JPH08141400A - Production of electrode catalyst for fuel cell - Google Patents

Production of electrode catalyst for fuel cell

Info

Publication number
JPH08141400A
JPH08141400A JP6317533A JP31753394A JPH08141400A JP H08141400 A JPH08141400 A JP H08141400A JP 6317533 A JP6317533 A JP 6317533A JP 31753394 A JP31753394 A JP 31753394A JP H08141400 A JPH08141400 A JP H08141400A
Authority
JP
Japan
Prior art keywords
catalyst
fuel cell
noble metal
producing
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6317533A
Other languages
Japanese (ja)
Other versions
JP3195180B2 (en
Inventor
Nobuo Yamamoto
信夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP31753394A priority Critical patent/JP3195180B2/en
Publication of JPH08141400A publication Critical patent/JPH08141400A/en
Application granted granted Critical
Publication of JP3195180B2 publication Critical patent/JP3195180B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: To provide a method of producing an electrode catalyst for fuel cell wherein the catalyst is alloyed without increasing the particle size of the alloy in diameter and is maintained at a large specific surface area and the mass activity of the catalyst can be augmented. CONSTITUTION: A catalyst of a precious metal alloy such as a platinum alloy supported on a powdery carrier such as carbon is dispersed in hot water and made into a catalytic slurry, an electroless plating liquid containing a heavy metal such as nickel and cobalt is charged into the catalytic slurry for the electroless plating of such a metal and the catalyst of the precious metal alloy having the plated heavy metal supported on its carrier is heated to a temperature of 850-950 deg.C for 2-10 minutes under a prescribed atomosphere for the alloying thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料電池、特にリン酸型
燃料電池に好適な電極触媒の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electrode catalyst suitable for a fuel cell, particularly a phosphoric acid fuel cell.

【0002】[0002]

【従来の技術】従来、この種の貴金属合金触媒の製造方
法としては、下記のような方法が考えられていた。1つ
の方法としては、白金をカーボン粉末に担持した触媒を
水に濡らし、これに合金成分となる1種又は2種の重金
属を含む溶液を加えて混合し、スラリー化した後乾固さ
せた。その後水蒸気流下で加熱して還元、合金化処理を
行っていた。ところがこの方法では合金組成中の重金属
の割合を増やすことが困難であり、合金組成比を目標で
あるPt:重金属=1:1にすることができなかった。
また白金を担持させたカーボン粉末の触媒を溶液と混合
させた後乾固させる為、重金属成分が塩の結晶となって
不均一に析出し、触媒中での重金属成分の偏在が起こ
る。このような問題を解決するため、貴金属又は貴金属
合金触媒に重金属を無電解めっきし熱処理をして合金化
するという方法が考えられている。この方法により重金
属の偏りがなくなり、また触媒の合金組成を自由にコン
トロールすることが可能となった。ところが従来は合金
化処理のための好適な加熱条件が明らかになっておら
ず、時として質量活性の低い合金触媒となってしまうこ
とがあった。
2. Description of the Related Art Conventionally, the following method has been considered as a method for producing a noble metal alloy catalyst of this type. As one method, a catalyst in which platinum is supported on carbon powder is wetted with water, and a solution containing one or two kinds of heavy metal as an alloy component is added to and mixed with the catalyst to make a slurry and then dried. After that, it was heated under a steam flow for reduction and alloying treatment. However, with this method, it is difficult to increase the ratio of heavy metals in the alloy composition, and the alloy composition ratio could not be set to the target Pt: heavy metal = 1: 1.
In addition, since the catalyst of platinum-supported carbon powder is mixed with the solution and then dried, the heavy metal component becomes a salt crystal and is nonuniformly deposited, resulting in uneven distribution of the heavy metal component in the catalyst. In order to solve such a problem, a method of electrolessly plating a noble metal or noble metal alloy catalyst with a heavy metal and subjecting it to heat treatment for alloying is considered. By this method, the bias of heavy metals was eliminated, and it became possible to freely control the alloy composition of the catalyst. However, conventionally, suitable heating conditions for the alloying treatment have not been clarified, and sometimes the alloy catalyst has a low mass activity.

