JPH08145754A - Intake air flow measuring device for internal combustion engine - Google Patents

Intake air flow measuring device for internal combustion engine

Info

Publication number
JPH08145754A
JPH08145754A JP6284778A JP28477894A JPH08145754A JP H08145754 A JPH08145754 A JP H08145754A JP 6284778 A JP6284778 A JP 6284778A JP 28477894 A JP28477894 A JP 28477894A JP H08145754 A JPH08145754 A JP H08145754A
Authority
JP
Japan
Prior art keywords
flow rate
detection unit
internal combustion
combustion engine
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6284778A
Other languages
Japanese (ja)
Other versions
JP3060861B2 (en
Inventor
Atsushi Sugaya
菅家  厚
Hisao Sonobe
久雄 園部
Shigeru Obo
茂 於保
Kaoru Uchiyama
内山  薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6284778A priority Critical patent/JP3060861B2/en
Priority to DE19543236A priority patent/DE19543236C2/en
Priority to US08/560,981 priority patent/US5681989A/en
Publication of JPH08145754A publication Critical patent/JPH08145754A/en
Application granted granted Critical
Publication of JP3060861B2 publication Critical patent/JP3060861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a measuring device capable of precise counterflow detection by providing, between a detecting part and a flow rate arithmetic part, a modulating means for changing the amplitude of the output signal from the detecting part and outputting the resulting signal. CONSTITUTION: Heating coil driving circuits 1, 2, which are independent circuits, respectively, are connected to a power source 10 to independently make outputs according to an air flow rate. The heating coil driving circuit 1 regulates the current carried to a heating resistor 11 by a differential amplifier 15 and a transistor 16 so that the potential difference in the bridge middle point is zero by a whiston bridge circuit consisting of the heating resistor 11, a temperature compensating resistor 12, and resistors 13, 14. The respective outputs according to the air quantity of the heating resistors 11, 21 are electrically improved in frequency responsiveness, the direction of the air flow is detected according to the difference in magnitude of the outputs of equalizer circuits 3, 4 by a voltage comparator 5, and the outputs of the equalizer circuits 3, 4 are switched by a switch circuit 6 and outputted as a flow rate signal with little counterflow error.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の吸入空気量
測定装置に係り、特に逆流検知に好適な内燃機関の吸入
空気量測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake air amount measuring device for an internal combustion engine, and more particularly to an intake air amount measuring device for an internal combustion engine suitable for detecting backflow.

【0002】[0002]

【従来の技術】従来より自動車などの内燃機関の電子制
御燃料噴射装置に設けられ吸入空気量を測定する空気流
量計として、熱線式のものが質量空気量を直接検知でき
ることから主流となってきており、SAE paper 800
468,830615 に記載のものが実用化されている。また、
4気筒以下のエンジンの低回転数,重負荷時のように、
吸入空気量の脈動振幅が大きく一部逆流を伴う脈動流の
場合、従来の熱線式空気流量計では精度が低下するた
め、特開昭62−821 号公報に記載のもの、特開昭62−73
124 号公報に記載のもの等が考案されている。
2. Description of the Related Art Conventionally, as an air flow meter provided in an electronically controlled fuel injection device for an internal combustion engine of an automobile or the like, which measures the intake air amount, a hot wire type has become mainstream because it can directly detect the mass air amount. Ori, SAE paper 800
The ones described in 468,830615 have been put to practical use. Also,
As in the case of low engine speed of 4 cylinders or less and heavy load,
In the case of a pulsating flow with a large pulsation amplitude of the intake air amount and a partial backflow, the accuracy of the conventional hot-wire air flowmeter decreases, so that the one described in JP-A-62-821 and JP-A-62-821. 73
Those described in Japanese Patent No. 124 have been devised.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、脈動
時に逆流と呼ばれる吸気弁がオーバーラップしていると
きはピストン上昇に伴って排気弁側から正圧で吸気弁側
に戻る空気の吹き返し現象を、従来の熱線式空気流量計
で測定すると、その信号は順流,逆流の流れの方向に関
係なく流速の絶対値に対応した正の信号を出力する。従
って逆流時にあたかも順流のような信号となるので、真
の平均空気流量よりも大きい信号を出力することにな
る。このときの測定誤差は30〜100%に達するとい
う問題があった。また、順流,逆流を別々に高速で検出
できる特殊な熱線プローブを用いれば、順流,逆流の空
気流量の差より方向を検出し、方向に応じて空気流量を
出力することで平均空気流量の誤差を少なくすることが
できる。しかし、順流,逆流を別々に高速で検出できる
特殊な熱線プローブを必要とするため、プローブの製造
コストが増大し、信頼性が低下する等の問題があった。
In the above-mentioned prior art, when the intake valve, which is called backflow during pulsation, overlaps, the air blows back from the exhaust valve side to the intake valve side at a positive pressure as the piston rises when the intake valve overlaps. Is measured by a conventional hot-wire air flow meter, the signal outputs a positive signal corresponding to the absolute value of the flow velocity regardless of the direction of forward flow and reverse flow. Therefore, when the backflow occurs, the signal is as if it were a forward flow, and a signal larger than the true average air flow rate is output. There is a problem that the measurement error at this time reaches 30 to 100%. In addition, if a special hot-wire probe that can detect forward flow and reverse flow separately at high speed is used, the direction is detected from the difference between the forward and reverse flow air flow rates, and the air flow rate is output according to the direction. Can be reduced. However, since a special hot-wire probe that can detect forward flow and reverse flow separately at high speed is required, there are problems that the manufacturing cost of the probe increases and the reliability decreases.

【0004】本発明の目的は、精度良く逆流検知をする
ことができる内燃機関の吸入空気量測定装置を提供する
ことにある。
An object of the present invention is to provide an intake air amount measuring device for an internal combustion engine, which can detect backflow with high accuracy.

【0005】[0005]

【課題を解決するための手段】上記目的は、前記検出部
と前記流量演算部との間に前記検出部からの出力信号の
振幅を変えて出力する変調手段を設けることによって達
成される。
The above-mentioned object can be achieved by providing a modulation means for changing the amplitude of the output signal from the detecting section and outputting the signal between the detecting section and the flow rate calculating section.

【0006】[0006]

【作用】応答遅れを内包した熱線信号をイコライザ回路
で電気的に応答遅れを回復させ、検知した方向信号を基
に、応答遅れを回復した順逆2つの熱線信号出力を切り
替えて出力することにより、真の空気流量そのものに近
い逆流補正した熱線信号を得ることが出来、平均空気流
量の誤差を非常に小さくすることができる。
By electrically recovering the response delay of the heat ray signal including the response delay by the equalizer circuit, and switching between the two forward and reverse heat ray signal outputs that have recovered the response delay based on the detected direction signal, A backflow-corrected heat ray signal close to the true air flow rate itself can be obtained, and the error in the average air flow rate can be made extremely small.

