JP2002107241A - Torque transmission shaft and torque sensor using it - Google Patents

Torque transmission shaft and torque sensor using it

Info

Publication number
JP2002107241A
JP2002107241A JP2000297019A JP2000297019A JP2002107241A JP 2002107241 A JP2002107241 A JP 2002107241A JP 2000297019 A JP2000297019 A JP 2000297019A JP 2000297019 A JP2000297019 A JP 2000297019A JP 2002107241 A JP2002107241 A JP 2002107241A
Authority
JP
Japan
Prior art keywords
transmission shaft
torque
magnetic
torque transmission
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000297019A
Other languages
Japanese (ja)
Inventor
Takehiko Sagara
武彦 相良
Keitaro Yamashita
恵太郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neomax Kiko Co Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Hitachi Metals Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Hitachi Metals Kiko Co Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000297019A priority Critical patent/JP2002107241A/en
Publication of JP2002107241A publication Critical patent/JP2002107241A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve a shape of a torque transmission shaft and durability and strength of a magnetostrictive layer in a magnetostrictive detection body. SOLUTION: In this torque transmission shaft, the surface part of a core material is formed of a material transformed from a non-magnetic or feebly magnetic one into a ferromagnetic one when it is cooled after heated. A ferromagnetic part provided in the torque transmission shaft is formed when the surface part is locally heated and then cooled down.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は加えられたトルクに
よりその表面の磁気特性が変化するトルク伝達軸に関す
るものである。また本発明はトルク伝達軸に加えられた
トルクにより磁性膜の磁気特性が変化することを利用し
てトルクを非接触で検出するトルクセンサに係わり、特
に自動車、工作機、ロボットなどの回転軸のトルクを検
出するのに好適なトルクセンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a torque transmission shaft whose surface magnetic properties change according to an applied torque. Further, the present invention relates to a torque sensor that detects torque in a non-contact manner by utilizing a change in magnetic characteristics of a magnetic film due to a torque applied to a torque transmission shaft, and particularly relates to a rotating shaft of an automobile, a machine tool, a robot, or the like. The present invention relates to a torque sensor suitable for detecting torque.

【0002】[0002]

【従来の技術】回転軸に加えられたトルクを正確に検出
することが、特に自動車、工作機、ロボット等の技術の
中に求められている。この場合検出体が接触しない非接
触方式が適している。非接触方式のトルクセンサとして
は次の2方式に大別される。すなわちトーションバーの
両端に設けられた一対のロータリーエンコーダの出力の
位相差から捩れの角度を検出するエンコーダ方式、およ
び回転軸の表面に歪により誘起される磁気特性の変化を
検出する逆磁歪効果による磁気歪み方式である。エンコ
ーダ方式は、トーションバーの捩れの角度を検出するの
で、通常、軸の一部を細くし、ひずみを大きくする。こ
のため、容易に応力限界を越えやすく信頼性に乏しい。
一方、磁気歪み方式は、トルク伝達軸の表面に磁気歪効
果をもつ磁性部を有しその外周部にソレノイドコイルを
配したものが一般的で、その最大の特長は回転対称構造
のため、軸の回転が特性に影響を与えない事である。ま
たトーションバーを用いないで構成出来るためトルクの
許容検出範囲は広い。
2. Description of the Related Art Accurate detection of torque applied to a rotating shaft is required particularly in the technology of automobiles, machine tools, robots and the like. In this case, a non-contact method in which the detection object does not contact is suitable. Non-contact type torque sensors are roughly classified into the following two types. That is, the encoder system detects the angle of twist from the phase difference between the outputs of a pair of rotary encoders provided at both ends of the torsion bar, and the reverse magnetostriction effect detects changes in magnetic characteristics induced by strain on the surface of the rotating shaft. This is a magnetostrictive system. Since the encoder system detects the torsional angle of the torsion bar, a part of the shaft is usually thinned to increase the distortion. Therefore, the stress limit is easily exceeded and the reliability is poor.
On the other hand, the magnetostrictive method generally has a magnetic part with a magnetostrictive effect on the surface of the torque transmission shaft and a solenoid coil disposed on the outer periphery. Is that the rotation does not affect the characteristics. In addition, since it can be configured without using a torsion bar, the allowable detection range of torque is wide.

