JPH08138934A - Soft magnetic thin film and manufacture thereof - Google Patents

Soft magnetic thin film and manufacture thereof

Info

Publication number
JPH08138934A
JPH08138934A JP26956394A JP26956394A JPH08138934A JP H08138934 A JPH08138934 A JP H08138934A JP 26956394 A JP26956394 A JP 26956394A JP 26956394 A JP26956394 A JP 26956394A JP H08138934 A JPH08138934 A JP H08138934A
Authority
JP
Japan
Prior art keywords
ferrite
crystal structure
soft magnetic
type crystal
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26956394A
Other languages
Japanese (ja)
Inventor
Akiyuki Fujii
映志 藤井
Hideo Torii
秀雄 鳥井
Ryoichi Takayama
良一 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26956394A priority Critical patent/JPH08138934A/en
Publication of JPH08138934A publication Critical patent/JPH08138934A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites

Abstract

PURPOSE: To provide a method of manufacturing a soft magnetic thin film which is suitable for a magnetic core material used for an inductor or a transformer which is operable in a high-frequency range. CONSTITUTION: A polycrystalline soft magnetic ferrite layer of Ni-Zn ferrite or Mn-Zn ferrite is formed on a polycrystalline MgO layer or a polycrystalline soft magnetic ferrite and a polycrystalline MgO layer are formed for the formation of a soft magnetic thin film through a plasma MOCVD method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高周波領域において使
用されるインダクタやトランスなどの磁心材料に適した
軟磁性薄膜とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft magnetic thin film suitable for a magnetic core material such as an inductor and a transformer used in a high frequency range, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】Ni−ZnフェライトやMn−Znフェ
ライトなどの他結晶軟磁性フェライト材料は、金属系軟
磁性材料と比較して、高い抵抗を有するため、高周波領
域での軟磁気特性に優れ、磁気損失も少ないことから、
トランスやインダクタ用の磁心材料に用いられている。
さらに良好な耐摩耗性も合わせ持つことから、上記用途
に加えて磁気記録用ヘッド材料にも用いられている。
2. Description of the Related Art Since other crystalline soft magnetic ferrite materials such as Ni-Zn ferrite and Mn-Zn ferrite have higher resistance than metallic soft magnetic materials, they are excellent in soft magnetic characteristics in a high frequency region. Since there is little magnetic loss,
Used in magnetic core materials for transformers and inductors.
Further, since it also has good wear resistance, it is used as a magnetic recording head material in addition to the above applications.

【0003】近年、電子機器の小型・軽量化、高周波化
の動きが強まる中で、高周波領域で優れた特性を有する
薄膜トランスや薄膜インダクタが求められている。そし
て、それらの磁心用軟磁性材料として有望な材料である
Ni−ZnフェライトやMn−Znフェライトなどの軟
磁性フェライト材料の薄膜化の研究が、真空上着法、M
OCVD法、メッキ法など、さまざまな成膜性膜方法に
より盛んに行われている(例えば、平塚信之他:粉帯お
よび粉末冶金39(1992)152、伊藤秀章他:窯
業協会誌95(1987)60、阿部正紀他:金属表面
技術38(1987)416)。
In recent years, with the trend toward smaller and lighter electronic devices and higher frequencies, there has been a demand for thin film transformers and thin film inductors having excellent characteristics in the high frequency region. Research on thinning soft magnetic ferrite materials such as Ni-Zn ferrite and Mn-Zn ferrite, which are promising materials as soft magnetic materials for magnetic cores, has been studied by vacuum deposition method, M
Various film forming film methods such as the OCVD method and the plating method are widely used (for example, Nobuyuki Hiratsuka et al .: Powder belt and powder metallurgy 39 (1992) 152, Hideaki Ito et al .: Ceramic Society Journal 95 (1987). 60, Masanori Abe et al .: Metal Surface Technology 38 (1987) 416).

【0004】上記成膜方法のなかでもMOCVD法は、
フェライトなどの酸化物薄膜作製において、大面積成膜
が可能、組成制御が容易、段差被覆性に優れている、な
どの特長を有する。さらに、成膜時にプラズマを印加し
たプラズマMOCVD法は、活性なプラズマによる出発
原料の分解・励起を行うことで、上記MOCVD法の持
つ特長に加えて、低温での成膜や高速成膜を可能にする
(例えば、鳥井秀雄他:第6回国際フェライト会議プロ
シーディングス(1992)464、友澤淳他:日本応
用磁気学会誌17(1993)319)。
Among the above film forming methods, the MOCVD method is
It has features such as large-area film formation, easy composition control, and excellent step coverage when manufacturing oxide thin films such as ferrite. Furthermore, the plasma MOCVD method, in which plasma is applied during film formation, allows the starting material to be decomposed / excited by active plasma, thereby enabling film formation at low temperatures and high-speed film formation in addition to the features of the MOCVD method. (For example, Hideo Torii et al .: The 6th International Ferrite Conference Proceedings (1992) 464, Atsushi Tomozawa et al .: Journal of Japan Society for Applied Magnetics 17 (1993) 319).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記プ
ラズマMOCVD法により軟磁性フェライト薄膜を基板
上に作製する場合、膜成長初期に結晶性の優れない層
(初期層)が存在し、軟磁気特性を低下させる。
However, when a soft magnetic ferrite thin film is formed on a substrate by the plasma MOCVD method, a layer having poor crystallinity (initial layer) exists at the early stage of film growth, and soft magnetic characteristics are Lower.