【0007】[0007]

【実施例】以下、本発明の実施例を図1により説明す
る。熱線駆動回路1,2はそれぞれ独立した回路であ
り、電源10に接続され別々に空気流量に応じた出力を
する。熱線駆動回路1は発熱抵抗体11,温度補償抵抗
12,抵抗13,14からなるホイーストンブリッジ回
路により、ブリッジ中点の電位差がゼロになるように差
動増幅器15,トランジスタ16によって発熱抵抗体1
1に流れる電流を調整するように構成されている。この
構成により空気流速によらず発熱抵抗体11の抵抗値は
一定に、すなわち温度が一定値になるように制御され
る。このとき、発熱抵抗体11による空気流速に対応す
る信号は、図中A点の電位である。また熱線駆動回路2
の発熱抵抗体21も同様であり、発熱抵抗体21による
空気流速に対応する信号は、図中B点の電位である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. The heat-wire drive circuits 1 and 2 are independent circuits, respectively, which are connected to the power supply 10 and separately output according to the air flow rate. The heat wire drive circuit 1 is a Wheatstone bridge circuit including a heating resistor 11, a temperature compensating resistor 12, and resistors 13 and 14, and a heating resistor 1 is provided by a differential amplifier 15 and a transistor 16 so that the potential difference at the bridge midpoint becomes zero.
It is configured to regulate the current flowing through 1. With this configuration, the resistance value of the heating resistor 11 is controlled to be constant regardless of the air flow rate, that is, the temperature is controlled to be a constant value. At this time, the signal corresponding to the air flow velocity by the heating resistor 11 is the potential at point A in the figure. In addition, the heat ray drive circuit 2
The same applies to the heating resistor 21 of No. 2, and the signal corresponding to the air flow velocity by the heating resistor 21 is the potential at point B in the figure.

【0008】ここで発熱抵抗体11,21は、例えばセ
ラミックなどの熱伝導性の良い絶縁材料で作られた円筒
状または円柱状のボビンの表面に、発熱体として白金や
タングステンの熱線が巻かれており、被覆材としてガラ
スやセラミックスがコーティングされたものである。発
熱抵抗体11,21は板型のガラスやセラミックなどの
基盤上に、発熱体として白金やタングステンの薄膜や厚
膜が形成されたものであっても良い。
The heating resistors 11 and 21 have a cylindrical or cylindrical bobbin made of an insulating material having good thermal conductivity, such as ceramics, and a platinum or tungsten heating wire is wound around the surface of the bobbin. The coating material is glass or ceramics. The heating resistors 11 and 21 may be formed by forming a thin film or a thick film of platinum or tungsten as a heating element on a substrate such as plate-shaped glass or ceramic.

【0009】発熱抵抗体11,21は自動車等の内燃機
関の吸気通路内に設けられ、例えば吸気上流側には発熱
抵抗体11が、吸気下流側には発熱抵抗体21が設けら
れ、近接して平行に配置される。発熱抵抗体11,21
の温度は、通常の定温度型熱線流速計と同様に、空気温
度との差が空気流速に関係なく一定値になるように熱線
駆動回路1,2により電気加熱される。まず、吸気上流
側から下流側の順方向に空気が流れるときは、発熱抵抗
体11は21に比べて空気流による冷却が大であるの
で、熱線駆動回路1からの供給電流は発熱抵抗体11の
方が21より大となる。一方、吸気下流側から上流側の
逆方向に空気が流れるときは、空気流による冷却は前と
逆に発熱抵抗体21の方が大となり、熱線駆動回路2か
らの供給電流は発熱抵抗体21の方が11より大とな
る。従って発熱抵抗体11,21への供給電流の大小の
差により、空気流の方向を検知することができる。しか
し、吸気通路内に空気の脈動が生じ、発熱抵抗体11,
21の熱応答特性を要因として熱線駆動回路1,2に応
答遅れが生じると空気流の方向の検知が遅れ、平均空気
流量の検出に誤差が生ずる。
The heating resistors 11 and 21 are provided in the intake passage of an internal combustion engine such as an automobile. For example, the heating resistor 11 is provided upstream of the intake air and the heating resistor 21 is provided downstream of the intake air. Are arranged in parallel. Heating resistors 11, 21
Like the normal constant temperature type hot wire anemometer, the temperature is electrically heated by the hot wire drive circuits 1 and 2 so that the difference from the air temperature becomes a constant value regardless of the air flow speed. First, when the air flows in the forward direction from the intake upstream side to the downstream side, the heating resistor 11 is cooled by the airflow more than the air flow in the heating resistor 11, so that the current supplied from the heat wire drive circuit 1 is generated by the heating resistor 11. Is greater than 21. On the other hand, when air flows in the opposite direction from the downstream side of the intake air to the upstream side, cooling by the air flow is larger in the heating resistor 21 than in the previous case, and the current supplied from the heat wire drive circuit 2 is the heating resistor 21. Is greater than 11. Therefore, the direction of the air flow can be detected by the difference in the magnitude of the current supplied to the heating resistors 11 and 21. However, air pulsation occurs in the intake passage, and the heating resistor 11,
If a response delay occurs in the heat ray drive circuits 1 and 2 due to the thermal response characteristic of 21, the detection of the direction of the air flow is delayed, and an error occurs in the detection of the average air flow rate.

【0010】本実施例では、発熱抵抗体11,21のそ
れぞれの空気流量に応じた出力を、イコライザ回路3,
4により電気的に周波数応答性を改善し、電圧比較器5
によりイコライザ回路3,4の出力の大小の差により空
気流の方向を検知するとともに、スイッチ回路6により
イコライザ回路3,4の出力を切り替えて逆流誤差の少
ない流量信号として出力する。スイッチ回路6では逆流
側のイコライザ回路4の出力信号を反転回路61で反転
することにより、イコライザ回路3,4の出力を切り替
えるものである。この場合、方向信号を外部に出力しな
くても、出力信号のみでエンジンコントロールユニット
とのインターフェイスが可能となる。ここで使用される
スイッチ回路6は、例えばCMOSプロセスで作られた
アナログスイッチや、バイポーラプロセスで作られたト
ランジスタを用いたアナログスイッチ等であり特に限定
されるものではない。
In this embodiment, the outputs corresponding to the respective air flow rates of the heating resistors 11 and 21 are output to the equalizer circuit 3,
4, the frequency response is improved electrically and the voltage comparator 5
The direction of the air flow is detected by the difference between the outputs of the equalizer circuits 3 and 4, and the output of the equalizer circuits 3 and 4 is switched by the switch circuit 6 and output as a flow rate signal with less backflow error. The switch circuit 6 switches the outputs of the equalizer circuits 3 and 4 by inverting the output signal of the equalizer circuit 4 on the backflow side by the inverting circuit 61. In this case, it is possible to interface with the engine control unit only by the output signal without outputting the direction signal to the outside. The switch circuit 6 used here is, for example, an analog switch manufactured by a CMOS process, an analog switch using a transistor manufactured by a bipolar process, or the like, and is not particularly limited.

【0011】次に、図2によりイコライザ回路3,4を
用いた場合の詳細の動作を説明する。ここで熱線信号
は、全て空気流量に換算して表示している。一般に空気
流量は、4気筒以下のエンジンの低回転数,重負荷時の
場合、吸入空気量の脈動振幅が大きく図2(1)に示す
ように、逆流と呼ぶ負の空気流量を伴う正弦波に近い波
形となる。これは例えば、エンジン回転数が1000rp
m の場合は約33Hzの脈動周波数となる。このような
現象は、エンジンの燃焼室形状,吸排気管形状およびエ
アークリーナ形状などによって異なった形態を示す。
Next, the detailed operation when the equalizer circuits 3 and 4 are used will be described with reference to FIG. Here, all the heat ray signals are converted into the air flow rate and displayed. Generally, the air flow rate is a sine wave with a negative air flow rate called a reverse flow, as shown in FIG. The waveform is close to. For example, the engine speed is 1000rp
In the case of m, the pulsation frequency is about 33 Hz. Such a phenomenon varies depending on the shape of the combustion chamber of the engine, the shape of the intake and exhaust pipes, the shape of the air cleaner, and the like.