【0003】磁歪方式のトルクセンサは、特許第169326
号で提案されているように磁歪効果を有する強磁性体の
回転軸表面の2箇所に互いに相反する方向に45度の螺
旋溝を掘って、その形状効果により差動構造を付与する
方法がある。このような差動構造により回転トルクの正
負方向と大きさを検出することが出来る。
[0003] A magnetostrictive torque sensor is disclosed in Japanese Patent No. 169326.
There is a method in which a 45 ° spiral groove is dug in two opposite directions on the rotating shaft surface of a ferromagnetic material having a magnetostrictive effect in a direction opposite to each other, and a differential structure is provided by the shape effect as proposed in the above publication. . With such a differential structure, the positive and negative directions and the magnitude of the rotational torque can be detected.

【0004】この公知技術から派生して今まで多くの提
案がなされているが、センサの信頼性と耐久性に関して
は、磁歪部を有する回転軸の状態で決定されるため課題
が残されていた。この点に関して前記提案では、繰り返
し応力が負荷される用途の場合は、溝部の形状的な切り
欠き効果により、トルク伝達軸が応力破断に至り易い。
溝部を形成しないトルクセンサの一例として例えば特許
第2512552号にて提案のごとく軸体に捻りトルクを負荷
して引張歪を発生させたままの状態で、この軸の表面
に、ショットピーニングによってさらに引張歪を生じさ
せて、前記捻りトルクにもとづく引張主応力の方向の引
張歪の合計を、軸体の材料の引張降伏時の歪みより大き
くして疲労強度を高めた提案がなされている。しかしな
がら、引張歪を生じさせたまま、ショットピーニングを
行うのは極めて生産性が悪いと言う問題があった。
[0004] Although many proposals have been made so far derived from this known technique, there remains a problem with the reliability and durability of the sensor because it is determined by the state of the rotating shaft having the magnetostrictive portion. . In this regard, in the above-described proposal, in the case of an application in which a repeated stress is applied, the torque transmission shaft is likely to be subjected to stress rupture due to a shape notch effect of the groove.
As an example of a torque sensor that does not form a groove, for example, as proposed in Japanese Patent No. 2512552, while applying a torsional torque to a shaft and generating tensile strain, the surface of this shaft is further pulled by shot peening. A proposal has been made in which a strain is caused to increase the total tensile strain in the direction of the main tensile stress based on the torsional torque to be greater than the strain at the time of the tensile yield of the material of the shaft, thereby increasing the fatigue strength. However, there is a problem that it is extremely low in productivity to perform shot peening while generating tensile strain.

【0005】[0005]

【発明が解決しようとする課題】従来より剛体のねじり
により発生する歪をストレンゲージの電気抵抗変化や高
透磁率のアモルファス箔の薄帯の変形による見かけ上の
透磁率を検出して測定するトルクセンサが用いられてき
たが構造的に信頼性に乏しくさらに高寿命で高信頼性の
トルクセンサが望まれている。このように、従来提案さ
れている磁歪検出体ではトルク伝達軸の形状的な面およ
び磁歪層の耐久性・強度に問題があり、その改良が望ま
れていた。本発明の目的は、繰り返し応力に対してもト
ルク伝達軸から磁歪部が剥がれる事が無く安定した出力
特性を示すトルク伝達軸およびこのトルク伝達軸を用い
たトルクセンサを提供することである。
Conventionally, a torque generated by detecting an apparent magnetic permeability due to a change in electric resistance of a strain gauge or deformation of a thin ribbon of an amorphous foil having a high magnetic permeability is used to measure a strain generated by torsion of a rigid body. Sensors have been used, but there is a need for a torque sensor that is structurally poor in reliability and has a long life and high reliability. As described above, the conventionally proposed magnetostrictive detector has problems in the shape of the torque transmission shaft and the durability and strength of the magnetostrictive layer, and improvement thereof has been desired. An object of the present invention is to provide a torque transmission shaft that exhibits stable output characteristics without the magnetostrictive portion being peeled off from the torque transmission shaft even with repeated stress, and a torque sensor using the torque transmission shaft.