【0006】本発明は、かかる従来の問題点を解決する
ものであり、プラズマMOCVD法により軟磁性フェラ
イト薄膜を基板上に作製する場合、膜成長初期存在する
結晶性が優れない初期層による軟磁気特性の低下の問題
をなくすことを目的とする。
The present invention solves the above-mentioned conventional problems, and when a soft magnetic ferrite thin film is formed on a substrate by the plasma MOCVD method, the soft magnetic layer is formed by an initial layer which does not have excellent crystallinity at the initial stage of film growth. The purpose is to eliminate the problem of characteristic deterioration.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明は軟磁性薄膜を、Ni−ZnフェライトやMn
−Znフェライトなどの多結晶軟磁性フェライト層がN
aCl型結晶構造の多結晶酸化物層上に形成された構成
とするものである。また軟磁性薄膜を、Ni−Znフェ
ライトやMn−Znフェライトなどの多結晶軟磁性フェ
ライト層とNaCl型結晶構造の多結晶酸化物層を積層
した構成とするものである。さらに、上記構成の軟磁性
薄膜におけるNi−ZnフェライトやMn−Znフェラ
イトなどの多結晶軟磁性フェライト層がNaCl型結晶
構造の多結晶酸化物層をプラズマMOCVD法により製
造するものである。
In order to solve the above-mentioned problems, the present invention uses a soft magnetic thin film as Ni--Zn ferrite or Mn.
-A polycrystalline soft magnetic ferrite layer such as Zn ferrite is N
The structure is formed on a polycrystalline oxide layer having an aCl type crystal structure. Further, the soft magnetic thin film has a structure in which a polycrystalline soft magnetic ferrite layer such as Ni-Zn ferrite or Mn-Zn ferrite and a polycrystalline oxide layer having a NaCl type crystal structure are laminated. Further, the polycrystalline soft magnetic ferrite layer such as Ni-Zn ferrite or Mn-Zn ferrite in the soft magnetic thin film having the above-mentioned structure is manufactured by plasma MOCVD method.

【0008】[0008]

【作用】本発明は、良好な結晶性および(100)配向
性を示すNaCl型結晶構造のMgO薄膜上に、エピタ
キシャルにNi−ZnフェライトやMn−Znフェライ
トなどの多結晶軟磁性フェライトの(100)配向膜を
形成した構成の軟磁性薄膜であり、直接下地基板上に多
結晶軟磁性フェライト膜を形成した場合と比較して、膜
成長初期存在する結晶性が優れない初期層による軟磁気
特性の低下の問題をなくすことにより、軟磁気特性を向
上させることができる。さらに、構成を(100)配向
性を示すNaCl型結晶構造のMgO薄膜と(100)
配向多結晶軟磁性フェライトの積層膜とすることによ
り、さらに多結晶軟磁性フェライトの結晶性を向上させ
ることにより、優れた軟磁気特性を示す軟磁性薄膜とな
る。また、製造方法にプラズマMOCVD法を用いるこ
とにより、下地基板の種類に関係なく良好な結晶性およ
び(100)配向性を示すNaCl型結晶構造のMgO
薄膜が容易に得られ(例えば、藤井映志他:ジャパニー
ズジャーナルオブアプライドフィジクス32(199
3)1448)、かつ多結晶軟磁性フェライトおよびM
gO膜の低温・高速成膜を可能とすることによる低コス
ト化も可能となる。
According to the present invention, a polycrystalline soft magnetic ferrite such as Ni--Zn ferrite or Mn--Zn ferrite (100) is epitaxially formed on a MgO thin film having a NaCl type crystal structure exhibiting good crystallinity and (100) orientation. ) A soft magnetic thin film with an orientation film formed, and soft magnetic properties due to an initial layer with poor crystallinity that exists in the initial stage of film growth compared to the case where a polycrystalline soft magnetic ferrite film is formed directly on the underlying substrate. It is possible to improve the soft magnetic characteristics by eliminating the problem of decrease in the magnetic field. Further, the composition is a MgO thin film having a NaCl type crystal structure showing a (100) orientation and a (100)
By forming a laminated film of oriented polycrystalline soft magnetic ferrite, by further improving the crystallinity of the polycrystalline soft magnetic ferrite, it becomes a soft magnetic thin film exhibiting excellent soft magnetic characteristics. Further, by using the plasma MOCVD method as the manufacturing method, MgO having a NaCl type crystal structure exhibiting good crystallinity and (100) orientation regardless of the type of the underlying substrate.
A thin film can be easily obtained (for example, Eiji Fujii et al .: Japanese Journal of Applied Physics 32 (199
3) 1448), and polycrystalline soft magnetic ferrite and M
It is also possible to reduce the cost by enabling low-temperature and high-speed film formation of the gO film.

【0009】[0009]

【実施例】以下、スピネル型結晶構造の多結晶フェライ
ト磁性層が、NaCl型結晶構造の多結晶酸化物層上に
形成された構成の軟磁性薄膜について、その製造方法と
ともに図面を参照しながら説明する。
EXAMPLE A soft magnetic thin film having a structure in which a polycrystalline ferrite magnetic layer having a spinel type crystal structure is formed on a polycrystalline oxide layer having a NaCl type crystal structure will be described below with reference to the manufacturing method and the drawings. To do.

【0010】(実施例1)図1は本発明の軟磁性薄膜に
おけるNaCl型酸化物薄膜としてのMgO膜とスピネ
ル型結晶構造のNi−Znフェライト薄膜を製造するた
めのプラズマMOCVD装置の概略構成図である。図1
において、反応チャンバー1内には、基板回転機構のつ
いた基板加熱ヒータ2内臓の電極3と、高周波電源(1
3.56MHz))5が接続された電極4が対向して設けられ、
電極3は設置されその下方には下地基板(Si)6が設
置されている。また、反応チャンバー1の側面には反応
チャンバー1を低圧に保つための排気系7が設けられて
いる。
(Example 1) FIG. 1 is a schematic configuration diagram of a plasma MOCVD apparatus for producing a MgO film as a NaCl type oxide thin film and a Ni-Zn ferrite thin film having a spinel type crystal structure in a soft magnetic thin film of the present invention. Is. FIG.
In the reaction chamber 1, a substrate heating heater 2 with a substrate rotating mechanism, an electrode 3 incorporated therein, and a high frequency power source (1
3.56MHz)) 5 electrodes are connected to each other,
The electrode 3 is installed, and a base substrate (Si) 6 is installed below the electrode 3. Further, an exhaust system 7 for keeping the reaction chamber 1 at a low pressure is provided on the side surface of the reaction chamber 1.

