JPH08138721A - High temperature fuel cell - Google Patents

High temperature fuel cell

Info

Publication number
JPH08138721A
JPH08138721A JP6269565A JP26956594A JPH08138721A JP H08138721 A JPH08138721 A JP H08138721A JP 6269565 A JP6269565 A JP 6269565A JP 26956594 A JP26956594 A JP 26956594A JP H08138721 A JPH08138721 A JP H08138721A
Authority
JP
Japan
Prior art keywords
fuel cell
heat insulating
high temperature
vacuum
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6269565A
Other languages
Japanese (ja)
Inventor
Kazuhito Hado
一仁 羽藤
Junji Niikura
順二 新倉
Eiichi Yasumoto
栄一 安本
Koji Gamo
孝治 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6269565A priority Critical patent/JPH08138721A/en
Publication of JPH08138721A publication Critical patent/JPH08138721A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: To provide a high temperature fuel cell system capable of thermally self-supporting, utilizing exhaust heat, preventing drop in energy conversion efficiency, and making in a small scale. CONSTITUTION: In a high temperature fuel cell, part of a fuel cell main body is covered with an evacuated insulation container 1. Preferably, the high temperature fuel cell in which compression force is applied to a fuel cell stack 6 in the stacking direction has the following means. A compression force applying device (example: a spring 10) is set in the lower part of the fuel cell stack 6, and pipes 13, 16 for supplying gas to the stack 6, and pipes 14, 15 for exhausting gas from the stack 6 are introduced in to and out from the lower part of the stack 6. The upper part and the side surface of the cell stack 6 are covered with the evacuated insulation container 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温型燃料電池の断熱
方法および断熱構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat insulating method and structure for a high temperature fuel cell.

【0002】[0002]

【従来の技術】従来の高温で作動する燃料電池、例えば
溶融炭酸塩型燃料電池や固体電解質型燃料電池の実用化
規模は、数十kWから百数十kWが最小実用化規模であ
ると考えられている。その理由は、高温型燃料電池の場
合、作動温度が約650〜1000℃と高温であるた
め、規模が小さくなると単位体積あたりの放熱面積が大
きくなり、放熱ロスが大きく、結果として総合発電効率
が減少するためである。また、負加を十分にとっていな
い場合に電池本体の温度低下を招き、熱サイクルに弱い
高温型燃料電池の劣化を招来するためである。
2. Description of the Related Art Conventional fuel cells that operate at high temperatures, such as molten carbonate fuel cells and solid oxide fuel cells, are considered to have a minimum practical scale of several tens to several hundreds of kW. Has been. The reason for this is that in the case of a high temperature fuel cell, the operating temperature is as high as about 650 to 1000 ° C., so if the scale becomes smaller, the heat dissipation area per unit volume becomes larger, the heat dissipation loss becomes large, and as a result the overall power generation efficiency becomes large. This is because it decreases. Further, it is because the temperature of the battery main body is lowered when the load is not sufficiently applied, which causes deterioration of the high temperature fuel cell which is vulnerable to the heat cycle.

【0003】[0003]

【発明が解決しようとする課題】小規模(数十kW以
下)の高温型燃料電池システムでは、熱的に自立できな
くなる、排熱が利用できなくなる、またはエネルギ−変
換効率が小さくなる等の現象が生じるため、一般には小
規模の高温型燃料電池発電システムは考えられていな
い。また、高温型燃料電池の断熱に真空断熱を用いる
と、ガス配管部分の真空断熱構造が複雑になる、燃料電
池スタックのスタック圧の印加装置が高温になる等の問
題があった。
In a small-scale (several tens of kW or less) high-temperature fuel cell system, there is a phenomenon that thermal independence cannot be achieved, exhaust heat cannot be used, or energy conversion efficiency is reduced. Therefore, a small-scale high-temperature fuel cell power generation system is not generally considered. Further, when the vacuum heat insulation is used for heat insulation of the high temperature fuel cell, there are problems that the vacuum heat insulation structure of the gas pipe portion becomes complicated, and the stack pressure applying device of the fuel cell stack becomes high temperature.

【0004】[0004]

【課題を解決するための手段】そこで、真空断熱容器に
より少なくとも電池本体の一部分を覆うことによって、
熱的に自立し、排熱が利用可能で、エネルギ−変換効率
を下げることのない小規模の高温型燃料電池システムを
可能とすることができる。
Therefore, by covering at least a part of the battery main body with a vacuum insulating container,
It is possible to enable a small-scale high-temperature fuel cell system that is thermally self-sustaining, uses exhaust heat, and does not reduce energy conversion efficiency.