【0006】[0006]

【課題を解決するための手段】そこで本願発明の第一の
発明は、加熱後冷却することにより非磁性ないし弱磁性
から強磁性に変態する材料で芯材の表面部が形成され、
該表面部を局所加熱後冷却して形成される強磁性部を有
するトルク伝達軸を提供するものである。トルク伝達軸
は芯材に前記表面部が形成された構造であり芯材は非磁
性材料で構成することが望ましい。前記非磁性部ないし
弱磁性部と前記強磁性部とはトルク伝達軸に対して約4
5度の角度であり且つ周方向に縞状にパターン化されて
いることが好ましい。
Accordingly, a first aspect of the present invention is to form a surface portion of a core material from a material which transforms from non-magnetic or weak magnetic to ferromagnetic by cooling after heating,
An object of the present invention is to provide a torque transmission shaft having a ferromagnetic portion formed by locally heating and then cooling the surface portion. The torque transmission shaft has a structure in which the surface portion is formed on a core material, and the core material is preferably made of a non-magnetic material. The non-magnetic or weak magnetic part and the ferromagnetic part are about 4
It is preferable that the angle is 5 degrees and that the pattern is formed in a stripe pattern in the circumferential direction.

【0007】第二の発明は、前記のトルク伝達軸と、前
記表面部の磁気的変化を検出する磁気変化検出手段とを
有するトルクセンサを提供するものである。
A second invention provides a torque sensor having the torque transmission shaft and magnetic change detecting means for detecting a magnetic change of the surface portion.

【0008】第一の発明のトルク伝達軸は、トルクが印
加された際に捩れを生じる面の少なくとも一部を無電解
Ni-Pメッキで形成した。無電解Ni-Pメッキは加熱後冷却
することにより結晶組織が非晶質から結晶質に変化し、
非磁性ないし弱磁性から強磁性に変化する。これにより
表面が滑らかであり、応力集中個所がないため、耐久性
にすぐれたトルクセンサを得ることができる。
The torque transmission shaft according to the first aspect of the present invention is characterized in that at least a part of a surface that is twisted when a torque is applied is electroless.
It was formed by Ni-P plating. The crystal structure of the electroless Ni-P plating changes from amorphous to crystalline by cooling after heating,
Changes from non-magnetic or weak magnetic to ferromagnetic. This makes it possible to obtain a torque sensor with excellent durability because the surface is smooth and there are no stress concentration points.

【0009】加熱処理により非磁性から強磁性となるメ
ッキとしては無電解Ni-Pメッキを用いた。一般的な酸性
浴から析出するNi-Pメッキは非晶質であり、Pの含有量
が8%を超えると殆ど磁性を示さない。しかし250℃
以上、好ましくは400℃以上で熱処理すると組織は非
晶質から結晶形になり析出硬化現象を示す。この際強磁
性体となる。
Electroless Ni-P plating is used as the plating which changes from non-magnetic to ferromagnetic by heat treatment. Ni-P plating deposited from a general acidic bath is amorphous, and shows little magnetism when the P content exceeds 8%. But 250 ° C
As described above, preferably, when the heat treatment is performed at 400 ° C. or more, the structure changes from an amorphous state to a crystalline form, and exhibits a precipitation hardening phenomenon. At this time, it becomes a ferromagnetic material.