【0011】一方、原料の入った気化器8、9、10、
11は、バルブ12、13、14、15を介して電極3
に配置された下地基板6と電極4の間に開口するパイプ
に接続され、また、気化器8、9、10、11のそれぞ
れに導入されたパイプは、バルブ16、17、18、1
9を介してキャリアガスのアルゴンボンベ20に接続さ
れており、バルブ16、17、18、19、の開閉によ
り原料ガスとキャリアガスの反応チャンバー1内への導
入が制御される。また、酸素ボンベ21は、下地基板6
と電極4の間に開口するパイプに接続されている。
On the other hand, vaporizers 8, 9, 10 containing the raw materials
11 is an electrode 3 via valves 12, 13, 14, and 15.
The pipes connected to the base substrate 6 and the electrode 4 which are arranged in the above are introduced into the vaporizers 8, 9, 10, 11 respectively.
The carrier gas is connected to the argon cylinder 20 via 9 and the introduction of the source gas and the carrier gas into the reaction chamber 1 is controlled by opening and closing the valves 16, 17, 18, and 19. The oxygen cylinder 21 is used as the base substrate 6.
Is connected to a pipe opening between the electrode 4 and the electrode 4.

【0012】ここで実施例における軟磁性薄膜の製造方
法について説明する。出発原料にはβージケトン金属錯
体のマグネシウムアセチルアセトナート〔Mg(C57
22〕、ニッケルアセチルアセトナート〔Ni(C5
722・xH2O〕、亜鉛アセチルアセトナート〔Z
n(C5722・xH2O〕、鉄アセチルアセトナー
ト〔Fe(C5723〕、を用いた。
Here, a method of manufacturing the soft magnetic thin film in the embodiment will be described. As a starting material, magnesium acetylacetonate [Mg (C 5 H 7
O 2 ) 2 ], nickel acetylacetonate [Ni (C 5
H 7 O 2 ) 2 · xH 2 O], zinc acetylacetonate [Z
n (C 5 H 7 O 2 ) 2 xH 2 O] and iron acetylacetonate [Fe (C 5 H 7 O 2 ) 3 ] were used.

【0013】図1のプラズマCVD装置における気化器
8にマグネシウムアセチルアセトナート、気化器9、1
0に真空中(1Torr)90℃で脱水処理を行ったニッケ
ルアセチルアセトナートおよび亜鉛アセチルアセトナー
ト、気化器11に鉄アセチルアセトナートを入れ、それ
ぞれ220℃、160℃、65℃、125℃に加熱し保
持しておく。バルブ12および16を開き窒素キャリア
(流量25SCCM)とともにマグネシウムアセチルアセト
ナートの蒸気と反応ガスとしての酸素(流量3SCCM)を
排気系7により減圧された反応チャンバー1内に導入
し、プラズマを発生(電力1.4W/cm2)させ、2分
間減圧下(0.1Torr)で反応を行い、500℃に加熱
した下地基板(120回転/分)上6にMgO膜を成膜
し、バルブ12、16を閉じた。
Magnesium acetylacetonate is used for the vaporizer 8 and vaporizers 9 and 1 in the plasma CVD apparatus of FIG.
0 to vacuum (1 Torr) at 90 ℃ dehydrated nickel acetylacetonate and zinc acetylacetonate, vaporizer 11 put iron acetylacetonate, 220 ℃, 160 ℃, 65 ℃, heated to 125 ℃ respectively And keep it. The valves 12 and 16 are opened, and the vapor of magnesium acetylacetonate and oxygen as a reaction gas (flow rate 3 SCCM) are introduced into the reaction chamber 1 whose pressure is reduced by the exhaust system 7 together with the nitrogen carrier (flow rate 25 SCCM) to generate plasma (electric power). 1.4 W / cm 2 ) and the reaction was performed under reduced pressure (0.1 Torr) for 2 minutes, and a MgO film was formed on the base substrate (120 revolutions / minute) 6 heated to 500 ° C., and the valves 12, 16 were used. Closed.

【0014】さらに引き続き真空を破らずにバルブ1
3、14、15、16、17、18を開き、キャリアガ
ス(気化器9、10、11にそれぞれ流量15SCCM、6
SCCM、25SCCM)により、ニッケルアセチルアセトナー
ト、亜鉛アセチルアセトナートおよび鉄アセチルアセト
ナートの蒸気を、反応ガスである酸素(流量15SCCM)
とともに反応チャンバー1内に導入し、プラズマ中(電
力1.4W/cm2)で60分間減圧下(0.2Torr)で
反応を行い、MgO膜上にNi−Znフェライト膜を成
膜し、Ni−Znフェライト/MgO二層膜を作製し
た。また比較のために、Si基板上にMgO膜を形成せ
ずに直接Ni−Znフェライト膜を上記成膜条件で同様
にプラズマCVD法で形成した単層膜を作製した。
Further, the valve 1 is continued without breaking the vacuum.
3, 14, 15, 16, 17, 18 are opened, and carrier gas (flow rates of 15 SCCM, 6 for vaporizers 9, 10, 11 respectively)
SCCM, 25SCCM) to convert nickel acetylacetonate, zinc acetylacetonate, and iron acetylacetonate vapor into reaction gas oxygen (flow rate 15 SCCM).
Introduced into the reaction chamber 1 together with it, reacted in plasma (power 1.4 W / cm 2 ) under reduced pressure (0.2 Torr) for 60 minutes to form a Ni—Zn ferrite film on the MgO film, -Zn ferrite / MgO bilayer film was prepared. For comparison, a single-layer film was also formed by directly forming a Ni—Zn ferrite film on the Si substrate by the plasma CVD method under the above film forming conditions without forming the MgO film.

【0015】作製したNi−Znフェライト/MgO二
層膜およびNi−Znフェライト単層膜の磁気特性をB
−Hカーブトレーサーおよび振動試料型磁力計を用いて
測定した。その結果、膜の保磁力および飽和磁化の値
は、二層膜が4Oe、340emu/cc、単層膜が3Oe、
230emu/ccであった。また、初透磁率(μi)をベク
トルインピーダンスメータで測定した。図2に1〜10
0MHzにおける初透磁率の周波数特性を示す。Ni−
Znフェライト単層膜と比較して、Ni−Znフェライ
ト/MgO二層膜とすることにより、初透磁率の値は測
定した周波数領域において大きくなっていた。
The magnetic properties of the Ni-Zn ferrite / MgO bilayer film and the Ni-Zn ferrite single layer film thus produced are shown in B.
-Measured using an H-curve tracer and a vibrating sample magnetometer. As a result, the values of coercive force and saturation magnetization of the film were 4 Oe and 340 emu / cc for the bilayer film and 3 Oe for the monolayer film, respectively.
It was 230 emu / cc. The initial permeability (μ i ) was measured with a vector impedance meter. 1 to 10 in FIG.
The frequency characteristic of the initial magnetic permeability at 0 MHz is shown. Ni-
Compared with the Zn ferrite single-layer film, the Ni—Zn ferrite / MgO bilayer film had a larger initial permeability value in the measured frequency region.

【0016】高分解能の走査型電子顕微鏡を用いて、表
面と破断面を観察した。その結果、いずれの試料膜も非
常に緻密な多結晶膜で粒径は約0.4μmであった。膜
厚はNi−Znフェライト/MgO二層膜が5.70μ
m、Ni−Znフェライト単層膜が5.68μmであっ
た。さらに電子線マイクロアナライザーによりNi−Z
nフェライト膜の組成を分析したところ、Ni0.65Zn
0.35Fe24であった。
The surface and fracture surface were observed using a high resolution scanning electron microscope. As a result, each of the sample films was a very dense polycrystalline film and had a grain size of about 0.4 μm. The film thickness of the Ni-Zn ferrite / MgO bilayer film is 5.70μ.
m, the Ni-Zn ferrite single layer film was 5.68 μm. Ni-Z by electron beam microanalyzer
Analysis of the composition of the n-ferrite film revealed that Ni 0.65 Zn
It was 0.35 Fe 2 O 4 .

【0017】次に、Si基板上に本成膜方法における上
記成膜条件で、MgO膜のみを成膜し、た試料膜を作製
し、Ni−Znフェライト/MgO二層膜およびNi−
Znフェライト単層膜とともに、反射高速電子線回折
(RHEED)およびX線回折により結晶構造および結
晶配向性の解析を行った。その結果、MgO膜は、多結
晶で(100)に配向していた。そして、下地膜として
NiOの(100)配向膜を用いることにより、Ni−
Znフェライト/MgO二層膜におけるNi−Znフェ
ライト層は、直接基板上にNi−Znフェライト膜を形
成した場合と比較して、より強い(100)配向性を示
すとともに、より良好な結晶性を有していた。
Then, only the MgO film was formed on the Si substrate under the above-mentioned film forming conditions in the present film forming method to prepare a sample film, and the Ni-Zn ferrite / MgO bilayer film and the Ni-Zn film were formed.
The crystal structure and crystal orientation were analyzed by reflection high-energy electron diffraction (RHEED) and X-ray diffraction together with the Zn ferrite single layer film. As a result, the MgO film was polycrystalline and oriented in (100). Then, by using a NiO (100) orientation film as the base film, Ni-
The Ni-Zn ferrite layer in the Zn ferrite / MgO bilayer film exhibits stronger (100) orientation and better crystallinity as compared with the case where the Ni-Zn ferrite film is directly formed on the substrate. Had.

【0018】以上の結果から、Ni−Znフェライト/
MgO二層膜がNi−Znフェライト単層膜より優れた
軟磁気特性を示すのは、(100)に配向したMgO下
地膜の影響を受け、Ni−Znフェライト膜が高い(1
00)配向性を示すとともに、良好な結晶性を有してい
るからである。
From the above results, Ni-Zn ferrite /
The MgO bilayer film exhibits soft magnetic characteristics superior to that of the Ni-Zn ferrite single layer film because of the influence of the (100) -oriented MgO underlayer film, and the Ni-Zn ferrite film is high (1
This is because the (00) orientation is exhibited and the crystallinity is good.

【0019】また、MgO膜との二層膜化は、Mn−Z
nフェライト膜の場合にも軟磁気特性向上に有効であっ
た。出発原料に、ニッケルアセチルアセトナートの替わ
りに、同じβージケトン金属錯体のマンガンアセチルア
セトナート〔Mn(C57 22〕(0.1Torr、90
℃で脱水処理)を用いてて作製した、Mn−Znフェラ
イト(Mn0.78Zn0.22Fe24)/MgO多結晶二層
膜およびMn−Znフェライト多結晶単層膜の0.1〜
10MHzにおける初透磁率の周波数特性を図3に示
す。Ni−Znフェライトの場合と同様に、初透磁率の
値は測定した周波数領域において大きくなっていた。
Further, the formation of a two-layer film with the MgO film is performed by Mn-Z
Even in the case of n-ferrite film, it is effective for improving soft magnetic characteristics.
Was. Instead of nickel acetylacetonate as the starting material
The same β-diketone metal complex manganese acetyl acetate
Setonate [Mn (CFiveH7O 2)2] (0.1 Torr, 90
Mn-Zn ferra prepared by using
Ito (Mn0.78Zn0.22Fe2OFour) / MgO polycrystalline double layer
0.1% of the film and Mn-Zn ferrite polycrystalline single layer film
Figure 3 shows the frequency characteristics of initial permeability at 10MHz.
You. Similar to the case of Ni-Zn ferrite, the initial permeability
The value increased in the measured frequency range.

【0020】なお、Ni−ZnフェライトおよびMn−
Znフェライトの組成が、上記以外の値を示す場合や、
添加物として、銅、リチウム、マグネシウムなどを含む
組成の場合においても、同様にMgO膜との二層膜化に
より軟磁気特性向上に有効であった。
Incidentally, Ni-Zn ferrite and Mn-
When the composition of Zn ferrite shows values other than the above,
Even in the case of a composition containing copper, lithium, magnesium, etc. as an additive, it was also effective in improving the soft magnetic characteristics by forming a two-layer film with the MgO film.