【0012】この逆流を伴った脈動流を、応答性の速い
計測機器に用いられる特殊な熱線プローブを抵抗発熱体
として用いて測定すると、図2(2)に示すように順
流,逆流の方向に関係なく流速の絶対値に対応した正の
信号を出力する。流量に対する応答性がよいため、順流
と逆流の切り替え時には熱線信号はほぼゼロに近くな
る。このような高速応答が可能な特殊な熱線プローブを
2個用いて、順流,逆流の方向を検出して波形を合成す
れば、真の空気流量に最も近い熱線信号を得ることがで
きる。しかし、応答性の速い計測機器に用いられる特殊
な熱線プローブは高価であり、信頼性の点からも自動車
のエンジンなどの振動の大きな機械に定常的に使用する
のは難しい。
When the pulsating flow accompanied by the backflow is measured by using a special heat ray probe used in a measuring instrument having a fast response as a resistance heating element, it is found that the flow is in the forward flow direction and the reverse flow direction as shown in FIG. 2 (2). A positive signal corresponding to the absolute value of the flow velocity is output regardless. Since the responsiveness to the flow rate is good, the heat ray signal becomes almost zero when switching between forward flow and reverse flow. If two special heat ray probes capable of such a high-speed response are used to detect the forward flow direction and the backward flow direction and synthesize the waveform, the heat ray signal closest to the true air flow rate can be obtained. However, a special heat ray probe used for a measuring instrument having a quick response is expensive, and it is difficult to constantly use it for a machine with large vibration such as an engine of an automobile from the viewpoint of reliability.

【0013】そこで、従来より自動車の空気流量の測定
に用いられている、信頼性は高いが応答性は特別速くな
い熱線プローブを2個平行に並べて発熱抵抗体11,2
1として用いると、図2(3)に示すように順流,逆流
の方向に関係なく流速の絶対値に対応した正の信号を出
力する。この場合、応答遅れが生じることから順流と逆
流の切り替え時において熱線信号はゼロとならない。ま
た吸気上流側に配置された発熱抵抗体11の出力Aは、
順流時は大きく逆流時は小さい。逆に吸気下流側に配置
された発熱抵抗体21の出力Bは、逆流時は大きく順流
時は小さい。これら2つの信号を電圧比較器5で比較し
た結果は、図2(4)に示すような順流を示す高電位レ
ベル(Hi),逆流を示す低電位レベル(Low)を繰
り返す。スイッチ回路6によって、方向信号を用いて順
逆の切り替えをして逆流補正した熱線信号は、図2
(5)に示すような逆流を伴う合成波形となる。ただ
し、真の空気流量に対して位相がずれ、空気流量がゼロ
付近での波形に飛びが生じるため、平均空気流量を比較
すると、ただ方向信号を用いて合成しただけでは誤差が
生ずることになる。
Therefore, two heating wire probes, which are conventionally used for measuring the air flow rate of an automobile and which are highly reliable but not particularly responsive, are arranged in parallel and the heating resistors 11 and 2 are arranged in parallel.
When used as 1, a positive signal corresponding to the absolute value of the flow velocity is output regardless of the direction of forward flow and reverse flow, as shown in FIG. In this case, since the response delay occurs, the heat ray signal does not become zero when switching between forward flow and reverse flow. The output A of the heating resistor 11 arranged on the intake upstream side is
Large during forward flow and small during reverse flow. On the contrary, the output B of the heating resistor 21 arranged on the downstream side of the intake air is large during backflow and small during forward flow. As a result of comparing these two signals by the voltage comparator 5, a high potential level (Hi) indicating a forward flow and a low potential level (Low) indicating a reverse flow as shown in FIG. 2 (4) are repeated. The switching circuit 6 performs forward / reverse switching using a direction signal to perform backflow correction, and the heat ray signal shown in FIG.
The composite waveform is accompanied by backflow as shown in (5). However, since the phase shifts with respect to the true air flow rate, and the waveform near the zero air flow rate jumps, an error will occur if the average air flow rates are compared and simply combining using the direction signal. .

【0014】本実施例では、図2(3)の応答遅れを内
包した熱線信号を、前記イコライザ回路3,4で電気的
に応答遅れを回復させており、これを図2(6)に示
す。応答遅れを回復した順逆2つの熱線信号出力A2,
B2は、位相と振幅が真の空気流量に近くなるよう、イ
コライザ回路3,4で調整されている。この新たな信号
A2,B2を用いて、新たに方向信号を発生させて出力
を切り替え合成することで、図2(7)に示すような真
の空気流量そのものに近い逆流補正した熱線信号を得る
ことが出来、平均空気流量の誤差を非常に小さくするこ
とが出来る。
In the present embodiment, the heat ray signal including the response delay shown in FIG. 2C is electrically recovered by the equalizer circuits 3 and 4 as shown in FIG. . Two forward and reverse heat ray signal outputs A2 that have recovered the response delay
B2 is adjusted by the equalizer circuits 3 and 4 so that the phase and the amplitude are close to the true air flow rate. By using these new signals A2 and B2, a direction signal is newly generated and outputs are switched and combined to obtain a backflow-corrected heat ray signal close to the true air flow rate itself as shown in FIG. 2 (7). Therefore, the error of the average air flow rate can be made very small.

【0015】図3に前記イコライザ回路3,4の周波数
特性の一例を示す。これは、ある一定流速における発熱
抵抗体11,21を含む熱線駆動回路1,2の電気的な
周波数応答性を表したものである。熱線駆動回路の応答
性は、カットオフがおおよそ数十Hzと100Hz以下
である。例えばエンジン回転数が1000rpm から20
00rpm における空気流量の場合は、約33Hzから約
66Hzの脈動周波数が発生するため、熱線駆動回路の
カットオフに影響を受け、空気流量の検出値に応答遅れ
が生じる。しかし、例えば図3に示すような位相進み要
素を持たせたイコライザの特性を加えると、合成した応
答性は例えば数百Hzと、熱線駆動回路のみの応答性に
対し一桁速い応答性を実現することが出来る。この場
合、合成した応答性のゲイン特性はフラットなまま周波
数のみが延びる様な特性にすることが望ましい。その結
果、空気流量の検出遅れをなくすことが出来る。
FIG. 3 shows an example of frequency characteristics of the equalizer circuits 3 and 4. This represents the electrical frequency response of the heat ray drive circuits 1 and 2 including the heating resistors 11 and 21 at a certain constant flow rate. Regarding the responsiveness of the heat ray drive circuit, the cutoff is approximately several tens Hz and 100 Hz or less. For example, the engine speed is from 1000 rpm to 20
In the case of the air flow rate at 00 rpm, a pulsation frequency of about 33 Hz to about 66 Hz is generated, so that the cutoff of the heat wire drive circuit is affected and a response delay occurs in the detected value of the air flow rate. However, for example, if the characteristics of an equalizer having a phase lead element as shown in FIG. 3 are added, the synthesized response is, for example, several hundred Hz, and a response that is an order of magnitude faster than the response of only the heat ray drive circuit is realized. You can do it. In this case, it is desirable that the synthesized response gain characteristic be such that only the frequency extends while remaining flat. As a result, the delay in detecting the air flow rate can be eliminated.

【0016】前記イコライザ回路3,4を具体的に電気
回路で実現した場合の一実施例を図4に示す。これは差
動増幅器31を用い、抵抗33,34,36,38で入
出力ゲインを決定し、抵抗37,コンデンサ32,35
で位相進み要素の周波数特性を決めるものである。
FIG. 4 shows an embodiment in which the equalizer circuits 3 and 4 are specifically realized by electric circuits. This uses a differential amplifier 31, the resistors 33, 34, 36, 38 determine the input / output gain, and the resistor 37, capacitors 32, 35.
Determines the frequency characteristic of the phase lead element.