【0010】本発明の強磁性体の表面部に部分的に弱磁
性部を形成する加熱手段は、加熱可能なエネルギービー
ムであれば特に限定されない。たとえばYAGレーザや
CO レーザなどのレーザビームや赤外線ビームなどが
挙げられる。エネルギービームを照射する際には、その
スポットを連続的に走査して加熱処理部を線状とする
か、非連続に走査して点状としても良い。またそのスポ
ットは所定の方向に沿って、所定の間隔を隔てて走査す
るが、その角度については、トルク伝達軸が捩れにより
表面部に発生する応力歪の引張ないし圧縮方向である+
45度、ないし−45度方向と同一ないしその直角方向
である事が望ましい。
The surface of the ferromagnetic material of the present invention is partially weakly magnetic.
The heating means for forming the conductive part is a heatable energy beam.
It is not particularly limited as long as it is a program. For example, a YAG laser
CO 2Laser beams such as lasers and infrared beams
No. When irradiating the energy beam,
Scanning the spot continuously to make the heat treatment part linear
Alternatively, scanning may be performed discontinuously to form dots. Also that sport
The unit scans at a predetermined interval along a predetermined direction.
However, regarding the angle, the torque transmission shaft
The direction of tension or compression of stress strain generated on the surface +
45 degrees or the same or at right angles to the -45 degrees direction
Is desirable.

【0011】[0011]

【発明の実施の形態】以下、本発明をその実施例を示す
図面に基づいて説明する。第1図は本発明の実施例を示
す模式図である。第1図において、1はトルク伝達軸で
あり直径20mmの非磁性体のSUS303からなり表面に厚さ
10μmの無電解Ni−Pメッキを施した。このトルク伝達軸
の表面メッキ部の2箇所11、12には、幅10mmで全周
にわたり、ビーム径50μmのYAGレーザビームを表
面に、軸に対して、11では+45度、12では−45
度の方向に、1mmピッチで繰り返し照射を施してい
る。レーザビームのエネルギー強度は、Ni-Pメッキ部が
250℃以上好ましくは400℃以上、すなわち加熱処
理個所が強磁性となり、加熱を受けなかった個所が元の
非磁性のままとなるように適宜レーザ照射強度を選ぶ。
この照射により、強磁性と非磁性とがシェブロン状に交
互に配列され形状的な磁気異方性が付与された構造とな
っている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to the drawings showing embodiments thereof. FIG. 1 is a schematic view showing an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a torque transmitting shaft, which is made of non-magnetic SUS303 having a diameter of 20 mm and has a thickness on the surface.
Electroless Ni-P plating of 10 μm was applied. The YAG laser beam having a beam diameter of 50 μm and having a beam diameter of 50 μm is applied to two surfaces 11 and 12 of the surface-plated portion of the torque transmission shaft over the entire circumference with a width of 10 mm.
Irradiation is repeatedly performed at 1 mm pitch in the degree direction. The energy intensity of the laser beam is appropriately adjusted so that the Ni-P plating part is at least 250 ° C, preferably at least 400 ° C, that is, the heat-treated portion becomes ferromagnetic, and the non-heated portion remains nonmagnetic. Select the irradiation intensity.
By this irradiation, ferromagnetic and non-magnetic are alternately arranged in a chevron shape, and a structure having a shape with magnetic anisotropy is provided.

【0012】また軸1の外周には非接触の状態で11お
よび12の部分には円筒状の検出用のソレノイドコイル
21、22が施されている。そのコイルの巻き数は10
0回である。また21、22とを同時に励磁するソレノ
イドコイル23が配されその巻き数は300回である。
The outer circumference of the shaft 1 is provided with cylindrical solenoid coils 21 and 22 for detection in portions 11 and 12 in a non-contact state. The number of turns of the coil is 10
0 times. Further, a solenoid coil 23 for exciting both 21 and 22 at the same time is provided, and the number of turns is 300.