【0021】さらに、MgO膜の替わりに、同じNaC
l型結晶構造で(100)面に優先配向くした多結晶の
NiO膜やCoO膜を用いた場合にも軟磁気特性の向上
が見られたが、NiO膜やCoO膜は、成膜条件によっ
ては、10Ω・cm程度の低抵抗が生成した。この低抵抗
層は、軟磁性薄膜をさまざまなデバイスに応用する際の
障害となることが考えられるため、本発明においては、
NaCl型結晶構造の酸化物酸化物層を高抵抗のMgO
膜(比抵抗≧108Ω・cm)に限定した。
Further, the same NaC is used instead of the MgO film.
The soft magnetic properties were also improved when a polycrystalline NiO film or CoO film having an l-type crystal structure with preferential orientation on the (100) plane was used. Generated a low resistance of about 10 Ω · cm. Since this low resistance layer is considered to be an obstacle when applying the soft magnetic thin film to various devices, in the present invention,
High resistance MgO oxide layer of NaCl type crystal structure
It was limited to a film (specific resistance ≧ 10 8 Ω · cm).

【0022】(実施例2)以下、スピネル型結晶構造の
多結晶フェライト磁性層とNaCl型結晶構造の多結晶
酸化物薄膜層が交互に積層された軟磁性薄膜軟磁性薄膜
について、その製造方法とともに図面を参照しながら説
明する。
(Embodiment 2) A soft magnetic thin film in which a polycrystalline ferrite magnetic layer having a spinel type crystal structure and a polycrystalline oxide thin film layer having a NaCl type crystal structure are alternately laminated will be described below along with a method of manufacturing the same. A description will be given with reference to the drawings.

【0023】出発原料にはβージケトン金属錯体のマグ
ネシウムアセチルアセトナート〔Mg(C5
722〕、マンガンアセチルアセトナート〔Mn(C5
722・xH2O〕、亜鉛アセチルアセトナート〔Z
n(C5722・xH2O〕、鉄アセチルアセトナー
ト〔Fe(C5723〕、を用いた。
As the starting material, magnesium acetylacetonate [Mg (C 5 H
7 O 2 ) 2 ], manganese acetylacetonate [Mn (C 5
H 7 O 2 ) 2 · xH 2 O], zinc acetylacetonate [Z
n (C 5 H 7 O 2 ) 2 xH 2 O] and iron acetylacetonate [Fe (C 5 H 7 O 2 ) 3 ] were used.

【0024】図1のプラズマCVD装置における気化器
8にマグネシウムアセチルアセトナート、気化器9、1
0に真空中(1Torr)90℃で脱水処理を行ったマンガ
ンアセチルアセトナートおよび亜鉛アセチルアセトナー
ト、気化器11に鉄アセチルアセトナートを入れ、それ
ぞれ200℃、230℃、75℃、125℃に加熱し保
持しておく。バルブ12および16を開き窒素キャリア
(流量20SCCM)とともにマグネシウムアセチルアセト
ナートの蒸気と反応ガスとしての酸素(流量1SCCM)を
排気系7により減圧された反応チャンバー1内に導入
し、プラズマを発生(電力1.4W/cm2)させ、1分
間減圧下(0.1Torr)で反応を行い、500℃に加熱
した下地基板(120回転/分)上6にMgO膜を成膜
し、バルブ12、16を閉じた。そして引き続き真空を
破らずにバルブ13、14、15、16、17、18を
開き、キャリアガス(気化器9、10、11にそれぞれ
流量25SCCM、6SCCM、25SCCM)により、ニッケルア
セチルアセトナート、亜鉛アセチルアセトナートおよび
鉄アセチルアセトナートの蒸気を、反応ガスである酸素
(流量25SCCM)とともに反応チャンバー1内に導入
し、プラズマ中(電力1.4W/cm2)で3分間減圧下
(0.2Torr)で反応を行い、MgO膜上にMn−Zn
フェライト膜を成膜した。
Magnesium acetylacetonate is used for the vaporizer 8 and vaporizers 9 and 1 in the plasma CVD apparatus of FIG.
Manganese acetylacetonate and zinc acetylacetonate dehydrated at 0 ° C in vacuum (1 Torr), iron acetylacetonate in vaporizer 11 and heated to 200 ° C, 230 ° C, 75 ° C and 125 ° C, respectively. And keep it. The valves 12 and 16 are opened, and the vapor of magnesium acetylacetonate and oxygen as a reaction gas (flow rate 1 SCCM) are introduced into the reaction chamber 1 whose pressure is reduced by the exhaust system 7 together with the nitrogen carrier (flow rate 20 SCCM) to generate plasma (electric power). 1.4 W / cm 2 ) and the reaction was performed under reduced pressure (0.1 Torr) for 1 minute to form a MgO film on a base substrate (120 revolutions / minute) 6 heated to 500 ° C. and the valves 12, 16 Closed. Then, without breaking the vacuum, the valves 13, 14, 15, 16, 17, and 18 are opened, and nickel acetylacetonate and zinc acetyl are used by the carrier gas (flow rates 25 SCCM, 6 SCCM, and 25 SCCM for the vaporizers 9, 10 and 11 respectively). Vapors of acetonate and iron acetylacetonate were introduced into the reaction chamber 1 together with oxygen as a reaction gas (flow rate 25 SCCM), and the pressure was reduced (0.2 Torr) in plasma (electric power 1.4 W / cm 2 ) for 3 minutes. The reaction is carried out with Mn-Zn on the MgO film.
A ferrite film was formed.

【0025】さらに引き続き、上記操作を49回繰り返
すことにより、Mn−Znフェライト/MgOの積層膜
(積層回数50回)を作製した。また比較のために、M
n−Znフェライト膜のみを上記成膜条件で同様にプラ
ズマCVD法で形成した単層膜を作製した。
Further, subsequently, the above operation was repeated 49 times to prepare a laminated film of Mn—Zn ferrite / MgO (the number of times of lamination was 50 times). For comparison, M
A single layer film in which only the n-Zn ferrite film was similarly formed by the plasma CVD method under the above film forming conditions was prepared.

【0026】作製したMn−Znフェライト/MgO積
層膜およびMn−Znフェライト単層膜の磁気特性をB
−Hカーブトレーサーおよび振動試料型磁力計を用いて
測定した。その結果、膜の保磁力および飽和磁化の値
は、多層膜が1Oe、410emu/cc、単層膜が2Oe、
390emu/ccであった。また、初透磁率(μi)をベク
トルインピーダンスメータで測定した。図4に0.1〜
10MHzにおける初透磁率の周波数特性を示す。Mn
−Znフェライト単層膜と比較して、Mn−Znフェラ
イト/MgO二層膜とすることにより、0.5MHz以
上の周波数領域において初透磁率の値は大きくなってい
た。
The magnetic properties of the produced Mn-Zn ferrite / MgO laminated film and Mn-Zn ferrite single-layer film are shown in B.
-Measured using an H-curve tracer and a vibrating sample magnetometer. As a result, the values of coercive force and saturation magnetization of the film are 1 Oe and 410 emu / cc for the multilayer film and 2 Oe for the single layer film,
It was 390 emu / cc. The initial permeability (μ i ) was measured with a vector impedance meter. 0.1 to Figure 4
The frequency characteristic of the initial magnetic permeability at 10 MHz is shown. Mn
By using the Mn-Zn ferrite / MgO bilayer film as compared with the -Zn ferrite single layer film, the value of the initial magnetic permeability was increased in the frequency region of 0.5 MHz or higher.

【0027】高分解能の走査型電子顕微鏡および透過型
電子顕微鏡を用いて、表面と破断面を観察した。その結
果、いずれの試料膜も非常に緻密な多結晶膜で粒径は約
0.4μmであった。Mn−Znフェライト/MgO多
層膜の膜厚は5.42μmで、Mn−Znフェライト層
とMgO層の一層の膜厚はそれぞれ約100nm、約1
0nmであった。また、Mn−Znフェライト単層膜の
膜厚は4.90μmであった。さらに電子線マイクロア
ナライザーによりMn−Znフェライト膜の組成を分析
したところ、Mn0.72Zn0.38Fe24であった。
The surface and the fracture surface were observed using a high resolution scanning electron microscope and a transmission electron microscope. As a result, each of the sample films was a very dense polycrystalline film and had a grain size of about 0.4 μm. The thickness of the Mn—Zn ferrite / MgO multilayer film is 5.42 μm, and the thicknesses of the Mn—Zn ferrite layer and the MgO layer are about 100 nm and about 1 respectively.
It was 0 nm. The thickness of the Mn—Zn ferrite single layer film was 4.90 μm. Further, the composition of the Mn-Zn ferrite film was analyzed by an electron beam microanalyzer to find that it was Mn 0.72 Zn 0.38 Fe 2 O 4 .

【0028】次に、反射高速電子線回折(RHEED)
およびX線回折により結晶構造および結晶配向性の解析
を行った。その結果、Mn−Znフェライト/MgO多
層膜は、Mn−Znフェライト単層膜と比較して、より
強い(100)配向性を示すとともに、より良好な結晶
性を有していた。
Next, reflection high-energy electron diffraction (RHEED)
The crystal structure and crystal orientation were analyzed by and X-ray diffraction. As a result, the Mn-Zn ferrite / MgO multilayer film showed stronger (100) orientation and more favorable crystallinity than the Mn-Zn ferrite single layer film.

【0029】また、膜の比抵抗を測定した。Mn−Zn
フェライト/MgO多層膜とMn−Znフェライト単層
膜の比抵抗はそれぞれ、103Ω・cm、105Ω・cmであっ
た。
Further, the specific resistance of the film was measured. Mn-Zn
The specific resistances of the ferrite / MgO multilayer film and the Mn-Zn ferrite single layer film were 10 3 Ω · cm and 10 5 Ω · cm, respectively.

【0030】以上の結果から、Mn−Znフェライト/
MgO多層膜が高周波領域においてMn−Znフェライ
ト単層膜より優れた軟磁気特性を示すのは、膜の結晶性
が向上していることと、多層膜化により膜の比抵抗が増
加していることが原因であると考えられる。
From the above results, Mn-Zn ferrite /
The reason why the MgO multilayer film exhibits soft magnetic characteristics superior to that of the Mn-Zn ferrite single layer film in the high frequency region is that the crystallinity of the film is improved and the specific resistance of the film is increased due to the multilayer film. It is thought that the cause is.

【0031】また、MgO膜との多層膜化は、Ni−Z
nフェライト膜の場合にも軟磁気特性向上に有効であっ
た。出発原料に、ニッケルアセチルアセトナートの替わ
りに、同じβージケトン金属錯体のマンガンアセチルア
セトナート〔Ni(C57 22〕(0.1Torr、90
℃で脱水処理)を用いて作製した、Ni−Znフェライ
ト(Ni0.64Zn0.36Fe24)/MgO多層膜および
Ni−Znフェライト単層膜の1〜100MHzにおけ
る初透磁率の周波数特性を図5に示す。Mn−Znフェ
ライトの場合と同様に、初透磁率の値は高周波領域にお
いて大きくなっていた。
In addition, the formation of a multilayer film with the MgO film is performed by Ni--Z
Even in the case of n-ferrite film, it is effective for improving soft magnetic characteristics.
Was. Instead of nickel acetylacetonate as the starting material
The same β-diketone metal complex manganese acetyl acetate
Setonate [Ni (CFiveH7O 2)2] (0.1 Torr, 90
Ni-Zn ferrite prepared by using
To (Ni0.64Zn0.36Fe2OFour) / MgO multilayer film and
Ni-Zn ferrite single layer film at 1 to 100 MHz
FIG. 5 shows the frequency characteristics of the initial magnetic permeability. Mn-Zn Fe
As with the light, the value of initial permeability is in the high frequency range.
And was getting bigger.

【0032】なお、Mn−ZnフェライトおよびNi−
Znフェライトの組成が、上記以外の値を示す場合や、
添加物として、銅、リチウム、マグネシウムなどを含む
組成の場合においても、同様にMgOとの多層膜化によ
り軟磁気特性向上に有効であった。
Incidentally, Mn-Zn ferrite and Ni-
When the composition of Zn ferrite shows values other than the above,
Even in the case of a composition containing copper, lithium, magnesium, etc. as an additive, it was also effective in improving the soft magnetic characteristics by forming a multilayer film with MgO.

【0033】[0033]

【発明の効果】本発明は上記実施例より明らかなよう
に、スピネル型結晶構造の多結晶フェライト磁性層が、
NaCl型結晶構造の多結晶酸化物層上に形成された構
成の軟磁性薄膜、またはスピネル型結晶構造の多結晶フ
ェライト磁性層とNaCl型結晶構造の多結晶酸化物薄
膜層が交互に積層された構成の軟磁性薄膜であり、さら
に上記軟磁性薄膜をプラズマCVD法により作製するも
のであるため、優れた軟磁気特性を示す軟磁性薄膜が容
易に得られるといった効果を持つ。
As is apparent from the above embodiments, the present invention provides a polycrystalline ferrite magnetic layer having a spinel type crystal structure,
A soft magnetic thin film having a structure formed on a polycrystalline oxide layer having a NaCl type crystal structure, or a polycrystalline ferrite magnetic layer having a spinel type crystalline structure and a polycrystalline oxide thin film layer having a NaCl type crystalline structure are alternately laminated. Since it is a soft magnetic thin film having a constitution and the soft magnetic thin film is produced by a plasma CVD method, it has an effect that a soft magnetic thin film exhibiting excellent soft magnetic characteristics can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で使用するプラズマMOCVD
装置の概略構成図
FIG. 1 is a plasma MOCVD used in an embodiment of the present invention.
Schematic configuration diagram of the device

【図2】本発明の第1の実施例におけるNi−Znフェ
ライトを用いた軟磁性薄膜の周波数と初透磁率の関係を
示す図
FIG. 2 is a diagram showing the relationship between the frequency and the initial permeability of the soft magnetic thin film using Ni—Zn ferrite in the first embodiment of the present invention.

【図3】本発明の第1の実施例におけるMn−Zフェラ
イトを用いた軟磁性薄膜の周波数と初透磁率の関係を示
す図
FIG. 3 is a diagram showing a relationship between frequency and initial magnetic permeability of a soft magnetic thin film using Mn-Z ferrite in the first example of the present invention.

【図4】本発明の第2の実施例におけるNi−Znフェ
ライトを用いた軟磁性薄膜の周波数と初透磁率の関係を
示す図
FIG. 4 is a diagram showing the relationship between frequency and initial permeability of a soft magnetic thin film using Ni—Zn ferrite in the second embodiment of the present invention.

【図5】本発明の第2の実施例におけるMn−Zフェラ
イトを用いた軟磁性薄膜の周波数と初透磁率の関係を示
す図
FIG. 5 is a diagram showing a relationship between frequency and initial magnetic permeability of a soft magnetic thin film using Mn-Z ferrite according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 反応チャンバー 2 基板加熱ヒーター 3 電極 4 電極 5 高周波電源 6 Si基板 7 排気系 8 気化器 9 気化器 10 気化器 11 気化器 12 原料ガス供給バルブ 13 原料ガス供給バルブ 14 原料ガス供給バルブ 15 原料ガス供給バルブ 16 キャリアガス供給バルブ 17 キャリアガス供給バルブ 18 キャリアガス供給バルブ 19 キャリアガス供給バルブ 20 窒素ボンベ 21 酸素ボンベ 1 Reaction Chamber 2 Substrate Heating Heater 3 Electrode 4 Electrode 5 High Frequency Power Supply 6 Si Substrate 7 Exhaust System 8 Vaporizer 9 Vaporizer 10 Vaporizer 11 Vaporizer 12 Raw Material Gas Supply Valve 13 Raw Material Gas Supply Valve 14 Raw Material Gas Supply Valve 15 Raw Material Gas Supply valve 16 Carrier gas supply valve 17 Carrier gas supply valve 18 Carrier gas supply valve 19 Carrier gas supply valve 20 Nitrogen cylinder 21 Oxygen cylinder

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 41/22 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01F 41/22

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】スピネル型結晶構造の多結晶フェライト磁
性層が、NaCl型結晶構造の多結晶酸化物層上に形成
された構成の軟磁性薄膜。
1. A soft magnetic thin film having a structure in which a polycrystalline ferrite magnetic layer having a spinel type crystal structure is formed on a polycrystalline oxide layer having a NaCl type crystal structure.
【請求項2】スピネル型結晶構造の多結晶フェライト磁
性層とNaCl型結晶構造の多結晶酸化物薄膜層が交互
に積層された構成の軟磁性薄膜。
2. A soft magnetic thin film having a structure in which a polycrystalline ferrite magnetic layer having a spinel type crystal structure and a polycrystalline oxide thin film layer having a NaCl type crystal structure are alternately laminated.
【請求項3】スピネル型結晶構造の多結晶フェライト磁
性層が、NaCl型結晶構造の多結晶酸化物層上に形成
された軟磁性薄膜の製造方法であり、前記スピネル型結
晶構造の多結晶フェライト磁性層およびNaCl型結晶
構造の多結晶酸化物層をプラズマCVD法を用いて形成
することを特徴とする軟磁性薄膜の製造方法。
3. A method for producing a soft magnetic thin film, wherein a polycrystalline ferrite magnetic layer having a spinel type crystal structure is formed on a polycrystalline oxide layer having a NaCl type crystal structure, the polycrystalline ferrite magnetic layer having a spinel type crystal structure. A method of manufacturing a soft magnetic thin film, which comprises forming a magnetic layer and a polycrystalline oxide layer having a NaCl type crystal structure by a plasma CVD method.
【請求項4】スピネル型結晶構造の多結晶フェライト磁
性層とNaCl型結晶構造の多結晶酸化物薄膜層が交互
に積層された軟磁性薄膜の製造方法であり、前記スピネ
ル型結晶構造の多結晶フェライト磁性層およびNaCl
型結晶構造の多結晶酸化物層をプラズマCVD法を用い
て形成することを特徴とする軟磁性薄膜の製造方法。
4. A method of manufacturing a soft magnetic thin film in which a polycrystalline ferrite magnetic layer having a spinel type crystal structure and a polycrystalline oxide thin film layer having a NaCl type crystal structure are alternately laminated, wherein the polycrystal having a spinel type crystal structure is used. Ferrite magnetic layer and NaCl
A method of manufacturing a soft magnetic thin film, which comprises forming a polycrystalline oxide layer having a type crystal structure by a plasma CVD method.
【請求項5】スピネル型結晶構造の多結晶フェライト磁
性層およびNaCl型結晶構造の多結晶酸化物層が、そ
れらを保持する基板表面に対して垂直方向に(100)
面に優先配向した、請求項1または2に記載の軟磁性薄
膜。
5. A polycrystalline ferrite magnetic layer having a spinel type crystal structure and a polycrystalline oxide layer having a NaCl type crystal structure are perpendicular to a substrate surface holding them (100).
The soft magnetic thin film according to claim 1, which is preferentially oriented in the plane.
【請求項6】スピネル型結晶構造の多結晶フェライト磁
性層がニッケル亜鉛フェライトまたはマンガン亜鉛フェ
ライトを主成分とし、NaCl型結晶構造の多結晶酸化
物層がマグネシウム酸化物である請求項1または2に記
載の軟磁性薄膜。
6. The method according to claim 1 or 2, wherein the polycrystalline ferrite magnetic layer having a spinel type crystal structure contains nickel zinc ferrite or manganese zinc ferrite as a main component, and the polycrystalline oxide layer having a NaCl type crystal structure is magnesium oxide. The soft magnetic thin film described.
【請求項7】スピネル型結晶構造の多結晶フェライト磁
性層およびNaCl型結晶構造の多結晶酸化物層が、そ
れらを保持する基板表面に対して垂直方向に(100)
面に優先配向した、請求項3または4に記載の軟磁性薄
膜の製造方法。
7. A polycrystalline ferrite magnetic layer having a spinel type crystal structure and a polycrystalline oxide layer having a NaCl type crystal structure are perpendicular to a surface of a substrate holding them (100).
The method for producing a soft magnetic thin film according to claim 3, wherein the surface is preferentially oriented.
【請求項8】スピネル型結晶構造の多結晶フェライト磁
性層がニッケル亜鉛フェライトまたはマンガン亜鉛フェ
ライトを主成分とし、NaCl型結晶構造の多結晶酸化
物層がマグネシウム酸化物である請求項3または4に記
載の軟磁性薄膜の製造方法。
8. The method according to claim 3, wherein the polycrystalline ferrite magnetic layer having a spinel type crystal structure contains nickel zinc ferrite or manganese zinc ferrite as a main component, and the polycrystalline oxide layer having a NaCl type crystal structure is magnesium oxide. A method for producing the soft magnetic thin film described.
JP26956394A 1994-11-02 1994-11-02 Soft magnetic thin film and manufacture thereof Pending JPH08138934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26956394A JPH08138934A (en) 1994-11-02 1994-11-02 Soft magnetic thin film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26956394A JPH08138934A (en) 1994-11-02 1994-11-02 Soft magnetic thin film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08138934A true JPH08138934A (en) 1996-05-31

Family

ID=17474118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26956394A Pending JPH08138934A (en) 1994-11-02 1994-11-02 Soft magnetic thin film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08138934A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632473B2 (en) 2001-03-30 2003-10-14 Minebea Co. Ltd. Method of producing ferrite thin film
CN105074839A (en) * 2012-12-04 2015-11-18 胜美达集团有限公司 Magnetic cores and method for producing same
JP2017041556A (en) * 2015-08-20 2017-02-23 国立大学法人 筑波大学 Magnetic composite and high frequency device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632473B2 (en) 2001-03-30 2003-10-14 Minebea Co. Ltd. Method of producing ferrite thin film
CN105074839A (en) * 2012-12-04 2015-11-18 胜美达集团有限公司 Magnetic cores and method for producing same
JP2017041556A (en) * 2015-08-20 2017-02-23 国立大学法人 筑波大学 Magnetic composite and high frequency device

Similar Documents

Publication Publication Date Title
US5896078A (en) Soft magnetic alloy thin film and plane-type magnetic device
JPS62188206A (en) Fe-si-al alloy magnetic film, manufacture thereof and thin film laminated magnetic head
JP2950912B2 (en) Soft magnetic thin film
US5429731A (en) Method for forming a soft magnetic nitride layer on a magnetic head
JPH0797665A (en) Soft magnetic material, production thereof and magnetic head
JPH08138934A (en) Soft magnetic thin film and manufacture thereof
JP3392444B2 (en) Magnetic artificial lattice film
US20070072005A1 (en) Magnetic thin film for high frequency, method of manufacturing the same, and magnetic device
JPH0997714A (en) Magnetic thin film for magnetic head, its manufacturing method, and magnetic head using the thin film
Tanaka et al. Formation of Ni-Zn-ferrite films using laser ablation
JP2508479B2 (en) Soft magnetic ferrite thin film
JPH08335514A (en) Ferrite lamination thin film and its manufacturing method
JP2925257B2 (en) Ferromagnetic film, method of manufacturing the same, and magnetic head
JP2950921B2 (en) Soft magnetic thin film
JPH05114530A (en) Manufacture of soft magnetic alloy film and manufacture of magnetic head
JP2003332127A (en) Method for manufacturing soft magnetic ferrite material
JPH03265105A (en) Soft magnetic laminate film
JPH09306736A (en) Perpendicular magnetization film, manufacture thereof, and magneto-optical recording medium
JP4597414B2 (en) Ferrox planar thin film manufacturing method and inductor
Hoshi et al. Magnetic properties of Fe-N/Si-N multilayer films
KR100352157B1 (en) Manufacturing method of soft magnetic multilayer thin films for high-frequency
JP2893706B2 (en) Iron-based soft magnetic film
Nago et al. Substrate bias effect on the magnetic properties of Fe-Ta-N films
JP3639333B2 (en) MIG head
JP2808547B2 (en) Composite magnetic head