【0017】以上のイコライザ回路を用いた本実施例に
よれば、簡単な回路で特殊な熱線プローブを抵抗発熱体
として用いずとも簡単に応答性を改善することが出来、
平均空気流量の測定精度を比較的容易に向上することが
できる。また、熱線駆動回路の応答性が電気的に改善さ
れるために、電源の起動時の立ち上がり特性を従来より
も速めることができるといった効果もある。
According to this embodiment using the above equalizer circuit, the response can be easily improved with a simple circuit without using a special heat ray probe as a resistance heating element.
The accuracy of measuring the average air flow rate can be improved relatively easily. Further, since the responsiveness of the heat ray drive circuit is electrically improved, there is an effect that the rising characteristic at the time of starting the power supply can be made faster than before.

【0018】本発明第2の実施例を図5により説明す
る。本実施例は、図1に示す実施例において、反転回路
をなくし出力信号と方向信号とを用いて順流,逆流の判
定をエンジンコントロールユニット側ですることにより
逆流を考慮した真の流量を計測することができる。本実
施例によれば、出力信号の順流,逆流のダイナミックレ
ンジが大きくとれるため、エンジン制御ユニットでのA
/Dコンバータによる検出精度が向上する。
A second embodiment of the present invention will be described with reference to FIG. In this embodiment, in the embodiment shown in FIG. 1, the true flow rate is measured in consideration of the backflow by eliminating the inverting circuit and using the output signal and the direction signal to determine the forward flow and the backflow on the engine control unit side. be able to. According to this embodiment, since the dynamic range of the forward flow and the reverse flow of the output signal can be widened, the A in the engine control unit
The detection accuracy of the / D converter is improved.

【0019】本発明の第3の実施例を図6により説明す
る。例えば、エンジンの燃焼室形状,吸排気管形状およ
びエアークリーナ形状により、吸入空気量の脈動振幅が
比較的小さいが逆流を生じてる様な場合においては、応
答遅れによる空気流量振幅の誤差よりも、応答遅れによ
る順流,逆流の方向信号の検出の遅れによる誤差の方が
問題になる場合がある。本実施例では、熱線駆動回路
1,2の出力にイコライザ回路3,4を設けて電圧比較
器5のみに入力し、方向信号の検出専用とするととも
に、空気流量は熱線駆動回路1,2の出力信号A,Bを
スイッチ回路6で切り替えて逆流補正した流量出力信号
とする。本実施例の場合、イコライザ回路3,4の出力
を流量出力信号に直接用いていないため、イコライザ回
路3,4の振幅特性を熱線駆動回路1,2に合わせて厳
密に校正せずとも、空気流量の検出に直接影響しない。
また、振幅特性を気にしなければイコライザ回路3,4
は、前記図4の様な差動増幅器等の能動形の部品でな
く、抵抗とコンデンサ等の受動形の部品によっても位相
進み要素を簡単に構成できる。ここで、受動型の部品を
用いたイコライザ回路の実施例を図7により説明する。
これは、抵抗41,コンデンサ42からなる低域通過フ
ィルタ(ローパスフィルタ)に、抵抗43,44,4
6,コンデンサ45からなる位相進み回路を持たせて、
交流振幅特性を改善するものである。本実施例では直流
ゲインが低下するが、交流振幅特性のみを変えること
で、特に方向検出用のイコライザ回路として用いること
ができる。
A third embodiment of the present invention will be described with reference to FIG. For example, when the pulsation amplitude of the intake air amount is relatively small due to the shape of the combustion chamber of the engine, the shape of the intake / exhaust pipe, and the shape of the air cleaner, but a backflow occurs, the response may be more The error due to the delay in the detection of the forward and backward flow direction signals due to the delay may be more problematic. In the present embodiment, equalizer circuits 3 and 4 are provided at the outputs of the heat ray drive circuits 1 and 4 and are input only to the voltage comparator 5 to exclusively detect the direction signal. The output signals A and B are switched by the switch circuit 6 to obtain a backflow-corrected flow rate output signal. In the case of the present embodiment, since the outputs of the equalizer circuits 3 and 4 are not directly used for the flow rate output signal, the amplitude characteristics of the equalizer circuits 3 and 4 are not calibrated in accordance with the heat ray drive circuits 1 and 2, Does not directly affect flow rate detection.
If the amplitude characteristic is not taken into consideration, the equalizer circuits 3 and 4
The phase lead element can be easily constructed by passive components such as resistors and capacitors instead of the active components such as the differential amplifier shown in FIG. Here, an embodiment of an equalizer circuit using passive components will be described with reference to FIG.
This is a low-pass filter (low-pass filter) including a resistor 41 and a capacitor 42, and resistors 43, 44, 4
6, with a phase lead circuit consisting of a capacitor 45,
It is intended to improve the AC amplitude characteristic. Although the DC gain is reduced in the present embodiment, it can be used as an equalizer circuit for direction detection by changing only the AC amplitude characteristic.

【0020】本実施例によれば、順流,逆流の方向信号
の検出の遅れによる誤差をより低減するため、イコライ
ザ回路3,4の振幅特性を、真の空気流量の振幅よりも
大きくして、逆流時の方向信号の検出感度を高くするこ
とも可能である。本実施例によれば、特に空気流量の脈
動や逆流が小さい場合でも感度よく逆流が検出でき、よ
り正確な空気流量の測定が可能となる。また、イコライ
ザ回路3,4の時定数の設定が容易で、時定数を決める
抵抗やコンデンサの精度を下げることが出来、余分な調
整を必要としない。
According to this embodiment, in order to further reduce the error due to the delay in detecting the forward and backward flow direction signals, the amplitude characteristics of the equalizer circuits 3 and 4 are set to be larger than the amplitude of the true air flow rate. It is also possible to increase the detection sensitivity of the direction signal at the time of reverse flow. According to this embodiment, the backflow can be detected with high sensitivity even when the pulsation of the air flow rate or the backflow is small, and the more accurate measurement of the air flow rate becomes possible. Further, the time constants of the equalizer circuits 3 and 4 can be easily set, the accuracy of the resistors and capacitors that determine the time constant can be lowered, and no extra adjustment is required.

【0021】本発明の第4の実施例を図8により説明す
る。例えば、吸入空気量の逆流は少ないが脈動振幅が比
較的大きく、逆流発生による空気流量の誤差よりも脈動
振幅による吸入空気量の平均値の誤差の方が特に問題に
なる場合がある。本実施例では、熱線駆動回路1,2の
出力を電圧比較器5に入力して方向信号を検出し、空気
流量は熱線駆動回路1,2の出力信号A,Bをスイッチ
回路6で切り替えて逆流補正した後、第2のイコライザ
回路7を介して脈動振幅を補正して改めて流量出力信号
とする。本実施例の場合、第2のイコライザ回路7を用
いることで脈動振幅の自由な設定が可能なため、平均空
気流量の補正は正負に対してすることが出来る。
A fourth embodiment of the present invention will be described with reference to FIG. For example, the backflow of the intake air amount is small, but the pulsation amplitude is relatively large, and the error in the average value of the intake air amount due to the pulsation amplitude may be more problematic than the error in the air flow rate due to the occurrence of the backflow. In the present embodiment, the outputs of the heat ray drive circuits 1 and 2 are input to the voltage comparator 5 to detect the direction signal, and the air flow rate is switched by the switch circuit 6 between the output signals A and B of the heat ray drive circuits 1 and 2. After the backflow correction, the pulsation amplitude is corrected via the second equalizer circuit 7 to obtain the flow rate output signal again. In the case of this embodiment, since the pulsation amplitude can be freely set by using the second equalizer circuit 7, the correction of the average air flow rate can be made positive or negative.