【0005】また、好ましくは燃料電池スタックのスタ
ック方向に圧縮力を印加し、高温で作動する燃料電池に
おいて、前記圧縮力の印加装置を前記燃料電池スタック
の下部に設置し、かつ前記燃料電池スタックの上部およ
び側面部を真空断熱容器で覆ったことによって、
Further, preferably, in a fuel cell which applies a compressive force in the stack direction of the fuel cell stack and operates at a high temperature, the compressive force applying device is installed under the fuel cell stack, and the fuel cell stack is By covering the top and side of the with a vacuum insulation container,

【0006】[0006]

【作用】真空断熱容器により少なくとも電池本体の一部
分を覆うことによって、放熱ロスを少なくし、排熱が利
用可能で、エネルギ−変換効率を下げることのない、熱
的に自立した小規模の高温型燃料電池システムを可能と
することができる。
By covering at least a part of the battery main body with a vacuum heat insulating container, heat dissipation loss is reduced, exhaust heat can be used, and energy conversion efficiency is not reduced. A fuel cell system can be enabled.

【0007】また、一般に燃料電池スタックにはスタッ
ク方向に圧縮力を印加して作動させるが、この圧縮力印
加装置は通常バネやエア−シリンダ−等で構成されてい
るため高温に弱い。しかし、高温で作動する燃料電池に
おいて、圧縮力の印加装置を燃料電池スタックの下部に
設置し、かつ燃料電池スタックの上部および側面部を真
空断熱容器で覆ったことによって、圧縮力の印加装置を
高温にすることなく、断熱効果を高くすることができ
る。
Further, generally, a compression force is applied to the fuel cell stack in the stack direction to operate it, but since this compression force application device is usually composed of a spring, an air cylinder, etc., it is vulnerable to high temperatures. However, in a fuel cell that operates at high temperature, a compression force application device is installed at the bottom of the fuel cell stack, and the top and side surfaces of the fuel cell stack are covered with a vacuum heat insulation container, so that the compression force application device is The heat insulating effect can be enhanced without increasing the temperature.

【0008】[0008]

【実施例】図1に本発明に基づいた実施例の断面構成図
を示す。高温型燃料電池としては、間接内部改質型の溶
融炭酸塩型燃料電池を採用した。電解質板面積が160
0cm2、有効電極面積が900cm 2の単電池を30
セル直列に積層し、直列に積層したスタックの間に合計
5枚の改質プレ−トを設置し、総出力が3kW級の間接
内部改質型溶融炭酸塩型燃料電池スタックを組み立て
た。小規模の燃料電池の場合、発電効率を考慮すると、
改質のために必要な熱を、電池の発熱で補うタイプの内
部改質型燃料電池が有利である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view showing the structure of an embodiment according to the present invention. As the high temperature fuel cell, an indirect internal reforming molten carbonate fuel cell was adopted. Area of electrolyte plate is 160
30 cells with 0 cm 2 and an effective electrode area of 900 cm 2
A total of 5 reforming plates were installed between the cells stacked in series, and the indirect internal reforming molten carbonate fuel cell stack having a total output of 3 kW was assembled. For small-scale fuel cells, considering the power generation efficiency,
An internal reforming type fuel cell of the type in which the heat required for reforming is supplemented by the heat generated by the cell is advantageous.

【0009】図1に示すように、本実施例では、溶融炭
酸塩型燃料電池スタックのスタック方向に圧縮力を印加
する方法として、バネによる4点締めつけ方式を採用し
た。この圧縮力印加装置を、燃料電池スタックの下部断
熱材外部に設け、圧縮力印加装置が高温にならないよう
にした。また、燃料電池スタックに供給するガス配管、
および燃料電池スタックから排出されるガス配管、およ
び電流取り出し端子を、燃料電池スタックの下部から導
入または導出させることによって、真空断熱容器にガス
配管用の穴を設けない方式を採用した。
As shown in FIG. 1, in this embodiment, as a method of applying a compressive force in the stack direction of the molten carbonate fuel cell stack, a four-point tightening method using springs is adopted. This compressive force applying device was provided outside the lower heat insulating material of the fuel cell stack so that the compressive force applying device did not reach a high temperature. Also, gas pipes that supply the fuel cell stack,
In addition, by introducing or leading out the gas pipe discharged from the fuel cell stack and the current extraction terminal from the lower part of the fuel cell stack, a system without a hole for gas pipe in the vacuum heat insulating container was adopted.

