノイドコイルによ
って測定する。従来、この回転軸として使用される材料
は、専ら強度等の機械的性質のみに注意が払われていた
が、本発明者等は、材料の磁気的特徴とヒステリシスの
大小の間に関係があると考え、検討した結果、以下の知
見を得た。
In a solenoid coil type magnetostrictive torque sensor, a rotating shaft for transmitting torque is magnetized by an exciting solenoid coil, and a change in permeability obtained by applying torque is measured by a detecting solenoid coil. To do. Conventionally, attention has been paid to the mechanical properties such as strength of the material used as the rotary shaft, but the present inventors have a relationship between the magnetic characteristics of the material and the magnitude of hysteresis. As a result of the investigation, the following findings were obtained.

【0008】通常、軸材料として使用される炭素鋼、マ
ンガン鋼等の金属材料は、一般に多結晶であり、各結晶
粒の方位はランダムである。各結晶粒毎の磁気的特性は
その方位に依存するが、結晶粒が十分に細かい場合には
方位のバラツキが平均化され、軸材料全体の磁気的方向
性は小さくなる。しかしながら、結晶粒が大きくなる
と、方位のバラツキが平均化されなくなり、磁気的が異
方性が大きく現れるようになる。
Generally, a metal material such as carbon steel or manganese steel used as a shaft material is generally polycrystalline, and the orientation of each crystal grain is random. The magnetic characteristics of each crystal grain depend on its orientation, but when the crystal grains are sufficiently fine, the variations in orientation are averaged, and the magnetic directivity of the entire shaft material is reduced. However, when the crystal grains become large, variations in orientation are not averaged, and magnetic anisotropy becomes large.

【0009】本発明者等は、軸材料の結晶粒の大小によ
り変化する磁気的特性と、ヒステリシスの大小について
実験により調査した結果、軸材料の結晶粒のうち、特に
表面部分の結晶粒を微細化すると検出出力のヒステリシ
スが著しく小さくなり、トルク測定精度が大きく向上す
ることを見出したものである。
The inventors of the present invention have conducted experiments to investigate the magnetic characteristics that change depending on the size of the crystal grains of the shaft material and the magnitude of the hysteresis. As a result, among the crystal grains of the shaft material, the crystal grains of the surface portion are particularly fine. It has been found that the hysteresis of the detection output is remarkably reduced and the torque measurement accuracy is greatly improved.

【0010】以上の検討により得られた本発明の磁歪式
トルクセンサは、表面に軸方向に対し傾斜する方向を磁
化容易軸とする磁気異方性を付与した回転軸と、これに
隣接して励磁用ソレノイドコイルと検出用ソレノイドコ
イルが配置され、トルク印加により生じる軸方向の透磁
率変化を検出することにより伝達トルクを測定するソレ
ノイドコイル型磁歪式トルクセンサにおいて、回転軸を
構成する磁気異方性を付与した金属材料の少なくとも表
面部分の結晶粒径を50μm以下としたことを特徴とす
る。
The magnetostrictive torque sensor of the present invention obtained by the above-mentioned examination has a rotation axis provided with magnetic anisotropy on the surface of which an axis of easy magnetization is an axis of easy magnetization, and a rotation axis adjacent to the rotation axis. In the solenoid coil type magnetostrictive torque sensor, in which the exciting solenoid coil and the detecting solenoid coil are arranged, the transmitted torque is measured by detecting the change in the magnetic permeability in the axial direction caused by the torque application, the magnetic anisotropic It is characterized in that the crystal grain size of at least the surface portion of the metal material imparted with the property is 50 μm or less.

【0011】[0011]

【作用】本発明の磁歪式トルクセンサでは、少なくとも
表面部分のフェライト相の結晶粒径を50μm以下に微
細化した軸材料を使用することにより、軸材料の磁気的
方向性を小さく抑えた結果、検出出力のヒステリシスを
トルク測定に支障のない大きさに抑えることができ、ソ
レノイドコイル型磁歪式トルクセンサの精度が著しく向
上した。
In the magnetostrictive torque sensor of the present invention, by using the shaft material in which the crystal grain size of the ferrite phase of at least the surface portion is made finer to 50 μm or less, the magnetic directivity of the shaft material is suppressed to be small. The hysteresis of the detection output can be suppressed to a level that does not interfere with the torque measurement, and the accuracy of the solenoid coil type magnetostrictive torque sensor is significantly improved.

【0012】[0012]

【実施例】本発明の一実施例を図1〜図3により説明す
る。本実施例では、ソレノイドコイル型磁歪式トルクセ
ンサを対象に、トルク伝達軸の表層(表面から500μ
m以内)のフェライト結晶粒の大きさと、トルク検出出
力曲線のヒステリシスの大きさとの関係を測定する実験
を行なった。実験に使用したソレノイドコイル型トルク
センサは、図3に示すように、トルク伝達軸11の周囲
に励磁コイル12と検出コイル13とが同軸(トルク伝
達軸11とも同軸)に配置したもので、トルク伝達軸1
1に設けられた斜方溝加工部14、15に発生する引張
(+σ)及び圧縮(−σ)応力による透磁率変化を検出
するものである。なお、励磁コイル12、検出コイル1
3の外側には、外部へ磁場が漏洩することを防止すると
ともに検出感度を上げるためにシールドヨーク16が設
けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. In this embodiment, the solenoid coil type magnetostrictive torque sensor is targeted, and the surface layer of the torque transmission shaft (500 μm from the surface is used).
An experiment was conducted to measure the relationship between the size of the ferrite crystal grains (within m) and the size of the hysteresis of the torque detection output curve. As shown in FIG. 3, the solenoid coil type torque sensor used in the experiment has the excitation coil 12 and the detection coil 13 arranged coaxially around the torque transmission shaft 11 (coaxial with the torque transmission shaft 11). Transmission shaft 1
The change in magnetic permeability due to the tensile (+ σ) and compressive (−σ) stresses generated in the oblique groove processed portions 14 and 15 provided in No. 1 is detected. The excitation coil 12 and the detection coil 1
A shield yoke 16 is provided on the outer side of 3 to prevent the magnetic field from leaking to the outside and to increase the detection sensitivity.

【0013】前記トルクセンサを使用してトルク伝達軸
11のフェライト結晶粒径とヒステリシスの大きさとの
関係を次のようにして調査した。
Using the torque sensor, the relationship between the ferrite crystal grain size of the torque transmission shaft 11 and the size of hysteresis was investigated as follows.

【0014】材料として径26mmの炭素鋼S25C及
びマンガン鋼SMn40を用い、これに各種熱処理を施
すことにより、結晶粒径を変化させた。これらの材料を
径25mmの軸に機械加工し、さらに機械加工によって
溝加工部14、15を作製し、図3に示すソレノイドコ
イル型磁歪式トルクセンサのトルク伝達軸11を作製し
た。そして、このトルク伝達軸11の外周に、励磁コイ
ル12と検出コイル13を同軸となるように配置した。
Carbon steel S25C and manganese steel SMn40 having a diameter of 26 mm were used as materials, and various heat treatments were applied to the grains to change the crystal grain size. These materials were machined into a shaft having a diameter of 25 mm, and further grooved portions 14 and 15 were manufactured by machining to manufacture the torque transmission shaft 11 of the solenoid coil type magnetostrictive torque sensor shown in FIG. Then, the excitation coil 12 and the detection coil 13 are coaxially arranged on the outer circumference of the torque transmission shaft 11.

【0015】以上説明した構成からなるソレノイドコイ
ル型磁歪式トルクセンサを用い、−50Nmから50N
mの範囲のトルクを印加しながら回転させた場合におけ
る印加トルクと出力電圧の関係を測定した。測定した出
力曲線の一例を図1に示す。この出力曲線から得られる
ヒステリシスの大きさ〔=(a1-a2)/(A1-A2)〕と軸材料の
フェライト結晶粒の大きさとの関係をプロットした結果
を図2に示す。なお、フェライト結晶粒径は、機械加工
されたトルク伝達軸11の表面の一部を切り出して、溝
加工部14、15における表面から500μm以下の表
層部分について測定したものである。
A solenoid coil type magnetostrictive torque sensor having the above-described structure is used, and -50 Nm to 50 N
The relationship between the applied torque and the output voltage when rotating while applying a torque in the range of m was measured. An example of the measured output curve is shown in FIG. The results of plotting the relationship between the size of the hysteresis [= (a 1 -a 2 ) / (A 1 -A 2 )] obtained from this output curve and the size of the ferrite crystal grains of the shaft material are shown in FIG. The ferrite crystal grain size is obtained by cutting a part of the surface of the machined torque transmission shaft 11 and measuring the surface layer portion of the grooved portions 14 and 15 that is 500 μm or less from the surface.

【0016】図2に示されるように、結晶粒径が50μ
mを超えると、出力曲線のヒステリシスは10%を超
え、安定した出力が得られないことがわかる。また、こ
の結果から明らかなように、軸材料の結晶粒を微細化す
ればする程ヒステリシスを低減することができるので、
望ましくは結晶粒径を10μm以下に調整するのがよ
い。結晶粒径を10μm以下に抑えることにより、ヒス
テリシスを5%以下に低減することができ、高精度のソ
レノイドコイル型磁歪式トルクセンサを提供することが
できる。
As shown in FIG. 2, the crystal grain size is 50 μm.
When m is exceeded, the hysteresis of the output curve exceeds 10%, and it can be seen that stable output cannot be obtained. Further, as is clear from this result, the hysteresis can be reduced as the crystal grains of the shaft material are made finer,
Desirably, the crystal grain size is adjusted to 10 μm or less. By suppressing the crystal grain size to 10 μm or less, the hysteresis can be reduced to 5% or less, and a highly accurate solenoid coil type magnetostrictive torque sensor can be provided.

【0017】[0017]

【発明の効果】本発明に係る磁歪式トルクセンサでは、
トルク伝達軸のフェライト結晶粒径を50μm以下に
し、トルク検出特性のヒステリシスを小さく抑えてい
る。このため、安定した出力が得られ、精密な軸伝達ト
ルクの検出・測定が可能となる。
According to the magnetostrictive torque sensor of the present invention,
The ferrite crystal grain size of the torque transmission shaft is set to 50 μm or less to suppress the hysteresis of the torque detection characteristic to a small value. Therefore, a stable output can be obtained, and precise shaft transmission torque can be detected and measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】印加トルクと検出出力の関係の一例を示すグラ
フである。
FIG. 1 is a graph showing an example of the relationship between applied torque and detection output.

【図2】ソレノイドコイル型磁歪式トルクセンサにおい
て、トルク伝達軸の材料の結晶粒の大きさを変化させた
ときのヒステリシスの変化を示すグラフである。
FIG. 2 is a graph showing a change in hysteresis when a size of a crystal grain of a material of a torque transmission shaft is changed in a solenoid coil type magnetostrictive torque sensor.

【図3】ソレノイドコイル型磁歪式トルクセンサの構成
を示す図である。
FIG. 3 is a diagram showing a configuration of a solenoid coil type magnetostrictive torque sensor.

【符号の説明】[Explanation of symbols]

11 トルク伝達軸 12 励磁コイル 13 検出コイル 14、15 溝加工部 16 シールドヨーク 11 Torque Transmission Shaft 12 Excitation Coil 13 Detection Coil 14 and 15 Groove Processing Section 16 Shield Yoke

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 表面に軸方向に対し傾斜する方向を磁化
容易軸とする磁気異方性を付与した回転軸と、これに隣
接して励磁用ソレノイドコイルと検出用ソレノイドコイ
ルが配置され、トルク印加により生じる軸方向の透磁率
変化を検出することにより伝達トルクを測定するソレノ
イドコイル型磁歪式トルクセンサにおいて、 回転軸を構成する磁気異方性を付与した金属材料の少な
くとも表面部分の結晶粒径を50μm以下としたことを
特徴とする磁歪式トルクセンサ。
1. A rotary shaft provided with magnetic anisotropy on the surface of which a direction inclined with respect to the axial direction is defined as an easy axis of magnetization, and an exciting solenoid coil and a detecting solenoid coil are arranged adjacent to the rotary shaft. In a solenoid coil type magnetostrictive torque sensor that measures the transmission torque by detecting the change in the magnetic permeability in the axial direction caused by the application, the crystal grain size of at least the surface part of the metal material with the magnetic anisotropy that constitutes the rotating shaft Is 50 μm or less, a magnetostrictive torque sensor.
JP12552993A 1993-04-28 1993-04-28 Magnetostriction type torque sensor Pending JPH06313741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12552993A JPH06313741A (en) 1993-04-28 1993-04-28 Magnetostriction type torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12552993A JPH06313741A (en) 1993-04-28 1993-04-28 Magnetostriction type torque sensor

Publications (1)

Publication Number Publication Date
JPH06313741A true JPH06313741A (en) 1994-11-08

Family

ID=14912442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12552993A Pending JPH06313741A (en) 1993-04-28 1993-04-28 Magnetostriction type torque sensor

Country Status (1)

Country Link
JP (1) JPH06313741A (en)

Similar Documents

Publication Publication Date Title
EP0525551B1 (en) Circularly magnetized non-contact torque sensor,method, and transducer ring
CA2381077C (en) Circularly magnetized disk-shaped torque transducer and method for measuring torque using same
US6220105B1 (en) Magnetoelastic disc-shaped load cell having spiral spokes
US6047605A (en) Collarless circularly magnetized torque transducer having two phase shaft and method for measuring torque using same
JP2010243513A (en) Force sensor device
US5144846A (en) Minimal structure magnetostrictive stress and torque sensor
JP2013092523A (en) Magnetic torque sensor for speed change gear driving plate
EP0330311A2 (en) Torque detecting apparatus
JP2013160770A (en) Magnetic torque sensor for transmission converter drive plate
US20060150743A1 (en) Magnetostrictive strain sensor (airgap control)
JPH06313741A (en) Magnetostriction type torque sensor
EP0868659B1 (en) Torque transducer
JP2566640B2 (en) Torque measuring device
US6532832B2 (en) Magnetoelastic torque transducer for improved torque measurement
JPH0242419B2 (en)
JP4876393B2 (en) Torque detection device
JPH06265422A (en) Magneto-strictive torque sensor
JP2002228526A (en) Torque sensor
JP2006300901A (en) Stress detection method and device
GB2140565A (en) Magnetoelastic torque transducer
JP4919013B2 (en) Magnetostrictive ring and magnetostrictive ring type torque sensor
Xu et al. Torque Measurement Technology by Using a Magnetostrictive Ring and Multiple Magnets. Actuators 2021, 10, 124
JPH02102427A (en) Torque measuring instrument
JP2020134312A (en) Magnetostrictive torque detection sensor
JPH01169983A (en) Magnetostriction type torque sensor