【0022】図9に第2のイコライザ回路7の周波数特
性の一例を示す。これは、ある一定流速における発熱抵
抗体11,21を含む熱線駆動回路1,2の電気的な周
波数応答性を表したものである。ここで、熱線駆動回路
の応答性に対し第2のイコライザの周波数特性は、例え
ば図9に示すような位相進み要素を、熱線駆動回路の応
答性がフラットなうちから徐々に加えると、合成した応
答性は例えば数十Hzからゲインが徐々に増加し、かつ
カットオフ周波数が100Hz以上となるような応答性
を得ることができる。第2のイコライザ回路7を用いる
と、空気流量に脈動が発生した場合の応答遅れによる脈
動時の振幅の低下を、ゲイン特性を変えることで振幅を
回復させることができ、空気流量を平均値でみた場合の
測定誤差を低減することができる。
FIG. 9 shows an example of frequency characteristics of the second equalizer circuit 7. This represents the electrical frequency response of the heat ray drive circuits 1 and 2 including the heating resistors 11 and 21 at a certain constant flow rate. Here, the frequency characteristic of the second equalizer with respect to the response of the heat ray drive circuit is synthesized by adding a phase lead element as shown in FIG. 9 gradually while the response of the heat ray drive circuit is flat. The response can be such that the gain gradually increases from several tens Hz and the cutoff frequency becomes 100 Hz or higher. When the second equalizer circuit 7 is used, it is possible to recover the amplitude decrease at the time of pulsation due to the response delay when the pulsation occurs in the air flow rate by changing the gain characteristic. It is possible to reduce the measurement error when viewed.

【0023】第2のイコライザ回路7を具体的に電気回
路で実現した場合の一実施例を図10に示す。これは、
図4で説明した前記のイコライザ回路3の回路に、入出
力ゲインを変えるためのネットワーク抵抗91,92,
93,94とコンデンサ95,96を加えたものであ
る。抵抗93の値を調整することで、第2のイコライザ
回路7のゲイン特性を変えることができる。回路そのも
のの基本特性は、差動増幅器71を用い、抵抗73,7
4,76,78で入出力ゲインを決定し、抵抗77,コ
ンデンサ72,75で位相進み要素の周波数特性を決め
るものである。
FIG. 10 shows an embodiment in which the second equalizer circuit 7 is specifically realized by an electric circuit. this is,
In the circuit of the equalizer circuit 3 described with reference to FIG. 4, network resistors 91, 92 for changing the input / output gain,
93 and 94 and capacitors 95 and 96 are added. By adjusting the value of the resistor 93, the gain characteristic of the second equalizer circuit 7 can be changed. The basic characteristic of the circuit itself is that the differential amplifier 71 is used and the resistors 73 and 7 are used.
4, 76 and 78 determine the input / output gain, and the resistor 77 and the capacitors 72 and 75 determine the frequency characteristic of the phase lead element.

【0024】本実施例では特に第2のイコライザ回路7
を用いれば、少ない回路構成でスロットル開度に対する
空気流量の関係を単調増加性が確保できるように調整で
き、自動車のエンジン制御ユニットとのマッチングが向
上するといった効果がある。本発明の第5の実施例を図
11により説明する。例えば、吸入空気量の脈動振幅と
逆流がともに大きく、かつ脈動に高調波成分が多く含ま
れる場合、熱線駆動回路1,2の応答遅れによる吸入空
気量の検出誤差が特に大きくなる場合がある。
In the present embodiment, especially the second equalizer circuit 7
If is used, it is possible to adjust the relationship of the air flow rate with respect to the throttle opening so as to monotonically increase with a small circuit configuration, and there is an effect that matching with the engine control unit of the automobile is improved. A fifth embodiment of the present invention will be described with reference to FIG. For example, when both the pulsation amplitude and the backflow of the intake air amount are large and the pulsation contains many harmonic components, the detection error of the intake air amount due to the response delay of the heat ray drive circuits 1 and 2 may be particularly large.

【0025】本実施例では、熱線駆動回路1,2の出力
をイコライザ回路3,4を設けて電圧比較器5のみに入
力し、方向信号の検出専用とするとともに、空気流量は
熱線駆動回路1,2の出力信号A,Bをスイッチ回路6
で切り替えて逆流補正した後、第2のイコライザ回路7
を介して脈動振幅を補正して改めて流量出力信号とす
る。本実施例の場合、逆流発生時の逆流検出の応答遅れ
はイコライザ回路3,4で対応し検出感度を高くでき、
また脈動発生時の応答遅れによる脈動振幅の低下を、第
2のイコライザ回路7を用いることで対応し脈動振幅を
回復し、吸入空気量の検出誤差を総合的に低減すること
が可能となる。
In the present embodiment, the outputs of the heat ray driving circuits 1 and 2 are provided with equalizer circuits 3 and 4 and are inputted only to the voltage comparator 5 so as to be exclusively used for detecting the direction signal, and the air flow rate is set to the heat ray driving circuit 1. , 2 output signals A and B are applied to the switch circuit 6
The second equalizer circuit 7
The pulsation amplitude is corrected via and the flow rate output signal is obtained again. In the case of the present embodiment, the response delay of the backflow detection when the backflow is generated is dealt with by the equalizer circuits 3 and 4, and the detection sensitivity can be increased,
Further, by using the second equalizer circuit 7, it is possible to recover the pulsation amplitude by using the second equalizer circuit 7 to reduce the pulsation amplitude due to the response delay when the pulsation occurs, and it is possible to comprehensively reduce the detection error of the intake air amount.

【0026】本実施例によれば、特に空気流量の脈動や
逆流が大きく乱れた場合でも感度よく逆流が検出でき、
より正確な空気流量の測定が可能となる。逆流と脈動の
感度を別々に設定できるため、エンジンとの組み合わせ
による調整が容易である。
According to the present embodiment, the backflow can be detected with high sensitivity even when the pulsation of the air flow rate or the backflow is greatly disturbed.
It becomes possible to measure the air flow rate more accurately. Since the backflow and pulsation sensitivities can be set separately, adjustment by combining with the engine is easy.

【0027】本発明の第6の実施例を図12により説明
する。本実施例では、熱線駆動回路1,2におけるブリ
ッジ回路の発熱抵抗体11,21を接地側に配置し、温
度補償回路8を設けることで、2つのブリッジ回路を1
個の温度補償抵抗のみで構成することができる。温度補
償回路8は、発振器89とそのクロック信号で動作する
スイッチ回路88,84,86により、ブリッジ回路の
片側となる温度補償抵抗81,抵抗82を、熱線駆動回
路1,2にそれぞれクロックに同期して時分割に切り替
えて動作するものである。この際、スイッチ回路88で
切り替えた熱線駆動回路1,2内の、トランジスタ1
6,26のエミッタ側の電位の切り替えによる電圧変動
を少なくするため、差動増幅器87をバッファとして用
い、接地側の温度補償抵抗81と直列に接続された抵抗
82に接続し電流を供給している。温度補償抵抗81の
出力は、スイッチ回路84,86とコンデンサ83,8
5によって構成されたサンプルホールド回路により、熱
線駆動回路1,2内の差動増幅器15,25に連続的に
入力され、それぞれ独立したブリッジ回路として動作す
る。熱線駆動回路1,2の動作を安定にするには、発熱
抵抗体11,21と並列に、コンデンサ17,27を設
けることが望ましい。
A sixth embodiment of the present invention will be described with reference to FIG. In this embodiment, the heating resistors 11 and 21 of the bridge circuits in the heat ray drive circuits 1 and 2 are arranged on the ground side, and the temperature compensating circuit 8 is provided so that the two bridge circuits can be connected to each other.
It can be configured with only one temperature compensation resistor. The temperature compensating circuit 8 synchronizes a temperature compensating resistor 81 and a resistor 82, which are one side of the bridge circuit, with the heat wire driving circuits 1 and 2 by a clock by an oscillator 89 and switch circuits 88, 84 and 86 which operate by the clock signal thereof. Then, the operation is switched to time division. At this time, the transistor 1 in the heat ray drive circuits 1 and 2 switched by the switch circuit 88
In order to reduce the voltage fluctuation due to the switching of the potentials of the emitter side of 6, 26, the differential amplifier 87 is used as a buffer, and the current is supplied by connecting to the resistor 82 connected in series with the temperature compensating resistor 81 on the ground side. There is. The output of the temperature compensation resistor 81 is the switch circuits 84, 86 and the capacitors 83, 8
The sample-hold circuit constituted by 5 continuously inputs the differential amplifiers 15 and 25 in the heat ray drive circuits 1 and 2, respectively, and operates as independent bridge circuits. In order to stabilize the operation of the heat ray drive circuits 1 and 2, it is desirable to provide capacitors 17 and 27 in parallel with the heating resistors 11 and 21.