【0010】図2に本実施例で用いた真空断熱容器の断
面拡大図を示す。真空断熱容器は、下に凹の形状を有す
る釣り鐘状で、SUS316Lで構成された外壁と内壁
の間が真空に保たれる構造で、下方外周部を溶接により
接合し、脱気用バルブ付き配管を設た。また、SUS3
16Lで構成された真空断熱容器の内壁の真空部分と接
しない面を鏡面状にすることで、輻射による熱の損失を
極力抑える方式をとった。真空部分には、酸化珪素系の
セラミクス粒子とチタンニッケル系の金属水素化物粒子
を1:1の体積比で混合したものを充填した。真空部分
にゲッタ−として金属または合金を充填する際、単に金
属または合金のみを充填したのでは、金属の熱伝導度が
大きいために、充填した金属または合金と真空断熱容器
の外壁および内壁の間で金属同士の接触による熱損失が
生じるため、金属または合金のゲッタ−にセラミクス粒
子を混合して用いた。また、真空断熱用器の外壁および
内壁の真空部分と接する側の両面に、溶射法により膜状
のアルミナ系セラミクス層を設けた。燃料電池スタック
下方の断熱には、真空断熱容器ではなく、通常のアルミ
ナ系断熱プレ−トを用いた。
FIG. 2 shows an enlarged cross-sectional view of the vacuum heat insulating container used in this embodiment. The vacuum heat insulation container is a bell shape having a concave shape and has a structure in which a vacuum is maintained between the outer wall and the inner wall made of SUS316L, the lower outer peripheral portion is joined by welding, and a pipe with a degassing valve is installed. Was set up. Also, SUS3
The surface of the inner wall of the 16 L vacuum heat insulating container which is not in contact with the vacuum portion is made into a mirror surface to minimize heat loss due to radiation. The vacuum portion was filled with a mixture of silicon oxide-based ceramic particles and titanium-nickel-based metal hydride particles at a volume ratio of 1: 1. When filling the metal or alloy as a getter in the vacuum portion, simply filling only the metal or alloy causes the metal to have a large thermal conductivity, so that the space between the filled metal or alloy and the outer wall and inner wall of the vacuum insulation container is large. Since heat loss occurs due to contact between metals, ceramic particles are used as a getter of metal or alloy. Further, a film-shaped alumina-based ceramics layer was provided by a thermal spraying method on both surfaces of the outer wall and the inner wall of the vacuum heat insulating device which were in contact with the vacuum portion. For heat insulation under the fuel cell stack, a usual alumina heat insulation plate was used instead of a vacuum heat insulation container.

【0011】上記真空断熱を有する燃料電池スタックの
真空断熱容器は、単に燃料電池スタックを釣り鐘状の真
空断熱容器で覆っている構造であるため、真空断熱容器
の着脱は容易である。そこで、まず真空断熱容器をはず
した状態で、燃料電池スタック周辺に通常の断熱材を設
置し、電気ヒ−タ−で燃料電池スタックを650℃まで
昇温し、アノ−ドガスとして加湿したメタン燃料と、カ
ソ−ドガスとして空気と炭酸ガスの比が70:30のガ
スを供給し、発電試験を行った。また、この際、燃料電
池スタックに供給するアノ−ドガスおよびカソ−ドガス
は、カソ−ドの排ガスを熱交換し、予熱して供給した。
発電試験は、燃料利用率85%、電流密度150mA/
cm2の条件で行い、この時の発電出力が約3.2kW
であった。真空断熱容器をとりつけていない場合、放熱
ロスが大きいため、発電中も電気ヒ−タ−による熱供給
が必要で、熱的に自立したシステムの構成は不可能であ
った。このとき、電気ヒ−タ−の供給電力を差し引く
と、発電効率は約28%であった。
The above-described vacuum heat insulating container for a fuel cell stack having vacuum heat insulation has a structure in which the fuel cell stack is simply covered with a bell-shaped vacuum heat insulating container, so that the vacuum heat insulating container can be easily attached and detached. Therefore, first, with the vacuum heat insulating container removed, a normal heat insulating material was installed around the fuel cell stack, the temperature of the fuel cell stack was raised to 650 ° C. with an electric heater, and the methane fuel was humidified as an anode gas. Then, a gas having a ratio of air to carbon dioxide of 70:30 was supplied as a cathode gas, and a power generation test was conducted. At this time, the anode gas and the cathode gas supplied to the fuel cell stack were heat-exchanged with the exhaust gas of the cathode and preheated to be supplied.
Power generation test is 85% fuel utilization rate, current density 150mA /
carried out under the conditions of cm 2, the power generation output at this time is about 3.2kW
Met. When the vacuum heat insulation container is not attached, the heat loss is large, so heat must be supplied by the electric heater even during power generation, and it was impossible to construct a thermally self-sustaining system. At this time, when the supplied power of the electric heater was subtracted, the power generation efficiency was about 28%.

【0012】次に、真空断熱容器を設置し、十分に真空
断熱容器が昇温した後、真空断熱容器に付属の脱気用バ
ルブ付き配管から脱ガスを行い、十分に脱ガス後バルブ
を閉じ、発電試験を行った。発電条件は同上である。真
空断熱容器をとりつけた場合には、発電中は電気ヒ−タ
−による熱供給は必要なく、発電効率は約52%であっ
た。
Next, a vacuum heat insulating container is installed, and after the temperature of the vacuum heat insulating container is sufficiently raised, degassing is carried out from the pipe with a degassing valve attached to the vacuum heat insulating container, and after sufficiently degassing, the valve is closed. , A power generation test was conducted. The power generation conditions are the same as above. When the vacuum heat insulating container was attached, heat supply by an electric heater was not necessary during power generation, and the power generation efficiency was about 52%.

【0013】本実施例では、燃料電池スタック下部の断
熱材に通常の断熱プレ−トを用いたが、これは真空断熱
プレ−トであっても良い。また、本実施例では、間接内
部改質型燃料電池を用い、加湿したメタンを燃料として
供給したが、改質器が燃料電池と分離された構造で、か
つ真空断熱容器内部に設置した構成でも良いし、直接内
部改質型でも良い。あるいは間接内部改質型と直接内部
改質型のハイブリッドでもよいし、前記いずれの改質方
式を組み合わせたものでももちろん良い。さらに、本実
施例では、高温型燃料電池として溶融炭酸塩型燃料電池
を用いた場合を示したが、これが他の高温型燃料電池、
例えば固体電解質型燃料電池であってももちろん良い。
また、本実施例では、真空断熱容器の真空部分にゲッタ
−として設置する金属または合金としてチタンニッケル
系の金属水素化物を用いたが、これは他の金属や金属水
素化物、例えばアルミ系金属微粉末やランタンニッケル
系合金やチタンマンガン系合金、ジルコンニッケル系合
金等であってももちろん良い。
In this embodiment, a usual heat insulating plate is used as the heat insulating material at the bottom of the fuel cell stack, but this may be a vacuum heat insulating plate. In addition, in this embodiment, an indirect internal reforming fuel cell was used and humidified methane was supplied as a fuel, but a structure in which the reformer is separated from the fuel cell and installed inside the vacuum heat insulation container is also possible. It may be a direct internal reforming type. Alternatively, a hybrid of an indirect internal reforming type and a direct internal reforming type may be used, or a combination of any of the above reforming methods may be used. Further, in the present embodiment, the case where a molten carbonate fuel cell is used as the high temperature fuel cell is shown.
For example, a solid oxide fuel cell may of course be used.
Further, in the present embodiment, a titanium nickel-based metal hydride is used as the metal or alloy to be installed as a getter in the vacuum portion of the vacuum heat insulating container, but this is not limited to other metals or metal hydrides such as aluminum-based metal hydride. Of course, a powder, a lanthanum nickel alloy, a titanium manganese alloy, a zircon nickel alloy, or the like may be used.

【0014】さらに、本実施例では燃料電池スタックの
スタック方向に圧縮力を印加する方法として、バネによ
る締め付け方式を採用したが、これは他の締め付け方
法、例えばエア−シリンダ−を用いた締め付け方法など
であってももちろん良い。
Further, in this embodiment, as a method of applying a compressive force in the stack direction of the fuel cell stack, a tightening method using a spring is adopted, but this is another tightening method, for example, a tightening method using an air-cylinder. Of course, it is good.

【0015】本発明の実施態様をまとめると以下のよう
になる。すなわち、真空断熱容器が釣り鐘状の形状を有
し、前記真空断熱容器の開口部を下方に存在させること
によって、放熱ロスの大きい燃料電池スタックの上部の
断熱効果を上げることができる。
The embodiments of the present invention are summarized as follows. That is, since the vacuum heat insulating container has a bell shape and the opening of the vacuum heat insulating container is present downward, the heat insulating effect of the upper portion of the fuel cell stack with large heat radiation loss can be enhanced.

【0016】また、燃料電池スタックに供給するガス配
管、および前記燃料電池スタックから排出されるガス配
管を、燃料電池スタックの下部から導入または導出させ
ることによって、真空断熱用器の構造を簡便化し、かつ
断熱効率を向上させることが可能である。
Further, the gas piping for supplying to the fuel cell stack and the gas piping for exhausting from the fuel cell stack are introduced or led out from the lower part of the fuel cell stack to simplify the structure of the vacuum heat insulating device, In addition, it is possible to improve the heat insulation efficiency.

【0017】また、真空断熱容器の外壁および内壁を構
成する材料が少なくともステンレスを含む金属材料であ
り、前記真空断熱容器の外壁と内壁を構成する金属材料
の接合部分を真空断熱容器の開口部周辺に位置させるこ
とによって、耐食性を向上させ、かつ断熱効率を向上さ
せることが可能である。
Further, the material forming the outer wall and the inner wall of the vacuum heat insulating container is a metal material containing at least stainless steel, and the joint portion of the metal material forming the outer wall and the inner wall of the vacuum heat insulating container is formed around the opening of the vacuum heat insulating container. It is possible to improve the corrosion resistance and the adiabatic efficiency by locating it at.

【0018】また、真空断熱容器に脱気用バルブ付き配
管を設けることによって、初期の脱気および、万一真空
度が劣化した場合の脱気を容易にすることが可能であ
る。
Further, by providing the vacuum heat insulating container with a pipe having a degassing valve, it is possible to facilitate degassing at the initial stage and in the event that the degree of vacuum should be deteriorated.

【0019】また、真空断熱容器の真空部分にゲッタ−
として金属または合金を設置することによって、万一真
空度が劣化した場合にもゲッタ−がガスを吸着あるいは
ガスと反応し、断熱効率を維持することが可能である。
好ましくは、真空断熱用器の真空部分にゲッタ−として
設置されている金属または合金を粒状形状とすることに
よって、ゲッタ−の効率を向上させることが可能であ
る。さらに好ましくは、真空断熱用器の真空部分にゲッ
タ−として設置されている金属または合金を水素吸蔵合
金または金属水素化物とすることによって、さらにゲッ
タ−の効率を向上させることが可能である。
Further, a getter is attached to the vacuum portion of the vacuum insulation container.
As a result, by installing a metal or alloy, the getter can adsorb the gas or react with the gas even if the degree of vacuum is deteriorated, and the adiabatic efficiency can be maintained.
Preferably, the getter efficiency can be improved by forming the metal or alloy provided as a getter in the vacuum portion of the vacuum heat insulating device into a granular shape. More preferably, the metal or alloy installed as a getter in the vacuum portion of the vacuum heat insulator is a hydrogen storage alloy or a metal hydride, so that the efficiency of the getter can be further improved.

【0020】また、真空断熱容器の真空部分にセラミク
スを設置することによって、スペ−サ−としての役目を
果たすと共に、金属同士の熱伝導による断熱効率の劣化
を防止することが可能である。このセラミクスを粒状と
することによって、セラミクスのガス吸着力を利用し、
真空部分の真空度を保ち、断熱効率を維持することが可
能である。また、金属ゲッタ−との混合によって、真空
断熱容器の製造を容易にすることが可能である。このセ
ラミクスを、前記真空断熱用器の外壁および内壁の真空
部分と接する側に膜状に設置することによって、金属同
士の熱伝導による断熱効率の劣化を、より防止すること
が可能である。
By installing ceramics in the vacuum portion of the vacuum heat insulating container, it is possible to fulfill the role of a spacer and prevent the heat insulating efficiency from being deteriorated due to heat conduction between metals. By making this ceramic granular, the gas adsorption force of the ceramic is utilized,
It is possible to maintain the degree of vacuum in the vacuum portion and maintain the adiabatic efficiency. Further, by mixing with a metal getter, it is possible to easily manufacture the vacuum heat insulating container. By arranging the ceramics in a film shape on the sides of the outer wall and inner wall of the vacuum heat insulating device that are in contact with the vacuum portions, it is possible to further prevent deterioration of heat insulating efficiency due to heat conduction between metals.

【0021】[0021]

【発明の効果】以上のように本発明により、熱的に自立
し、排熱が利用可能で、エネルギ−変換効率を下げるこ
とのない小規模の高温型燃料電池システムを可能とする
ことができる。
As described above, according to the present invention, it is possible to realize a small-scale high-temperature fuel cell system that is thermally self-sustaining, can utilize exhaust heat, and does not reduce energy conversion efficiency. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づいた実施例1の構成の断面図1 is a cross-sectional view of the configuration of a first embodiment according to the present invention.

【図2】本発明に基づいた実施例1の真空断熱容器の断
面図
FIG. 2 is a sectional view of the vacuum heat insulating container of Example 1 according to the present invention.

【符号の説明】[Explanation of symbols]

1 真空断熱容器 2 燃料電池スタックのステ−ジ上部 3 燃料電池スタックの上部ステ−ジ固定用ネジ 4 燃料電池スタックの上部ヘッダ− 5 燃料電池スタックのステ−ジロッド 6 燃料電池スタック本体 7 燃料電池スタックの下部ヘッダ− 8 真空断熱容器の接合部 9 断熱材(または真空断熱プレ−ト) 10 圧縮力印加装置のバネ部 11 圧縮力印加装置の締めつけ部 12 燃料電池スタックのステ−ジ下部 13 カソ−ドガス入り口 14 アノ−ドガス出口 15 カソ−ドガス出口 16 アノ−ドガス入り口 17 真空断熱容器の外壁 18 真空断熱容器の内壁 19 真空断熱容器の真空部 20 脱気用配管 21 脱気用バルブ 22 真空断熱容器の接合部 23 真空断熱容器の外壁および内壁の真空部分と接す
る側
1 Vacuum Insulation Container 2 Upper Stage of Fuel Cell Stack 3 Screw for Fixing Upper Stage of Fuel Cell Stack 4 Upper Header of Fuel Cell Stack-5 Stage Rod of Fuel Cell Stack 6 Fuel Cell Stack Body 7 Fuel Cell Stack Lower header-8 of vacuum insulation container 9 insulation material (or vacuum insulation plate) 10 spring part of compression force application device 11 tightening part of compression force application device 12 lower part of fuel cell stack stage 13 Degas inlet 14 Anode gas outlet 15 Cascade gas outlet 16 Anode gas inlet 17 Vacuum insulation container outer wall 18 Vacuum insulation container inner wall 19 Vacuum insulation container vacuum part 20 Degassing pipe 21 Degassing valve 22 Vacuum insulation container Joint part 23 of the outer wall and inner wall of the vacuum insulation container in contact with the vacuum part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 蒲生 孝治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Kamo 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】真空容器により少なくとも燃料電池本体の
一部分を覆われたことを特徴とする高温型燃料電池。
1. A high-temperature fuel cell, characterized in that at least a part of the fuel cell main body is covered with a vacuum container.
【請求項2】燃料電池スタックのスタック方向に圧縮力
を印加し、高温で作動する燃料電池において、前記圧縮
力の印加装置が前記燃料電池スタックの下部に存在し、
かつ前記燃料電池スタックに供給するガスの配管、およ
び前記燃料電池スタックから排出されるガスの配管が、
燃料電池スタックの下部から導入または導出されてお
り、かつ前記燃料電池スタックの上部および側面部が真
空断熱容器で覆われたことを特徴とする請求項1記載の
高温型燃料電池。
2. In a fuel cell which applies a compressive force in the stack direction of the fuel cell stack and operates at a high temperature, the compressive force applying device is present in a lower portion of the fuel cell stack
And the piping of the gas supplied to the fuel cell stack, and the piping of the gas discharged from the fuel cell stack,
The high temperature fuel cell according to claim 1, wherein the high temperature fuel cell is introduced or led out from a lower portion of the fuel cell stack, and the upper portion and the side surface portion of the fuel cell stack are covered with a vacuum heat insulating container.
【請求項3】真空断熱容器が釣り鐘状の形状を有し、前
記真空断熱容器の開口部が下方に存在し、前記真空断熱
容器の外壁および内壁を構成する材料が少なくともステ
ンレスを含む金属材料であり、前記真空断熱容器の外壁
と内壁を構成する金属材料の接合部分が真空断熱容器の
開口部周辺に位置することを特徴とする請求項1または
2に記載の高温型燃料電池。
3. The vacuum heat insulating container has a bell shape, the opening of the vacuum heat insulating container is present below, and the material forming the outer wall and the inner wall of the vacuum heat insulating container is a metal material containing at least stainless steel. The high temperature fuel cell according to claim 1 or 2, wherein a joint portion of the metal material forming the outer wall and the inner wall of the vacuum heat insulating container is located around the opening of the vacuum heat insulating container.
【請求項4】真空断熱容器に脱気用バルブ付き配管が設
けられていることを特徴とする請求項1〜3のいずれか
に記載の高温型燃料電池。
4. The high temperature fuel cell according to claim 1, wherein the vacuum heat insulating container is provided with a pipe with a degassing valve.
【請求項5】真空断熱容器の真空部分にゲッタ−として
金属または合金が設置されていることを特徴とする請求
項1〜4のいずれかに記載の高温型燃料電池。
5. The high temperature fuel cell according to claim 1, wherein a metal or an alloy is installed as a getter in the vacuum portion of the vacuum heat insulating container.
【請求項6】真空断熱用器の真空部分にゲッタ−として
設置されている金属または合金が水素吸蔵合金または金
属水素化物であることを特徴とする請求項5に記載の高
温型燃料電池。
6. The high temperature fuel cell according to claim 5, wherein the metal or alloy installed as a getter in the vacuum portion of the vacuum heat insulator is a hydrogen storage alloy or a metal hydride.
【請求項7】真空断熱用器の真空部分にゲッタ−として
設置されている金属または合金が少なくともTiまたは
Zrのいずれかを含むことを特徴とする請求項5または
6に記載の高温型燃料電池。
7. The high temperature fuel cell according to claim 5, wherein the metal or alloy installed as a getter in the vacuum portion of the vacuum heat insulating device contains at least either Ti or Zr. .
【請求項8】真空断熱用器の外壁および内壁の真空部分
と接する面の少なくともいずれか一方の側に膜状のセラ
ミクスが設置されていることを特徴とする請求項1〜7
のいずれかに記載の高温型燃料電池。
8. A film-shaped ceramics is provided on at least one of the surfaces of the outer wall and the inner wall of the vacuum heat insulating device which are in contact with the vacuum portion.
A high temperature fuel cell according to any one of 1.
【請求項9】燃料電池が間接内部改質型あるいは直接内
部改質型あるいは間接内部改質と直接内部改質のハイブ
リッド型であることを特徴とする請求項1〜8のいずれ
かに記載の高温型燃料電池。
9. The fuel cell according to claim 1, wherein the fuel cell is an indirect internal reforming type or a direct internal reforming type or a hybrid type of indirect internal reforming and direct internal reforming. High temperature fuel cell.
JP6269565A 1994-11-02 1994-11-02 High temperature fuel cell Pending JPH08138721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6269565A JPH08138721A (en) 1994-11-02 1994-11-02 High temperature fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6269565A JPH08138721A (en) 1994-11-02 1994-11-02 High temperature fuel cell

Publications (1)

Publication Number Publication Date
JPH08138721A true JPH08138721A (en) 1996-05-31

Family

ID=17474141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6269565A Pending JPH08138721A (en) 1994-11-02 1994-11-02 High temperature fuel cell

Country Status (1)

Country Link
JP (1) JPH08138721A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004062017A1 (en) * 2002-12-24 2004-07-22 Fuelcell Energy, Inc. Fuel cell stack compressive loading system
JP2005158530A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel cell assembly
JP2005285425A (en) * 2004-03-29 2005-10-13 Toshiba Fuel Cell Power Systems Corp Fuel cell device and driving method of the same
JP2006156011A (en) * 2004-11-26 2006-06-15 Nissan Motor Co Ltd Heat-insulated container
JP2007535098A (en) * 2004-04-23 2007-11-29 ニューセルシス ゲーエムベーハー Power generation system based on fuel cell and method of operating the same
JP2009238581A (en) * 2008-03-27 2009-10-15 Casio Comput Co Ltd Reaction device and electronic equipment
JP2010003702A (en) * 2009-08-28 2010-01-07 Toshiba Fuel Cell Power Systems Corp Fuel cell device
JP2010512625A (en) * 2006-12-21 2010-04-22 エネルダイ ゲゼルシャフト ミット ベシュレンクテル ハフツング Housing for housing and preloading at least one fuel cell stack
JP2011050953A (en) * 2010-09-29 2011-03-17 Casio Computer Co Ltd Reactor and electronic equipment
WO2015150307A1 (en) * 2014-04-04 2015-10-08 Haldor Topsøe A/S Adaptive insulation for soc stack system
JP2016139554A (en) * 2015-01-28 2016-08-04 Toto株式会社 Solid oxide fuel cell device
JP2016139556A (en) * 2015-01-28 2016-08-04 Toto株式会社 Solid oxide fuel cell device
JP2016139555A (en) * 2015-01-28 2016-08-04 Toto株式会社 Solid oxide fuel cell device
JP2017182958A (en) * 2016-03-29 2017-10-05 東京瓦斯株式会社 Fuel processing apparatus and fuel cell module
JP2018085327A (en) * 2016-11-15 2018-05-31 パナソニックIpマネジメント株式会社 Fuel cell device
JP2018181835A (en) * 2017-04-07 2018-11-15 パナソニックIpマネジメント株式会社 High-temperature operating fuel cell system
EP4044300A1 (en) * 2021-02-16 2022-08-17 Ecole Polytechnique Federale De Lausanne (Epfl) Fuel cell system

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004062017A1 (en) * 2002-12-24 2004-07-22 Fuelcell Energy, Inc. Fuel cell stack compressive loading system
US6797425B2 (en) * 2002-12-24 2004-09-28 Fuelcell Energy, Inc. Fuel cell stack compressive loading system
EP1590846A1 (en) * 2002-12-24 2005-11-02 Fuelcell Energy, Inc. Fuel cell stack compressive loading system
EP1590846A4 (en) * 2002-12-24 2006-05-24 Fuelcell Energy Inc Fuel cell stack compressive loading system
CN1332468C (en) * 2002-12-24 2007-08-15 燃料电池能有限公司 Fuel cell stack compressive loading system
JP2005158530A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel cell assembly
JP2005285425A (en) * 2004-03-29 2005-10-13 Toshiba Fuel Cell Power Systems Corp Fuel cell device and driving method of the same
JP4612320B2 (en) * 2004-03-29 2011-01-12 東芝燃料電池システム株式会社 Fuel cell device
JP2007535098A (en) * 2004-04-23 2007-11-29 ニューセルシス ゲーエムベーハー Power generation system based on fuel cell and method of operating the same
JP2006156011A (en) * 2004-11-26 2006-06-15 Nissan Motor Co Ltd Heat-insulated container
US7938289B2 (en) 2004-11-26 2011-05-10 Nissan Motor Co., Ltd. Thermal insulating container for a heat generating unit of a fuel cell system
JP2010512625A (en) * 2006-12-21 2010-04-22 エネルダイ ゲゼルシャフト ミット ベシュレンクテル ハフツング Housing for housing and preloading at least one fuel cell stack
JP4600502B2 (en) * 2008-03-27 2010-12-15 カシオ計算機株式会社 Reaction apparatus and electronic equipment
JP2009238581A (en) * 2008-03-27 2009-10-15 Casio Comput Co Ltd Reaction device and electronic equipment
JP2010003702A (en) * 2009-08-28 2010-01-07 Toshiba Fuel Cell Power Systems Corp Fuel cell device
JP2011050953A (en) * 2010-09-29 2011-03-17 Casio Computer Co Ltd Reactor and electronic equipment
WO2015150307A1 (en) * 2014-04-04 2015-10-08 Haldor Topsøe A/S Adaptive insulation for soc stack system
JP2016139554A (en) * 2015-01-28 2016-08-04 Toto株式会社 Solid oxide fuel cell device
JP2016139556A (en) * 2015-01-28 2016-08-04 Toto株式会社 Solid oxide fuel cell device
JP2016139555A (en) * 2015-01-28 2016-08-04 Toto株式会社 Solid oxide fuel cell device
JP2017182958A (en) * 2016-03-29 2017-10-05 東京瓦斯株式会社 Fuel processing apparatus and fuel cell module
JP2018085327A (en) * 2016-11-15 2018-05-31 パナソニックIpマネジメント株式会社 Fuel cell device
JP2018181835A (en) * 2017-04-07 2018-11-15 パナソニックIpマネジメント株式会社 High-temperature operating fuel cell system
EP4044300A1 (en) * 2021-02-16 2022-08-17 Ecole Polytechnique Federale De Lausanne (Epfl) Fuel cell system

Similar Documents

Publication Publication Date Title
JPH08138721A (en) High temperature fuel cell
US6993888B2 (en) Metal hydride storage canister design and its manufacture
JP4678025B2 (en) Reaction apparatus and electronic equipment
US20110250513A1 (en) Fuel cell
JP5061450B2 (en) Fuel cell
JP5109252B2 (en) Fuel cell
WO2007066619A1 (en) Fuel cell
JP3539562B2 (en) Solid oxide fuel cell stack
JP4797352B2 (en) Solid oxide fuel cell
EP1286406A2 (en) Metal hydride storage canister and its manufacture
JP4501367B2 (en) Fuel cell
JP2008021636A (en) Fuel cell
JPS58121566A (en) Hydrogen fuel cell
JP2001297780A (en) Fused carbonate fuel cell and electric power generating device using the same
JP2007005134A (en) Steam generator and fuel cell
JP3327564B2 (en) Hydrogen storage device
JP2004014458A (en) Solid electrolyte fuel cell unit
AU2003212030B2 (en) Molton hybride fuel cell
JP2000340242A (en) Heat pump type hydrogen purification device using waste heat of fuel cell
JP2010238440A (en) Fuel battery module
JP4663845B2 (en) Quick-release hydrogen storage alloy storage container
JP3626371B2 (en) Hydrogen supply device for fuel cell
JPH06163066A (en) Heat recovering device for high temperature type fuel cell
JP2000327306A (en) High-purity hydrogen production apparatus and fuel cell system
CN118198378B (en) Lead carbon battery negative electrode plate and lead carbon battery