【0003】[0003]

【発明が解決しようとする課題】そこで本発明は、合金
化処理時に触媒の質量活性を下げることなく、安定して
質量活性の高い合金触媒を製造することができる、燃料
電池用電極触媒の製造方法を提供する。
Therefore, the present invention is directed to the production of an electrode catalyst for a fuel cell, which can stably produce an alloy catalyst having a high mass activity without lowering the mass activity of the catalyst during alloying treatment. Provide a way.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
の本発明の燃料電池用電極の製造方法は粉末状の担体に
担持された貴金属又は貴金属合金触媒を熱水中に分散し
て触媒スラリーとする一方、重金属を含む無電解めっき
液を前記触媒スラリーに投入して無電解めっきし、重金
属がめっきされ、担体に担持された貴金属又は貴金属合
金触媒を所要雰囲気下で加熱して合金化処理する貴金属
合金触媒の製造方法において、上記合金化処理が 850℃
以上 950℃以下にて2乃至10分間の加熱であることを特
徴とするものである。前記担体としてはカーボン等が用
いられ、また貴金属又は貴金属合金としては、白金又は
白金合金等が用いられる。さらに前記重金属としては、
ニッケル、コバルト、クロム、マンガン及び鉄より選ば
れる1種又は2種以上が用いられる。前記所要雰囲気は
水素含有気流中であることが好ましく、3%H2 乃至50
%H2 残N2 気流中がさらに好ましい。また本発明で用
いる担体の表面積としては60乃至 300m2/gのものが電極
触媒の粒径を確保するために好ましい。また重金属がめ
っきされてカーボンブラックに担持された貴金属又は貴
金属合金触媒中の貴金属濃度は本触媒を用いた電極の厚
みをPtローディング量 1.0〜 1.5mg/cm2のときある程
度の厚み以下にするという理由から10乃至30%であるこ
とが好ましい。
The method for producing a fuel cell electrode of the present invention for solving the above-mentioned problems is a catalyst slurry in which a noble metal or noble metal alloy catalyst supported on a powdery carrier is dispersed in hot water. On the other hand, an electroless plating solution containing a heavy metal is added to the catalyst slurry for electroless plating, a heavy metal is plated, and a noble metal or noble metal alloy catalyst supported on a carrier is heated in a required atmosphere to form an alloying treatment. In the method for producing a precious metal alloy catalyst, the alloying treatment is performed at 850 ° C.
It is characterized by being heated at 950 ° C. or lower for 2 to 10 minutes. Carbon or the like is used as the carrier, and platinum or a platinum alloy is used as the noble metal or noble metal alloy. Further, as the heavy metal,
One or more selected from nickel, cobalt, chromium, manganese and iron are used. The required atmosphere is preferably a hydrogen-containing air flow, and 3% H 2 to 50
% H 2 Residual flow in N 2 is more preferable. The surface area of the carrier used in the present invention is preferably 60 to 300 m 2 / g in order to secure the particle size of the electrode catalyst. Also, the concentration of the noble metal in the noble metal or noble metal alloy catalyst, which is plated with heavy metal and supported on carbon black, is such that the thickness of the electrode using this catalyst is less than a certain thickness when the Pt loading amount is 1.0 to 1.5 mg / cm 2. For the reason, it is preferably 10 to 30%.

【0005】[0005]

【作用】従来の方法では重金属成分が貴金属又は貴金属
合金上に不均一に付着しているため、重金属と貴金属又
は貴金属合金を混合させるため高温で長時間の処理が必
要となっていた。このため出来上がった貴金属又は貴金
属合金触媒粒子は大きな粒子となってしまい、すなわち
触媒の比表面積の低下となり触媒の質量活性を下げてい
た。本発明の燃料電池用電極触媒の製造方法では、無電
解めっきで重金属が貴金属又は貴金属合金上に均一に付
着しているため従来必要であった長時間の熱処理を取り
止め、加熱時間を2分乃至10分間と短時間に限定するこ
とにより、合金触媒粒子径が大きくならず、触媒の比表
面積を大きく維持でき、触媒の質量活性を上げることが
できる。なおこのとき得られる合金触媒粒子の大きさと
しては 4.0nm以上 5.0nm以下であることが好ましく、
5.0nmを超えると質量活性が低下してしまい、また 4.0n
m未満では合金触媒粒子の耐久性が低下してしまう。
In the conventional method, the heavy metal component is nonuniformly deposited on the noble metal or the noble metal alloy, so that the heavy metal and the noble metal or the noble metal alloy must be mixed at a high temperature for a long time. As a result, the resulting noble metal or noble metal alloy catalyst particles become large particles, that is, the specific surface area of the catalyst is reduced, and the mass activity of the catalyst is reduced. In the method for producing an electrode catalyst for a fuel cell according to the present invention, since the heavy metal is uniformly deposited on the noble metal or the noble metal alloy by electroless plating, the long-time heat treatment conventionally required is stopped and the heating time is 2 minutes to By limiting the time to 10 minutes, the alloy catalyst particle size does not increase, the specific surface area of the catalyst can be maintained large, and the mass activity of the catalyst can be increased. The size of the alloy catalyst particles obtained at this time is preferably 4.0 nm or more and 5.0 nm or less,
If it exceeds 5.0 nm, the mass activity will decrease and
If it is less than m, the durability of the alloy catalyst particles will be reduced.

【0006】[0006]

【実施例】本発明の燃料電池用電極触媒の製造方法の実
施例を従来例と共に説明する。表面積 100m2/gのカーボ
ンブラックに白金2.85g担持された白金−カーボン触媒
を沸とう水 180mlに浸し、撹拌しながら超音波ホモジナ
イザーで分散して触媒スラリーとなした。一方、重金属
塩として塩化ニッケル1.94g、塩化コバルト1.93g、キ
レート剤として酒石酸ナトリウム 29.58g、還元剤とし
て塩化ヒドラジン 13.49gを 320mlの水溶液とし、50%
NaOH溶液でpH12.8に調整してめっき液とした。こ
のめっき液を前記触媒スラリーに全量一度に投入し、撹
拌しながら超音波ホモジナイザーで2分間分散した。そ
して1時間撹拌し、低温で無電解めっきし、重金属であ
るニッケル、コバルトがめっきされてカーボンブラック
に担持された濃度20%、粒子径 2.0nmの白金触媒を得
た。この白金触媒は濾過した後、洗浄液が中性になるま
で水で数回洗浄し、乾燥した。最後にN2 97%、H2
%の雰囲気下で、下記の表1に示す条件にて実施例1〜
3、従来例1、2を加熱して合金化処理し、燃料電池用
電極触媒を得た。
EXAMPLE An example of a method for producing an electrode catalyst for a fuel cell of the present invention will be described together with a conventional example. A platinum-carbon catalyst in which 2.85 g of platinum was supported on carbon black having a surface area of 100 m 2 / g was immersed in 180 ml of boiling water and dispersed with an ultrasonic homogenizer while stirring to form a catalyst slurry. On the other hand, nickel chloride 1.94 g, cobalt chloride 1.93 g as a heavy metal salt, sodium tartrate 29.58 g as a chelating agent, and hydrazine chloride 13.49 g as a reducing agent in an aqueous solution of 320 ml, 50%
The pH was adjusted to 12.8 with a NaOH solution to obtain a plating solution. The plating solution was added to the catalyst slurry all at once and dispersed with an ultrasonic homogenizer for 2 minutes while stirring. Then, the mixture was stirred for 1 hour and electrolessly plated at a low temperature to obtain a platinum catalyst having a concentration of 20% and a particle size of 2.0 nm, which was plated with heavy metals nickel and cobalt and supported on carbon black. The platinum catalyst was filtered, washed with water several times until the washing liquid became neutral, and dried. Finally N 2 97%, H 2 3
% Under the conditions shown in Table 1 below.
3, Conventional Examples 1 and 2 were heated and alloyed to obtain a fuel cell electrode catalyst.

【0007】[0007]

【表1】 [Table 1]

【0008】こうして得た実施例1〜3、従来例1、2
の燃料電池用電極触媒の合金粒子径、質量活性を 190
℃、 100%リン酸、 100%酸素の燃料電池において 900
mVで測定した処、下記の表2に示すような結果を得た。
Examples 1 to 3 and conventional examples 1 and 2 thus obtained
The alloy particle size and mass activity of the fuel cell electrode catalyst of
900 in a fuel cell at 100 ° C, 100% phosphoric acid, 100% oxygen
When measured in mV, the results shown in Table 2 below were obtained.

【0009】[0009]

【表2】 [Table 2]

【0010】上記表2で明らかなように実施例1〜3の
燃料電池用電極触媒の合金粒子径は5nm以下のばらつき
の小さい安定したものとなり、従来例1、2の合金粒子
径のばらつきの大きいものに比べ、質量活性が大幅に向
上していることが判る。
As is clear from Table 2 above, the alloy particle diameters of the fuel cell electrode catalysts of Examples 1 to 3 are stable with a small variation of 5 nm or less, and the alloy particle diameter variations of the conventional examples 1 and 2 are small. It can be seen that the mass activity is significantly improved compared to the large one.

【0011】[0011]

【発明の効果】以上の説明で判るように本発明の燃料電
池用電極触媒の製造方法によれば、合金粒子径を大きく
せずに合金化処理することができて、触媒の比表面積を
大きく維持でき、触媒の質量活性を上げることができ
る。
As can be seen from the above description, according to the method for producing an electrode catalyst for a fuel cell of the present invention, the alloying treatment can be performed without increasing the alloy particle size, and the specific surface area of the catalyst can be increased. It can be maintained and the mass activity of the catalyst can be increased.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 8/02 E 9444−4K // H01M 4/88 K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01M 8/02 E 9444-4K // H01M 4/88 K

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粉末状の担体に担持された貴金属又は貴
金属合金触媒を熱水中に分散して触媒スラリーとする一
方、重金属を含む無電解めっき液を前記触媒スラリーに
投入して無電解めっきし、重金属がめっきされ、担体に
担持された貴金属又は貴金属合金触媒を所要雰囲気下で
加熱して合金化処理する貴金属合金触媒の製造方法にお
いて、上記合金化処理が 850℃以上 950℃以下にて2乃
至10分間の加熱であることを特徴とする燃料電池用電極
触媒の製造方法。
1. A noble metal or noble metal alloy catalyst supported on a powdery carrier is dispersed in hot water to form a catalyst slurry, and an electroless plating solution containing a heavy metal is added to the catalyst slurry to perform electroless plating. In the method for producing a noble metal alloy catalyst, in which a noble metal or noble metal alloy catalyst, which is plated with a heavy metal and is supported on a carrier, is heated in a required atmosphere to perform alloying treatment, the alloying treatment is performed at 850 ° C or higher and 950 ° C or lower A method for producing a fuel cell electrode catalyst, which comprises heating for 2 to 10 minutes.
【請求項2】 前記担体が、カーボンであることを特徴
とする請求項1記載の燃料電池用電極触媒の製造方法。
2. The method for producing an electrode catalyst for a fuel cell according to claim 1, wherein the carrier is carbon.
【請求項3】 前記貴金属又は貴金属合金触媒が、白金
又は白金合金触媒であることを特徴とする請求項1又は
2記載の燃料電池用触媒の製造方法。
3. The method for producing a fuel cell catalyst according to claim 1, wherein the noble metal or noble metal alloy catalyst is platinum or a platinum alloy catalyst.
【請求項4】 前記重金属がニッケル、コバルト、クロ
ム、マンガン及び鉄より選ばれる1種又は2種以上であ
ることを特徴とする請求項1、2又は3記載の燃料電池
用電極触媒の製造方法。
4. The method for producing a fuel cell electrode catalyst according to claim 1, wherein the heavy metal is one or more selected from nickel, cobalt, chromium, manganese and iron. .
【請求項5】 前記所要雰囲気が、水素含有気流中であ
ることを特徴とする請求項1、2、3又は4記載の燃料
電池用電極触媒の製造方法。
5. The method for producing an electrode catalyst for a fuel cell according to claim 1, 2, 3 or 4, wherein the required atmosphere is a hydrogen-containing air flow.
JP31753394A 1994-11-28 1994-11-28 Method for producing electrode catalyst for fuel cell Expired - Lifetime JP3195180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31753394A JP3195180B2 (en) 1994-11-28 1994-11-28 Method for producing electrode catalyst for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31753394A JP3195180B2 (en) 1994-11-28 1994-11-28 Method for producing electrode catalyst for fuel cell

Publications (2)

Publication Number Publication Date
JPH08141400A true JPH08141400A (en) 1996-06-04
JP3195180B2 JP3195180B2 (en) 2001-08-06

Family

ID=18089320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31753394A Expired - Lifetime JP3195180B2 (en) 1994-11-28 1994-11-28 Method for producing electrode catalyst for fuel cell

Country Status (1)

Country Link
JP (1) JP3195180B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317546A (en) * 2004-04-27 2005-11-10 Samsung Sdi Co Ltd Membrane-electrode assembly for fuel cell and fuel cell system including the same
JP2005536866A (en) * 2002-07-22 2005-12-02 オヴォニック バッテリー カンパニー インコーポレイテッド Coated catalyst material
US7205255B2 (en) 2003-10-06 2007-04-17 Nissan Motor Co., Ltd. Electrode catalyst for fuel cell and method for production thereof
WO2007055229A1 (en) 2005-11-09 2007-05-18 Shin-Etsu Chemical Co., Ltd. Electrode catalyst for fuel cell and method for producing same
JP2009500789A (en) * 2005-06-30 2009-01-08 ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド Voltage cycle resistant catalyst
WO2012098712A1 (en) 2011-01-20 2012-07-26 昭和電工株式会社 Catalyst carrier production method, composite catalyst production method, composite catalyst, fuel cell using same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536866A (en) * 2002-07-22 2005-12-02 オヴォニック バッテリー カンパニー インコーポレイテッド Coated catalyst material
JP4785384B2 (en) * 2002-07-22 2011-10-05 オヴォニック バッテリー カンパニー インコーポレイテッド Coated catalyst material
US7205255B2 (en) 2003-10-06 2007-04-17 Nissan Motor Co., Ltd. Electrode catalyst for fuel cell and method for production thereof
JP2005317546A (en) * 2004-04-27 2005-11-10 Samsung Sdi Co Ltd Membrane-electrode assembly for fuel cell and fuel cell system including the same
US7629072B2 (en) 2004-04-27 2009-12-08 Samsung Sdi Co., Ltd. Membrane-electrode assembly for fuel cell and fuel cell system comprising the same
JP2009500789A (en) * 2005-06-30 2009-01-08 ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド Voltage cycle resistant catalyst
WO2007055229A1 (en) 2005-11-09 2007-05-18 Shin-Etsu Chemical Co., Ltd. Electrode catalyst for fuel cell and method for producing same
JP2007134295A (en) * 2005-11-09 2007-05-31 Shin Etsu Chem Co Ltd Electrode catalyst for fuel cell and its manufacturing method
WO2012098712A1 (en) 2011-01-20 2012-07-26 昭和電工株式会社 Catalyst carrier production method, composite catalyst production method, composite catalyst, fuel cell using same
US9318749B2 (en) 2011-01-20 2016-04-19 Showa Denko K.K. Process for producing catalyst carrier, process for producing composite catalyst, composite catalyst, and fuel cell using same
US9640801B2 (en) 2011-01-20 2017-05-02 Showa Denko K.K. Process for producing catalyst carrier, process for producing composite catalyst, composite catalyst, and fuel cell using same

Also Published As

Publication number Publication date
JP3195180B2 (en) 2001-08-06

Similar Documents

Publication Publication Date Title
CN106910899B (en) Preparation method of nitrogen-doped double-shell structure nano catalyst
JP5082187B2 (en) Method for producing electrode catalyst particles for polymer electrolyte fuel cell
JPH01210037A (en) Method of forming alloy on carrier
CA2387379A1 (en) A process for preparing an anode catalyst for fuel cells and the anode catalyst prepared therewith
CN110112430A (en) A kind of platinum alloy carbon-supported powder and preparation method thereof
Beard et al. Preparation of highly dispersed PEM fuel cell catalysts using electroless deposition methods
JPH08162133A (en) Manufacture of platinum catalyst
EP0557674B1 (en) Platinum alloy catalyst and process of preparing same
JP6116000B2 (en) Method for producing platinum core-shell catalyst and fuel cell using the same
JP5665743B2 (en) Continuous production method of catalyst
JP5569396B2 (en) Catalyst production method
EP0047322B1 (en) Process for preparing catalyst
JP3195180B2 (en) Method for producing electrode catalyst for fuel cell
JPH067679A (en) Production of platinum alloy catalyst for phosphoric acid type fuel cell
CN106311223A (en) Preparation method of precious metal/graphene nanocomposite
JPH05217586A (en) Fuel cell and manufacture thereof
JP3839961B2 (en) Method for producing catalyst for solid polymer electrolyte fuel cell
JP2014002981A (en) Method for producing electrode catalyst
JPH05135773A (en) Catalyst for phosphoric acid type fuel cell and manufacture thereof
JPH05135772A (en) Catalyst for phosphoric acid type fuel cell and manufacture thereof
JPH0629027A (en) Fuel cell and its manufacture
JP2002231255A (en) Method of manufacturing catalyst for high molecular solid electrolyte fuel cell
JPH06124712A (en) Catalyst for phosphoric acid fuel cell and manufacture of the catalyst
EP0665985B1 (en) Platinum-rhodium-iron catalyst
JPH02114452A (en) Manufacture of fuel electrode catalyst for liquid fuel battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term