【0028】また、熱線駆動回路1,2の出力を電圧比
較器5に入力して方向信号を検出し、空気流量は熱線駆
動回路1,2の出力信号A,Bをスイッチ回路6で切り
替えて逆流補正することで流量出力信号を得ることがで
きる。本実施例では、熱線駆動回路の出力にイコライザ
回路を用いない例で説明したが、種々のイコライザ回路
を方向信号の切り替えや、流量出力信号等に組み合わせ
て用いてもかまわない。
The outputs of the heat ray drive circuits 1 and 2 are input to the voltage comparator 5 to detect the direction signal, and the air flow rate is switched by the switch circuit 6 between the output signals A and B of the heat ray drive circuits 1 and 2. A flow rate output signal can be obtained by performing backflow correction. In the present embodiment, the example in which the equalizer circuit is not used for the output of the heat ray drive circuit has been described, but various equalizer circuits may be used in combination with the switching of the direction signal and the flow rate output signal.

【0029】本実施例によれば、通常吸気通路内に2つ
の発熱抵抗体とともに設けられる比較的高価な温度補償
抵抗を、1個に減らすことができるため原価低減が図れ
る。また、2つのブリッジ回路の温度調整箇所が1ヶ所
ですむため、温度補償抵抗が1個になったことと合わせ
て製造時の組立工数が低減でき、量産時の生産コストが
低減できる。
According to this embodiment, since the relatively expensive temperature compensating resistor which is normally provided in the intake passage together with the two heating resistors can be reduced to one, the cost can be reduced. Also, since only one temperature adjustment point is required for the two bridge circuits, the number of temperature compensation resistors is reduced to one, and the number of assembly steps during manufacturing can be reduced and the production cost during mass production can be reduced.

【0030】本発明の第7の実施例を図13により説明
する。本実施例では、熱線駆動回路1,2の出力をイコ
ライザ回路3,4を設けて電圧比較器5に入力し、方向
信号の検出専用とするとともに、空気流量は、熱線駆動
回路1,2の出力を第2のイコライザ回路で個々に応答
遅れを回復し、その信号をスイッチ回路6で切り替えて
流量出力信号とする。本実施例の場合、個々のセンサの
周波数応答の違いを個々に調整できるのでより精度が向
上する。
The seventh embodiment of the present invention will be described with reference to FIG. In this embodiment, the outputs of the heat ray drive circuits 1 and 2 are provided to the voltage comparator 5 by providing the equalizer circuits 3 and 4, and the direction signal is exclusively used for detection. The output delay is individually recovered by the second equalizer circuit, and the signal is switched by the switch circuit 6 to be the flow rate output signal. In the case of this embodiment, the difference in the frequency response of each sensor can be adjusted individually, so that the accuracy is further improved.

【0031】本発明の第8の実施例を図14により説明
する。本実施例では、イコライザ回路3により熱線駆動
回路1の出力信号の応答遅れを回復させ、その信号を流
量演算部99に出力する。本実施例の場合、前記検出部
と前記流量演算部との間にイコライザ回路を設けたこと
により空気流量の精度を比較的容易に向上することがで
きる。
An eighth embodiment of the present invention will be described with reference to FIG. In this embodiment, the equalizer circuit 3 recovers the response delay of the output signal of the heat ray drive circuit 1 and outputs the signal to the flow rate calculation unit 99. In the case of the present embodiment, the accuracy of the air flow rate can be relatively easily improved by providing the equalizer circuit between the detection unit and the flow rate calculation unit.

【0032】[0032]

【発明の効果】本発明によれば、空気流量が逆流や脈動
流を伴う、通常の熱線プローブを用いた熱線式空気流量
計では測定誤差が増大する場合であっても、平均空気流
量の測定精度を比較的容易に向上することができるとい
った効果がある。また、スロットル開度に対する空気流
量の単調増加性が確保でき、自動車の電子制御燃料噴射
装置に用いるエンジン制御ユニットとのマッチングが向
上するといった効果もある。
According to the present invention, the average air flow rate can be measured even when the measurement error increases in a hot wire air flow meter using a normal hot wire probe, in which the air flow rate is accompanied by backflow or pulsating flow. There is an effect that the accuracy can be improved relatively easily. Further, there is an effect that the monotonous increase of the air flow rate with respect to the throttle opening can be secured and the matching with the engine control unit used in the electronically controlled fuel injection device of the automobile is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例によるイコライザ回路を用いた
熱線駆動回路図。
FIG. 1 is a heat ray drive circuit diagram using an equalizer circuit according to an embodiment of the present invention.

【図2】吸入空気流が逆流を伴った脈動流の場合の動作
波形図。
FIG. 2 is an operation waveform diagram when the intake air flow is a pulsating flow accompanied by backflow.

【図3】熱線駆動回路図及びイコライザ回路の周波数特
性図。
FIG. 3 is a heat ray drive circuit diagram and a frequency characteristic diagram of an equalizer circuit.

【図4】イコライザ回路の実施例。FIG. 4 is an embodiment of an equalizer circuit.

【図5】本発明の実施例によるイコライザ回路を用いた
熱線駆動回路図。
FIG. 5 is a heat ray drive circuit diagram using an equalizer circuit according to an embodiment of the present invention.

【図6】本発明の実施例によるイコライザ回路を用いた
熱線駆動回路図。
FIG. 6 is a heat ray drive circuit diagram using an equalizer circuit according to an embodiment of the present invention.

【図7】イコライザ回路の実施例。FIG. 7 is an example of an equalizer circuit.

【図8】本発明の実施例による第2のイコライザ回路を
用いた熱線駆動回路図。
FIG. 8 is a heat ray drive circuit diagram using a second equalizer circuit according to an embodiment of the present invention.

【図9】熱線駆動回路図及び第2のイコライザ回路の周
波数特性図。
FIG. 9 is a heat ray drive circuit diagram and a frequency characteristic diagram of a second equalizer circuit.

【図10】第2のイコライザ回路の実施例。FIG. 10 is an example of a second equalizer circuit.

【図11】本発明の実施例による第1と第2のイコライ
ザ回路を用いた熱線駆動回路図。
FIG. 11 is a heat ray drive circuit diagram using the first and second equalizer circuits according to the embodiment of the present invention.

【図12】本発明の実施例による温度補償抵抗を1個に
した熱線駆動回路図。
FIG. 12 is a heat ray drive circuit diagram in which one temperature compensation resistor is used according to an embodiment of the present invention.

【図13】本発明の実施例による温度補償抵抗を1個に
した熱線駆動回路図。
FIG. 13 is a heat ray drive circuit diagram in which one temperature compensation resistor according to the embodiment of the present invention is used.