【0013】第2図は、トルク伝達軸1の表面部の磁気
的変化を検出する磁気変化検出手段の回路構成を示すブ
ロック図である。第2図において、発振器31にて10
0KHzの正弦波励磁電流を発生させ、励磁コイル23に
印加する。この結果、シェブロン状の熱処理個所11,
12には交番磁界が加わる。そしてトルク伝達軸に捩れ
トルクを印加すると、シェブロン状の熱処理個所の強磁
性体部11と12に引張と圧縮歪が加わるため、透磁率
が変化し、検出用のソレノイドコイル21、22に誘導
される電圧はそれぞれ異なる値を示す。そして得られた
検出信号は増幅器31,32、および差動増幅器33を
介して同期検波器34にて整流されて、トルク変化に応
じた直流のトルク信号が得られる。トルク伝達軸に方向
の異なるトルク±10kg・mを繰り返し与え続けたがトル
ク伝達軸からメッキ層が剥がれることは無かった。また
トルク伝達軸には亀裂等の異常も認められなかった。
FIG. 2 is a block diagram showing a circuit configuration of a magnetic change detecting means for detecting a magnetic change on the surface of the torque transmitting shaft 1. As shown in FIG. In FIG.
A sine wave exciting current of 0 KHz is generated and applied to the exciting coil 23. As a result, the chevron-like heat treatment places 11,
12, an alternating magnetic field is applied. When a torsional torque is applied to the torque transmission shaft, tensile and compressive strains are applied to the ferromagnetic portions 11 and 12 in the chevron-shaped heat-treated portions, so that the magnetic permeability changes and the magnetic flux is induced by the solenoid coils 21 and 22 for detection. Voltage shows different values. Then, the obtained detection signal is rectified by the synchronous detector 34 via the amplifiers 31 and 32 and the differential amplifier 33, and a DC torque signal corresponding to the torque change is obtained. Repeated application of a torque ± 10 kg · m in different directions to the torque transmission shaft was continued, but the plating layer did not peel off from the torque transmission shaft. No abnormalities such as cracks were observed on the torque transmission shaft.

【0014】[0014]

【発明の効果】本発明によれば、トルク伝達軸の表面部
が磁気歪効果を持ち且つ加熱冷却により強磁性部を形成
できる無電解Ni-Pメッキで形成されるので、トルク伝達
軸に差動構造を付与するための溝加工を施す必要がな
い。また無電解Ni-Pメッキは下地との極めて高い密着性
が得られるのでトルク伝達軸に繰り返し応力に対しても
トルク伝達軸からメッキ層が剥がれる事が無く安定した
出力特性を示すトルク伝達軸およびこのトルク伝達軸を
用いたトルクセンサを得ることができる。
According to the present invention, the surface of the torque transmitting shaft is formed by electroless Ni-P plating which has a magnetostrictive effect and can form a ferromagnetic portion by heating and cooling. There is no need to perform groove processing for providing a dynamic structure. In addition, since electroless Ni-P plating provides extremely high adhesion to the substrate, the torque transmission shaft that shows stable output characteristics without the plating layer peeling off from the torque transmission shaft against repeated stress on the torque transmission shaft and A torque sensor using this torque transmission shaft can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例を示す模式図である。FIG. 1 is a schematic view showing an embodiment.

【図2】本発明のトルクセンサの磁気変化検出手段の回
路構成を示すブロック図である。
FIG. 2 is a block diagram showing a circuit configuration of a magnetic change detecting unit of the torque sensor according to the present invention.

【符号の説明】[Explanation of symbols]

1…トルク伝達軸、 11,12…強磁性部と弱磁性部とからなる縞状パター
ン 21,22,23…ソレノイドコイル
DESCRIPTION OF SYMBOLS 1 ... Torque transmission shaft, 11, 12 ... Striped pattern consisting of ferromagnetic part and weak magnetic part 21, 22, 23 ... Solenoid coil

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 加熱後冷却することにより非磁性ないし
弱磁性から強磁性に変態する材料で芯材の表面部が形成
され、該表面部を局所加熱後冷却して形成される強磁性
部を有することを特徴とするトルク伝達軸。
1. A surface portion of a core material is formed of a material that changes from nonmagnetic or weak magnetic to ferromagnetic by cooling after heating, and a ferromagnetic portion formed by locally heating and cooling the surface portion is formed. A torque transmission shaft having:
【請求項2】 加熱後冷却することにより非磁性ないし
弱磁性から強磁性に変態する材料が無電解Ni-Pメッキで
あることを特徴とする請求項1記載のトルク伝達軸。
2. The torque transmission shaft according to claim 1, wherein the material which changes from non-magnetic or weak magnetic to ferromagnetic by cooling after heating is electroless Ni-P plating.
【請求項3】 芯材が非磁性材料で構成されていること
を特徴とする請求項1又は2記載のトルク伝達軸。
3. The torque transmission shaft according to claim 1, wherein the core material is made of a non-magnetic material.
【請求項4】 前記非磁性部ないし弱磁性部と前記強磁
性部とはトルク伝達軸に対して約45度の角度であり且
つ周方向に縞状にパターン化されていることを特徴とす
る請求項1乃至3の何れかに記載のトルク伝達軸。
4. The method according to claim 1, wherein the non-magnetic portion or the weak magnetic portion and the ferromagnetic portion are at an angle of about 45 degrees with respect to the torque transmission axis and are patterned in a circumferential direction in stripes. The torque transmission shaft according to claim 1.
【請求項5】 前記のトルク伝達軸と、前記表面部の磁
気的変化を検出する磁気変化検出手段とを有することを
特徴とするトルクセンサ。
5. A torque sensor comprising: the torque transmission shaft; and a magnetic change detecting unit for detecting a magnetic change of the surface portion.
JP2000297019A 2000-09-28 2000-09-28 Torque transmission shaft and torque sensor using it Pending JP2002107241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000297019A JP2002107241A (en) 2000-09-28 2000-09-28 Torque transmission shaft and torque sensor using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000297019A JP2002107241A (en) 2000-09-28 2000-09-28 Torque transmission shaft and torque sensor using it

Publications (1)

Publication Number Publication Date
JP2002107241A true JP2002107241A (en) 2002-04-10

Family

ID=18779196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000297019A Pending JP2002107241A (en) 2000-09-28 2000-09-28 Torque transmission shaft and torque sensor using it

Country Status (1)

Country Link
JP (1) JP2002107241A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070379A (en) * 2007-10-22 2008-03-27 Honda Motor Co Ltd Torque detecting mechanism and electric power steering apparatus
JP2009529692A (en) * 2006-03-10 2009-08-20 エービービー エービー Measuring apparatus including a magnetoelastic alloy layer and method for forming the alloy layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529692A (en) * 2006-03-10 2009-08-20 エービービー エービー Measuring apparatus including a magnetoelastic alloy layer and method for forming the alloy layer
JP2008070379A (en) * 2007-10-22 2008-03-27 Honda Motor Co Ltd Torque detecting mechanism and electric power steering apparatus

Similar Documents

Publication Publication Date Title
EP0270122B1 (en) Magnetoelastic torque transducer
EP0384042B1 (en) Magneto-strictive torque sensor
JPH06216426A (en) Magnetostrictive layer-forming method and strain sensor using the method
EP1217351A1 (en) Torque sensor and manufacturing method of the same
JPH01189971A (en) Toque sensor
JP2002107241A (en) Torque transmission shaft and torque sensor using it
JP2002107240A (en) Torque transmission shaft and torque sensor using it
JPH03282338A (en) Manufacture of torque sensor
JPH10176966A (en) Magnetostriction-detecting body for torque sensor
JP2002228526A (en) Torque sensor
JPH0242419B2 (en)
JPH03282337A (en) Torque sensor
JPH05231967A (en) Magnetostrictive torque sensor
JPS61195323A (en) Torque sensor utilizing magnetostriction
JPH03160337A (en) Torque sensor and method for controlling magnetic anisotropy
JP3114455B2 (en) Shaft having magnetostrictive torque detector and method of manufacturing the same
JPH04155232A (en) Manufacture of magnetostrictive detector for torque sensor
JPS63280476A (en) Distortion measurement
JPH03282339A (en) Torque sensor
JP2974554B2 (en) Magnetostriction measurement axis
JPH03205525A (en) Magnetic anisotropy imparting method for band-shaped magnetic body and torque sensor
JPH0262926A (en) Magnetostrictive torque sensor
JPH04140624A (en) Torque measuring apparatus
JPH0979922A (en) Magnetostrictive sensor
JPH0290030A (en) Detecting device for torque

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070613