【図14】本発明の実施例によるイコライザ回路を用い
た熱線駆動回路図。
FIG. 14 is a heat ray drive circuit diagram using an equalizer circuit according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2…熱線駆動回路、3,4…イコライザ回路、5…
電圧比較器、6,84,86,88…スイッチ回路、7
…第2のイコライザ回路、8…温度補償回路、10…電
源、11,21…発熱抵抗体、12,22,81…温度
補償抵抗、13,14,23,24,33,34,3
6,37,38,73,74,76,77,78,9
1,92,93,94…抵抗、15,25,87…差動
増幅器、16,26…トランジスタ、17,27,3
2,35,72,75,83,85,95,96…コン
デンサ、89…発振器、99…流量演算部。
1, 2 ... Heat ray drive circuit, 3, 4 ... Equalizer circuit, 5 ...
Voltage comparator, 6, 84, 86, 88 ... Switch circuit, 7
... Second equalizer circuit, 8 ... Temperature compensation circuit, 10 ... Power source, 11,21 ... Heating resistor, 12,22,81 ... Temperature compensation resistor, 13,14,23,24,33,34,3
6,37,38,73,74,76,77,78,9
1, 92, 93, 94 ... Resistors, 15, 25, 87 ... Differential amplifiers, 16, 26 ... Transistors, 17, 27, 3
2, 35, 72, 75, 83, 85, 95, 96 ... Capacitor, 89 ... Oscillator, 99 ... Flow rate calculation unit.

フロントページの続き (72)発明者 内山 薫 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内Front Page Continuation (72) Inventor Kaoru Uchiyama 2520 Takaba, Hitachinaka City, Ibaraki Prefecture Hitachi Ltd. Automotive Equipment Division

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】発熱抵抗体を含む検出部と前記検出部から
の出力信号に基づき空気流量を算出する流量演算部とを
備えた内燃機関の吸入空気量測定装置において、前記検
出部と前記流量演算部との間に、前記検出部からの信号
の振幅を変えて出力する変調手段を設けたことを特徴と
する内燃機関の吸入空気量測定装置。
1. An intake air amount measuring device for an internal combustion engine, comprising: a detection unit including a heating resistor; and a flow rate calculation unit that calculates an air flow rate based on an output signal from the detection unit. An intake air amount measuring device for an internal combustion engine, comprising: a modulation means for changing the amplitude of a signal from the detecting section and outputting the signal between the calculating section and the calculating section.
【請求項2】請求項1において、前記変調手段はイコラ
イザ回路であることを特徴とする内燃機関の吸入空気量
測定装置。
2. The intake air amount measuring device for an internal combustion engine according to claim 1, wherein the modulating means is an equalizer circuit.
【請求項3】請求項2において、前記イコライザ回路は
差動増幅器を用い、抵抗器(33,34,36,38)
で入出力ゲインを決定し、抵抗器(37)とコンデンサ
で位相進み要素を設定し、前記入出力ゲインの周波数特
性を決定することを特徴とする内燃機関の吸入空気量測
定装置。
3. The equalizer circuit according to claim 2, wherein the equalizer circuit uses a differential amplifier and resistors (33, 34, 36, 38).
The intake air amount measuring device for an internal combustion engine, characterized in that the input / output gain is determined by, and the phase lead element is set by the resistor (37) and the capacitor to determine the frequency characteristic of the input / output gain.
【請求項4】請求項2において、前記イコライザ回路
は、抵抗器(41)とコンデンサ(41)によって構成され
た低域通過フィルタと前記低域通過フィルタの出力を入
力とする抵抗器(43,44,46)とコンデンサ(4
5)で構成された位相進み回路により、前記イコライザ
回路の入出力ゲインと周波数特性が決定されることを特
徴とする内燃機関の吸入空気量測定装置。
4. The low-pass filter according to claim 2, wherein the equalizer circuit has a low-pass filter composed of a resistor (41) and a capacitor (41), and a resistor (43, 44,46) and capacitors (4
An intake air amount measuring device for an internal combustion engine, wherein an input / output gain and a frequency characteristic of the equalizer circuit are determined by the phase lead circuit configured in 5).
【請求項5】請求項1において、前記検出部はブリッジ
回路であることを特徴とする内燃機関の吸入空気量測定
装置。
5. The intake air amount measuring device for an internal combustion engine according to claim 1, wherein the detecting unit is a bridge circuit.
【請求項6】発熱抵抗体を含むブリッジ回路から成る2
つの検出部と前記検出部からの出力信号に基づき空気流
量を算出する流量演算部とを備えた内燃機関の吸入空気
量測定装置において、前記検出部と前記流量演算部との
間に、前記検出部からの出力信号の周波数成分の振幅を
変えて出力する変調手段を個々に設けたことを特徴とす
る内燃機関の吸入空気量測定装置。
6. A bridge circuit including a heating resistor.
In an intake air amount measuring device for an internal combustion engine, comprising one detection unit and a flow rate calculation unit that calculates an air flow rate based on an output signal from the detection unit, the detection unit is provided between the detection unit and the flow rate calculation unit. An intake air amount measuring device for an internal combustion engine, characterized in that modulation means for individually changing the amplitude of a frequency component of an output signal from the section is provided.
【請求項7】発熱抵抗体を含むブリッジ回路から成る2
つの検出部と前記検出部からの出力信号に基づき空気流
量を算出する流量演算部とを備えた内燃機関の吸入空気
量測定装置において、前記検出部と前記流量演算部との
間に、前記検出部からの出力信号の周波数成分の位相を
変えて出力する変調手段を個々に設けたことを特徴とす
る内燃機関の吸入空気量測定装置。
7. A bridge circuit including a heating resistor.
In an intake air amount measuring device for an internal combustion engine, comprising one detection unit and a flow rate calculation unit that calculates an air flow rate based on an output signal from the detection unit, the detection unit is provided between the detection unit and the flow rate calculation unit. An intake air amount measuring device for an internal combustion engine, characterized in that modulation means for individually changing a phase of a frequency component of an output signal from the section and outputting the same is provided.
【請求項8】発熱抵抗体を含むブリッジ回路から成る2
つの検出部と前記検出部からの出力信号に基づき空気流
量を算出する流量演算部とを備えた内燃機関の吸入空気
量測定装置において、前記検出部と前記流量演算部との
間に前記検出部からの出力信号を変調するイコライザ回
路を個々に設け、前記イコライザ回路により変調された
個々の出力信号から空気の流れ方向を検出する手段を設
け、検出した前記空気の流れ方向に基づき、前記イコラ
イザ回路の出力を切り替えて前記流量演算部に出力する
手段を設けたことを特徴とする内燃機関の吸入空気量測
定装置。
8. A bridge circuit including a heating resistor 2
In an intake air amount measuring device for an internal combustion engine, comprising: one detection unit; and a flow rate calculation unit that calculates an air flow rate based on an output signal from the detection unit, wherein the detection unit is provided between the detection unit and the flow rate calculation unit. Equipped with an equalizer circuit for modulating the output signal from the, the means for detecting the flow direction of the air from the individual output signal modulated by the equalizer circuit, based on the detected flow direction of the air, the equalizer circuit An intake air amount measuring device for an internal combustion engine, comprising means for switching the output of the above and outputting it to the flow rate calculating unit.
【請求項9】発熱抵抗体を含むブリッジ回路から成る2
つの検出部と前記検出部からの出力信号に基づき空気流
量を算出する流量演算部とを備えた内燃機関の吸入空気
量測定装置において、前記検出部と前記流量演算部との
間に前記検出部からの出力信号を変調するイコライザ回
路を個々に設け、前記イコライザ回路により変調された
個々の出力信号から空気の流れ方向を検出する手段を設
け、検出した前記空気の流れ方向に基づき、前記ブリッ
ジ回路の出力を切り替えて前記流量演算部に出力する手
段を設けたことを特徴とする内燃機関の吸入空気量測定
装置。
9. A bridge circuit including a heating resistor.
In an intake air amount measuring device for an internal combustion engine, comprising: one detection unit; and a flow rate calculation unit that calculates an air flow rate based on an output signal from the detection unit, wherein the detection unit is provided between the detection unit and the flow rate calculation unit. Equipped with an equalizer circuit for modulating the output signal from the, the means for detecting the air flow direction from the individual output signal modulated by the equalizer circuit, based on the detected air flow direction, the bridge circuit An intake air amount measuring device for an internal combustion engine, comprising means for switching the output of the above and outputting it to the flow rate calculating unit.
【請求項10】発熱抵抗体を含むブリッジ回路から成る
2つの検出部と前記検出部からの出力信号に基づき空気
流量を算出する流量演算部とを備えた内燃機関の吸入空
気量測定装置において、前記検出部と前記流量演算部と
の間に前記検出部からの出力信号を変調する第1のイコ
ライザ回路と第2のイコライザ回路を個々に設け、前記
第1のイコライザ回路により変調された個々の出力信号
から空気の流れ方向を検出する手段を設け、検出した前
記空気の流れ方向に基づき、前記第2のイコライザ回路
の出力を切り替えて前記流量演算部に出力する手段を設
けたことを特徴とする内燃機関の吸入空気量測定装置。
10. An intake air amount measuring device for an internal combustion engine, comprising: two detecting sections each comprising a bridge circuit including a heating resistor; and a flow rate calculating section for calculating an air flow rate based on an output signal from the detecting section, A first equalizer circuit and a second equalizer circuit that modulate the output signal from the detection unit are individually provided between the detection unit and the flow rate calculation unit, and the individual equalizer circuits modulated by the first equalizer circuit are provided. A means for detecting the flow direction of the air from the output signal is provided, and a means for switching the output of the second equalizer circuit based on the detected flow direction of the air and outputting it to the flow rate calculation unit is provided. Intake air amount measuring device for internal combustion engine.
【請求項11】発熱抵抗体を含むブリッジ回路から成る
2つの検出部と前記検出部からの出力信号に基づき空気
流量を算出する流量演算部とを備えた内燃機関の吸入空
気量測定装置において、前記検出部と前記流量演算部と
の間に、前記ブリッジ回路の出力信号から空気の流れ方
向を検出する検出手段と、前記検出手段によって検出さ
れた空気の流れ方向に基づき、前記ブリッジ回路の出力
を切り替える切替手段と、前記切替手段によって切り替
えられた前記ブリッジ回路の出力信号を変調するイコラ
イザ回路とを設けたことを特徴とする内燃機関の吸入空
気量測定装置。
11. An intake air amount measuring device for an internal combustion engine, comprising: two detecting sections each comprising a bridge circuit including a heating resistor; and a flow rate calculating section for calculating an air flow rate based on an output signal from the detecting section. Between the detection unit and the flow rate calculation unit, detection means for detecting the air flow direction from the output signal of the bridge circuit, and the output of the bridge circuit based on the air flow direction detected by the detection means An intake air amount measuring apparatus for an internal combustion engine, comprising: a switching unit for switching between the two and an equalizer circuit for modulating an output signal of the bridge circuit switched by the switching unit.
【請求項12】発熱抵抗体を含むブリッジ回路から成る
2つの検出部と前記検出部からの出力信号に基づき空気
流量を算出する流量演算部とを備えた内燃機関の吸入空
気量測定装置において、前記検出部と前記流量演算部と
の間に、前記検出部からの出力信号を変調する各々のイ
コライザ回路と前記イコライザ回路により変調された個
々の出力信号から空気の流れ方向を検出する検出手段
と、検出された空気の流れ方向に基づき、前記ブリッジ
回路の出力を切り替える切替手段と、前記切替手段によ
って切り替えられた前記ブリッジ回路の出力信号を変調
するイコライザ回路とを有することを特徴とする内燃機
関の吸入空気量測定装置。
12. An intake air amount measuring device for an internal combustion engine, comprising: two detecting sections each comprising a bridge circuit including a heating resistor; and a flow rate calculating section for calculating an air flow rate based on an output signal from the detecting section, Between the detection unit and the flow rate calculation unit, each equalizer circuit that modulates the output signal from the detection unit, and a detection unit that detects the flow direction of air from each output signal modulated by the equalizer circuit. An internal combustion engine having switching means for switching the output of the bridge circuit based on the detected flow direction of air, and an equalizer circuit for modulating the output signal of the bridge circuit switched by the switching means. Intake air amount measuring device.
JP6284778A 1994-11-18 1994-11-18 Intake air amount measurement device for internal combustion engine Expired - Fee Related JP3060861B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6284778A JP3060861B2 (en) 1994-11-18 1994-11-18 Intake air amount measurement device for internal combustion engine
DE19543236A DE19543236C2 (en) 1994-11-18 1995-11-20 Intake air quantity measuring device for internal combustion engines
US08/560,981 US5681989A (en) 1994-11-18 1995-11-20 Intake air amount measuring apparatus for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6284778A JP3060861B2 (en) 1994-11-18 1994-11-18 Intake air amount measurement device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH08145754A true JPH08145754A (en) 1996-06-07
JP3060861B2 JP3060861B2 (en) 2000-07-10

Family

ID=17682898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6284778A Expired - Fee Related JP3060861B2 (en) 1994-11-18 1994-11-18 Intake air amount measurement device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3060861B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198335A1 (en) * 2018-04-11 2019-10-17 日立オートモティブシステムズ株式会社 Thermal flow rate meter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6506681B2 (en) * 2015-11-13 2019-04-24 日立オートモティブシステムズ株式会社 Air flow measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198335A1 (en) * 2018-04-11 2019-10-17 日立オートモティブシステムズ株式会社 Thermal flow rate meter
JP2019184441A (en) * 2018-04-11 2019-10-24 日立オートモティブシステムズ株式会社 Thermal flowmeter
CN111954793A (en) * 2018-04-11 2020-11-17 日立汽车系统株式会社 Thermal flowmeter
US11422016B2 (en) 2018-04-11 2022-08-23 Hitachi Astemo, Ltd. Thermal flow rate meter
CN111954793B (en) * 2018-04-11 2022-12-30 日立安斯泰莫株式会社 Thermal flowmeter

Also Published As

Publication number Publication date
JP3060861B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
US4562731A (en) Air flow meter
US5681989A (en) Intake air amount measuring apparatus for internal combustion engines
JP4130877B2 (en) Flow meter and flow meter system
US5461913A (en) Differential current thermal mass flow transducer
JPS6213605B2 (en)
US4872339A (en) Mass flow meter
JP2004093189A (en) Thermal flow rate detection device
JP3421245B2 (en) Heating resistor type air flow measurement device
JP2006200991A (en) Flow rate sensor
JP3470620B2 (en) Thermal air flow meter
JP3707610B2 (en) Flow rate detector
JPS5935109A (en) Thermal flowmeter
JP3060861B2 (en) Intake air amount measurement device for internal combustion engine
JP2000018989A (en) Ratiometric output-type heating resistor-type air flowmeter
JPH0915013A (en) Heating type measuring method and device for air flow rate
JP3105609B2 (en) Heating resistor type air flow meter
JP2958085B2 (en) Method and apparatus for controlling temperature of measured resistance
JPS6273124A (en) Heat type flow rate detector
JPH075009A (en) Air flowrate measuring device of engine, fuel injection controller, and flow sensor to be used therein
JPS59136619A (en) Vortex flowmeter
JPH0143883B2 (en)
JPS6013446B2 (en) Gas flow measuring device
JPH1123334A (en) Heating resistor type apparatus for measuring air flow rate and method and apparatus for correcting measurement error thereof
JP3510131B2 (en) Flow detector
JPH01245119A (en) Hot-wire type flow rate measuring instrument

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees