JPH08138468A - Nb3sn superconductive wire material and manufacture of it - Google Patents

Nb3sn superconductive wire material and manufacture of it

Info

Publication number
JPH08138468A
JPH08138468A JP6276797A JP27679794A JPH08138468A JP H08138468 A JPH08138468 A JP H08138468A JP 6276797 A JP6276797 A JP 6276797A JP 27679794 A JP27679794 A JP 27679794A JP H08138468 A JPH08138468 A JP H08138468A
Authority
JP
Japan
Prior art keywords
wire
stack material
sectional area
superconducting
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6276797A
Other languages
Japanese (ja)
Other versions
JP3608232B2 (en
Inventor
Takayoshi Miyazaki
隆好 宮崎
Takayuki Miyatake
孝之 宮武
Masao Shimada
雅生 嶋田
Yasuhiko Inoue
康彦 井上
Hidefumi Kurahashi
秀文 倉橋
Isakazu Matsukura
功和 枩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP27679794A priority Critical patent/JP3608232B2/en
Publication of JPH08138468A publication Critical patent/JPH08138468A/en
Application granted granted Critical
Publication of JP3608232B2 publication Critical patent/JP3608232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE: To uniformly disperse remaining Nb cores after heat treatment so as to prevent attenuation and the like in a permanent current by altering a cross sectional area ratio according to a position of a Nb wire from the center in a secondary stack material in a bronze processing method. CONSTITUTION: A primary stack material constructed of a group of wire materials, in which plural primary stack materials are bound, and the heat treatment of the secondary stack materials is executed after a wire drawing processing so as to be turned into a Nb3 Sn superconductive wire material. In the secondary stack material, a cross sectional area ratio t(ri) of a Nb wire buried in the primary stack material separated from the center by a distance ri is constructed according to expressions I, II, III. By this constitution, a degree of dispersion of remaining Nb cores is unified, although a Sn quantity on the circumference is varied on the basis of the distance ri, and a breakage rate in a Nb3 Sn filament is suppressed low, so that deterioration in a critical current density Jc or a (n) value can be prevented. (In the expressions, r1 >r2 , an inferior out/in means an outermost/innermost side from the center. SNB(r) and SBZ(r) mean cross sectional areas of a Nb wire and a Cu-Sn group alloy part in the primary stack material positioned in the (r) position).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導マグネットの構
成素材に用いられるNb3 Sn超電導線材およびその製
造方法に関し、特に安定した高磁場臨界電流特性を備え
たNb3 Sn超電導線材およびその様な線材を得る為の
有用な方法に関するものである。
The present invention relates to relates to a Nb 3 Sn superconducting wire and its manufacturing method used for a superconducting magnet structure material, Nb 3 Sn superconducting wire and a Such having a particularly stable high field critical current characteristics The present invention relates to a useful method for obtaining a wire rod.

【0002】[0002]

【従来の技術】超電導物質によって実現される永久電流
現象を利用し、電力を消費せずに大電流を流し、コイル
状にして磁場を発生させる超電導マグネットは、核磁気
共鳴(NMR)装置等の各種物性測定装置の他、磁場浮
上列車や核融合装置等への応用が進められている。そし
て上記の様な超電導マグネットの構成素材としては、従
来からNb3 Sn超電導線材が代表的なものとして使用
されている。
2. Description of the Related Art A superconducting magnet which utilizes a permanent current phenomenon realized by a superconducting material and allows a large current to flow without consuming electric power to generate a magnetic field in a coil is known as a nuclear magnetic resonance (NMR) device. In addition to various physical property measurement devices, application to magnetic levitation trains, nuclear fusion devices, etc. is being promoted. As a constituent material of the above-mentioned superconducting magnet, a Nb 3 Sn superconducting wire has been conventionally used as a typical one.

【0003】Nb3 Sn超電導線材を製造する方法とし
ては、内部拡散法、チューブ法、インサイチュー(in
−situ)法、粉末法およびブロンズ法等が知られて
いるが、最も代表的な方法は、いわゆるブロンズ法と呼
ばれる複合加工法である。上記ブロンズ法の一般的方法
を、図面を用いて更に詳細に説明する。
As a method for producing a Nb 3 Sn superconducting wire, an internal diffusion method, a tube method, an in-situ (in
-Situ) method, powder method, bronze method and the like are known, but the most typical method is a so-called bronze method, which is a composite processing method. The general method of the bronze method will be described in more detail with reference to the drawings.

【0004】まず図1に示す様に、Cu−Sn基合金製
管2にNb線1を埋設し、断面減少加工を施して六角形
に成形した単芯線3を製造し、この単芯線3を複数束ね
てCu−Sn基合金製線状母材4に挿入し、断面減少加
工を施して六角形に成形して一次スタック材5を構成す
る。次に、上記一次スタック材5を複数本円筒状に束ね
て線材群10とし、図示する様に、CuやCu−Sn合
金からなる略円筒状の外層ケース9(最外層)に挿入
し、最終形状において3000〜10000本のNb線
2が含まれた二次スタック材11を構成する。尚二次ス
タック材11では、図1に示した様に、その中央部に安
定化材となる線・棒状の無酸素銅6(安定化銅)が組み
込まれており、前記スタック材5の線材群10と無酸素
銅6の間には、Cu−Sn基合金からなる円筒状の内部
層7、およびNb3 Sn生成のための拡散熱処理時にS
nの拡散バリア層となる円筒状のNb層またはTa層8
が形成されている。このうち、拡散バリア層8は前記無
酸素銅6がSnによって汚染されることを防ぐ作用を発
揮する。最後に、熱処理によりSnを拡散させ、Nb線
1の表面近傍(即ち、Cu−Sn基合金製管2とNb線
1の界面に)に、Nb 3 Snを生成させてNb3 Sn超
電導線材とする。
First, as shown in FIG. 1, made of a Cu--Sn based alloy.
Nb wire 1 is embedded in pipe 2 and subjected to cross-section reduction processing to make a hexagon
Manufacture the single core wire 3 formed into
And insert it into the Cu-Sn based alloy linear matrix 4 and reduce the cross-section.
Worked to form a hexagonal shape to form the primary stack material 5.
It Next, bundle the plurality of primary stack materials 5 into a cylindrical shape.
To form a wire rod group 10, and as shown in the drawing, Cu or Cu-Sn alloy
Inserted in a substantially cylindrical outer layer case 9 (outermost layer) made of gold
In the final shape, 3000-10000 Nb wires
A secondary stack material 11 containing 2 is formed. Secondary
In the tack material 11, as shown in FIG.
Assembled with oxygen-free copper 6 (stabilized copper) in the form of wires and rods that serves as a stabilizing material
The wire group 10 of the stack material 5 and the oxygen-free
Between the copper 6 is a cylindrical inside made of Cu-Sn based alloy.
Layer 7, and Nb3 S during the diffusion heat treatment for producing Sn
Cylindrical Nb layer or Ta layer 8 serving as n diffusion barrier layer
Are formed. Of these, the diffusion barrier layer 8 is
Oxygen copper 6 has a function to prevent contamination by Sn.
Volatile. Finally, Sn is diffused by heat treatment, and Nb wire is
1 near the surface (ie, Cu-Sn based alloy pipe 2 and Nb wire)
(At the interface of 1), Nb 3 Generate Sn to Nb3 Over Sn
Use conductive wire.

【0005】上記構成では、単芯線3を複数束ねてCu
−Sn基合金製線状母材4に挿入して一次スタック材5
を構成する様にする場合について示したが、例えば図2
に示す様に、複数のNb線1をCu−Sn基合金製線状
母材4に直接的に埋設して一次スタック材5を構成し、
以下同様にしてNb線1の表面近傍(この場合は、Cu
−Sn基合金製線状母材4とNb線1の界面に)に、N
3 Snを生成させてNb3 Sn超電導線材とする場合
もある。
In the above structure, a plurality of single core wires 3 are bundled to form Cu.
-Sn-based alloy linear base material 4 is inserted into the primary stack material 5
Although the case where the above is configured is shown, for example, in FIG.
As shown in, a plurality of Nb wires 1 are directly embedded in the Cu-Sn base alloy linear base material 4 to form the primary stack material 5.
In the same manner, the vicinity of the surface of the Nb wire 1 (in this case, Cu
At the interface between the Sn-based alloy linear base material 4 and the Nb wire 1), N
There is also a case where b 3 Sn is generated to be an Nb 3 Sn superconducting wire.

【0006】いずれの構成を採用するにしても、上記一
次スタック材5やそれに埋設されるNb線1は、二次ス
タック材11中において等しい断面積とされるのが一般
的である。またCu−Sn基合金製管2やCu−Sn基
合金製線状母材4としては、Cu−Sn合金やCu−S
n−Ti合金等が用いられるのが一般的である。
Regardless of which configuration is adopted, the primary stack material 5 and the Nb wire 1 buried therein are generally made to have the same cross-sectional area in the secondary stack material 11. Further, as the Cu—Sn base alloy pipe 2 and the Cu—Sn base alloy linear base material 4, a Cu—Sn alloy or Cu—S is used.
An n-Ti alloy or the like is generally used.

【0007】[0007]

【発明が解決しようとする課題】上記した様に、ブロン
ズ法は、Cu−Sn基合金製管2やCu−Sn基合金製
線状母材4中のSnをNb線1に拡散させることによっ
て、Nb線1の表面近傍にNb3 Snを生成させるもの
であるが、このときNb線1の全てを完全にNb 3 Sn
化させずに、Nb線1の中央部に延性で強度の高い残存
Nb芯を残留させ、周囲のみNb3 Sn化させる手法が
用いられる。即ち、超電導マグネットで磁場を発生させ
る場合、マグネットを構成する超電導線材にはフープ力
と呼ばれる外向きの力が働き、Nb線1の全体を全てN
3 Snに反応させた場合、このNb3 Snは金属間化
合物で脆いため、ときにはフープ力によりNb3 Snに
割れが発生し、超電導線材ひいてはマグネットの特性を
大きく劣化させることがある。このような劣化を防ぐた
め、Nb線1の全てを完全にNb3 Sn化させずに、N
b線1の中央部に延性で強度の高い残存Nb芯を残留さ
せ、周囲のみNb3 Sn化させる手法を用いているので
ある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The method is made of Cu-Sn based alloy pipe 2 or Cu-Sn based alloy.
By diffusing Sn in the linear matrix 4 into the Nb wire 1.
Nb near the surface of Nb line 13 What produces Sn
However, at this time, all of Nb line 1 is completely Nb 3 Sn
Remains ductile and high in strength in the center of Nb wire 1
Nb core remains and only the periphery is Nb3 The method to make Sn
Used. That is, a superconducting magnet is used to generate a magnetic field.
Hoop force on the superconducting wire that composes the magnet.
The outward force called "Nb" works, and the entire Nb line 1 is
b3 When reacted with Sn, this Nb3 Sn is intermetallic
Since it is a brittle compound, it is sometimes Nb due to the hoop force.3 To Sn
Cracks will occur and the characteristics of the superconducting wire and eventually the magnet
May cause significant deterioration. To prevent such deterioration
Therefore, all of the Nb line 1 is completely Nb3 N without converting to Sn
Residual Nb core with ductility and high strength is left in the center of b wire 1.
Let only the surroundings Nb3 Since the method of making Sn is used
is there.

【0008】上記残存Nb芯は、線材断面内での残留の
仕方が不均一であれば、電磁応力等の外力によって生じ
る歪みのために、臨界電流密度Jcやn値等の劣化が著
しくなり、最終的には超電導マグネットの永久電流モー
ドにおける運転電流減衰を招くことになる。従って、こ
の残存Nb芯の残留量は、線材断面において均一である
ことが望ましい。
If the residual Nb core remains unevenly in the cross section of the wire, the critical current density Jc, n value, etc. will be significantly deteriorated due to distortion caused by external force such as electromagnetic stress. Eventually, the operating current of the superconducting magnet will be attenuated in the permanent current mode. Therefore, it is desirable that the residual amount of the residual Nb core is uniform in the cross section of the wire.

【0009】しかしながら、従来の様に最終熱処理前に
均一な断面積のNb線1を埋設した線材では、内方側と
外方側の夫々のNb線1における周囲のSn量が異なっ
ているので、Sn量の多い外方側では残存Nb芯が少な
くなるかほとんど残らず、最終熱処理後に残存Nb芯を
均一にすることは困難であった。
However, in the wire rod in which the Nb wire 1 having a uniform cross-sectional area is buried before the final heat treatment as in the conventional case, the amounts of Sn around the Nb wires 1 on the inner side and the outer side are different from each other. , The remaining Nb core was reduced or hardly remained on the outer side where the Sn content was large, and it was difficult to make the remaining Nb core uniform after the final heat treatment.

【0010】ところでNMR装置に用いられる超電導マ
グネットは、極めて高い精度の磁場の空間的均一度と時
間的安定度が要求される。前者はマグネットの設計に依
存する課題であり、後者は使用する超電導線材の性能に
大きく依存する事項である。即ち、磁場の時間的不安定
性は、超電導線材中に流れる永久電流の減衰によって生
じるからである。このような現象は、NbTi超電導線
材に比べてより高磁場で使用されるNb3 Sn線材でよ
り顕著になっている。一般に使用されるNb3Sn超電
導線材における約0.1〜100ppm /h 程度の減衰
は、これまでの応用機器にとってはそれほど問題になら
なかったのであるが、特にNMR装置においてはわずか
な減衰であっても、分析機器としての性能を大きく劣化
させることになり、極めて重大な問題である。この欠点
は、NMR装置の超電導マグネットにおいては永久電流
の減衰、すなわち磁場のわずかな減衰(約0.1〜10
0ppm /h )として現れることが判明した。ところが、
上述した如くこの減衰が分析機器としての性能を大きく
劣化させることになり、これまでのNb3 Sn超電導線
材はNMR装置用超電導線材として若干の問題を有して
いる。
By the way, the superconducting magnet used in the NMR apparatus is required to have extremely high accuracy in spatial uniformity and temporal stability of the magnetic field. The former is a subject that depends on the design of the magnet, and the latter is a subject that largely depends on the performance of the superconducting wire used. That is, the temporal instability of the magnetic field is caused by the decay of the persistent current flowing in the superconducting wire. Such a phenomenon is more remarkable in the Nb 3 Sn wire rod used in a higher magnetic field than in the NbTi superconducting wire rod. The attenuation of about 0.1 to 100 ppm / h in the commonly used Nb 3 Sn superconducting wire has not been a serious problem for the applied equipment until now, but it is a slight attenuation especially in the NMR apparatus. However, the performance as an analytical instrument is greatly deteriorated, which is a very serious problem. This disadvantage is caused by the decay of the permanent current in the superconducting magnet of the NMR apparatus, that is, the slight decay of the magnetic field (about 0.1-10).
It was found to appear as 0 ppm / h). However,
As described above, this attenuation greatly deteriorates the performance as an analytical instrument, and the Nb 3 Sn superconducting wire thus far has some problems as a superconducting wire for an NMR apparatus.

【0011】本発明は、上記の様な従来のNb3 Sn超
電導線材の有する技術的課題を解決する為になされたも
のであって、その目的は、最終熱処理後に強度メンバー
としての残存Nb芯を均一に分散させることによって、
臨界電流密度Jcやn値等の劣化を防ぎ、ひいては永久
電流の減衰等の問題を生じることのない様な、NMR装
置用超電導マグネットの素材として有用なNb3 Sn超
電導線材、およびその様なNb3 Sn超電導線材を製造
する為の有用な方法を提供することにある。
The present invention has been made in order to solve the technical problems of the conventional Nb 3 Sn superconducting wire as described above, and its purpose is to eliminate the residual Nb core as a strength member after the final heat treatment. By evenly dispersing,
A Nb 3 Sn superconducting wire useful as a material for a superconducting magnet for an NMR apparatus, which prevents deterioration of the critical current density Jc, n value, etc., and does not cause problems such as decay of permanent current, and such Nb. 3 To provide a useful method for manufacturing a Sn superconducting wire.

【0012】[0012]

【課題を解決するための手段】上記目的を達成し得た本
発明方法とは、線・棒状の安定化銅、円筒状の拡散バリ
ア層、略円筒状のCu−Sn基合金製内部層、Cu−S
n基合金製線状母材に複数のNb線を埋設した一次スタ
ック材を円筒状に複数束ねた線材群、および円筒状のC
uまたはCu−Sn基合金製最外層を、半径方向中心側
から外側に向かって上記々載順序で配置して二次スタッ
ク材を構成し、該二次スタック材を伸線加工した後、熱
処理して前記Nb線の表面近傍にNb3 Snを生成させ
るNb3Sn超電導線材の製造方法において、中心から
1 ,r2 (但し、r1 >r2 )の距離にある一次スタ
ック材に埋設されたNb線の断面積比を、夫々t(r
1 ),t(r2 )とすると共に、中心から最外方側およ
び最内方側までの夫々の距離rout ,rinにある一次ス
タック材に埋設されたNb線の断面積比を、夫々t(r
out),t(rin)としたとき、これらが下記(1)式お
よび(2)式を満足する様に二次スタック材を構成して
前記熱処理を行なう点に要旨を有するNb3 Sn超電導
線材の製造方法である。 t(r1 )≧t(r2 ) …(1) t(rout )>t(rin) …(2)
According to the method of the present invention which has achieved the above object, a wire / rod-shaped stabilized copper, a cylindrical diffusion barrier layer, a substantially cylindrical Cu-Sn based alloy inner layer, Cu-S
A wire rod group in which a plurality of primary stack members in which a plurality of Nb wires are embedded in a linear base material made of an n-based alloy are bundled in a cylindrical shape, and a cylindrical C
The outermost layer made of u or Cu-Sn base alloy is arranged in the above-mentioned mounting order from the center side in the radial direction to the outside to form a secondary stack material, and the secondary stack material is wire-drawn, and then heat treated. Then, in the method for producing an Nb 3 Sn superconducting wire for producing Nb 3 Sn near the surface of the Nb wire, the Nb wire is embedded in a primary stack material at a distance of r 1 , r 2 (where r 1 > r 2 ) from the center. The cross-sectional area ratios of the Nb lines thus formed are t (r
1 ), t (r 2 ) and the cross-sectional area ratios of the Nb wires embedded in the primary stack material at the distances r out and r in from the center to the outermost side and the innermost side, respectively, T (r)
out ), t (r in ), the Nb 3 Sn superconducting material is characterized in that a secondary stack material is formed so that these satisfy the following expressions (1) and (2) and the heat treatment is performed. It is a manufacturing method of a wire rod. t (r 1 ) ≧ t (r 2 ) ... (1) t (r out )> t (r in ) ... (2)

【0013】また上記目的を達成し得た本発明のNb3
Sn超電導線材とは、Nb3 Sn超電導線材中に分散し
て存在する残存Nb芯が下記(3)式を満足する点に要
旨を有するものであり、このようなNb3 Sn超電導線
材は、例えば上記のような方法によって得られる。 0.05≦σ/x≦0.4 …(3) 但し、σ:残存Nb芯の直径の標準偏差 x:残存Nb芯の直径の平均値
Further, the Nb 3 of the present invention capable of achieving the above object
The Sn superconducting wire has a point that the residual Nb cores dispersedly present in the Nb 3 Sn superconducting wire satisfy the following formula (3). Such an Nb 3 Sn superconducting wire is, for example, It is obtained by the method as described above. 0.05 ≦ σ / x ≦ 0.4 (3) where σ: standard deviation of the diameter of the remaining Nb core x: average value of the diameter of the remaining Nb core

【0014】[0014]

【作用】本発明は上述の如く構成されるが、要するに、
周囲にSn量の少ない内方側にNb線1の断面積比の小
さくする様にすると共に、Sn量の多い外方側にNb線
1の断面積比が大きくなる様にして一次スタック材を配
置して、二次スタック材を構成し、この二次スタック材
を最終熱処理すれば、残存Nb芯をできるだけ均一に残
したNb3 Sn超電導線材が製造でき、この超電導線材
は希望する特性を具備していることを見いだし、本発明
を完成したものである。
The present invention is constructed as described above, but in short,
A primary stack material is formed by reducing the cross-sectional area ratio of the Nb wire 1 on the inner side with a small amount of Sn and increasing the cross-sectional area ratio of the Nb wire 1 on the outer side with a large amount of Sn. By arranging them to form a secondary stack material, and by subjecting this secondary stack material to a final heat treatment, a Nb 3 Sn superconducting wire rod with the remaining Nb cores left as evenly as possible can be manufactured, and this superconducting wire rod has desired characteristics. That is, the present invention has been completed.

【0015】本発明は上記の如く、基本的には外方側に
なるにつれて断面積比が大きくなる様にしたものである
が、線材の全ての領域においてこの要件を満足させるこ
とは、その構成を達成する為の工程が複雑になる恐れが
ある。そこで本発明では、後記実施例に示す様に、例え
ば内部層、中間層および外層部の3つの部分に別けた如
くに見られる様に、距離r1 ,r2 が違っていても同一
断面積比であり得ることを想定し、上記(1)式で等記
号(=)についても含めた。但し、この場合において
も、最終的には上記(2)式を満足する必要があるの
で、本発明の要件として上記(2)式を規定した。
As described above, the present invention is basically designed such that the cross-sectional area ratio increases toward the outer side. However, in order to satisfy this requirement in all regions of the wire rod, the constitution is There is a possibility that the process for achieving the above may become complicated. Therefore, in the present invention, as shown in Examples described later, for example, as shown in three parts of an inner layer, an intermediate layer and an outer layer, even if the distances r 1 and r 2 are different, the same sectional area is obtained. Assuming that it may be a ratio, the equal sign (=) is also included in the above formula (1). However, even in this case, since it is necessary to finally satisfy the above expression (2), the above expression (2) is defined as a requirement of the present invention.

【0016】尚上記「Nb線の断面積比」とは、一次ス
タック材5中に占めるNb線の断面積比を意味し、中心
からrの位置にある一次スタック材5におけるCu−S
n基合金部分(Cu−Sn基合金製管2を用いる場合は
その部分も含む)の断面積をSBZ(r)、Nb線1の断
面積をSNB(r)としたときに、下記(4)式で定義つ
けられるものである。 t(r)=SNB(r)/[SNB(r)+SBZ(r)] …(4)
The above-mentioned "cross-sectional area ratio of Nb wire" means the cross-sectional area ratio of Nb wires in the primary stack material 5, and Cu-S in the primary stack material 5 at the position r from the center.
When the sectional area of the n-based alloy portion (including that portion when the Cu-Sn-based alloy pipe 2 is used) is S BZ (r) and the sectional area of the Nb wire 1 is S NB (r), It is defined by the equation (4). t (r) = S NB (r) / [S NB (r) + S BZ (r)] (4)

【0017】従来法によって製造したNb3 Sn超電導
線材におけるSn濃度の半径方向の分布を図3に示す。
ここでは、線材群10を、内層部、中層部および外層部
の3つの部分に分割した。反応後の線材群10のSn濃
度を見ると、内層部から外層部になるにつれてSn濃度
が増加していることがわかる。従って、生成されるNb
3 Snの量も外層部の方が内層部よりも多くなり、残存
Nb芯は外層部の方が少なくなっている。
FIG. 3 shows the radial distribution of Sn concentration in the Nb 3 Sn superconducting wire produced by the conventional method.
Here, the wire rod group 10 was divided into three parts, an inner layer part, a middle layer part, and an outer layer part. Looking at the Sn concentration of the wire rod group 10 after the reaction, it can be seen that the Sn concentration increases from the inner layer portion to the outer layer portion. Therefore, the generated Nb
The amount of 3 Sn was also larger in the outer layer portion than in the inner layer portion, and the residual Nb core was smaller in the outer layer portion.

【0018】本発明法によって製造したNb3 Sn超電
導線材における典型的なSn濃度の半径方向の分布を図
4に示す。本発明法では、一次スタック材5のNb線の
断面積比に半径方向で分布をもたせているので、反応前
(最終熱処理前)の線材群10におけるSn濃度に勾配
が形成されている。この為に、反応後(最終熱処理後)
には、線材群10内でのSn濃度分布はほぼ均一になっ
ていることがわかる。
FIG. 4 shows a typical radial distribution of Sn concentration in the Nb 3 Sn superconducting wire produced by the method of the present invention. In the method of the present invention, since the cross-sectional area ratio of the Nb line of the primary stack material 5 is distributed in the radial direction, a gradient is formed in the Sn concentration in the wire rod group 10 before the reaction (before the final heat treatment). Therefore, after reaction (after final heat treatment)
It is understood that the Sn concentration distribution in the wire rod group 10 is almost uniform.

【0019】また、Nb3 Sn超電導線材中に分散して
存在する残存Nb芯が前記(3)式を満足する様な残存
Nb芯の分散度合いが均一なNb3 Sn超電導線材が得
られ、この様な線材は希望する超電導特性を発揮するの
である。
Further, an Nb 3 Sn superconducting wire having a uniform degree of dispersion of the remaining Nb cores is obtained such that the remaining Nb cores dispersedly present in the Nb 3 Sn superconducting wire satisfy the above expression (3). Such wire rods exhibit the desired superconducting properties.

【0020】このように本発明によれば、最終熱処理後
の残存Nb芯の断面積を均一にすることができ、マグネ
ット化後に励磁によって超電導線材に付加される応力が
線材内の残存Nb芯に均一に分担されるので、Nb3
nフィラメントの断線率を低く抑えることができる様に
なる。このことは、超電導線材に発生する歪みによる臨
界電流密度Jcやn値等の劣化を防ぎ、特に永久電流の
減衰等の問題を生じることなく、大きな電磁応力の印加
される高磁場でのNb3 Sn超電導線材の使用を容易に
することを意味する。
As described above, according to the present invention, the cross-sectional area of the residual Nb core after the final heat treatment can be made uniform, and the stress applied to the superconducting wire rod by the excitation after magnetizing is applied to the residual Nb core in the wire rod. Since it is evenly shared, Nb 3 S
The disconnection rate of the n-filament can be suppressed to a low level. This prevents deterioration of the critical current density Jc, n value, etc. due to strain generated in the superconducting wire, and does not cause problems such as permanent current attenuation in particular, and Nb 3 in a high magnetic field to which a large electromagnetic stress is applied. It means to facilitate the use of Sn superconducting wire.

【0021】尚前記n値は超電導状態から、常電導への
転移の鋭さを示す量であり、この値はフィラメントの均
一加工の度合いを反映し、大きい方が特性的に優れてい
ると言われているものである。即ち、超電導線材に電流
を流していくと、ある電流値(臨界電流)以上では抵抗
が発生し、電圧を生じるのであるが、このときの電流と
発生電圧の関係は経験的に下記(5)式の様な近似式で
表わされ、この式の中のnの値をn値と呼ぶ。 V=V0 (I/Ic)n …(5) 但し、V :発生電圧 V0 :定数 Ic:臨界電流
The n value is an amount showing the sharpness of the transition from the superconducting state to the normal conducting state. This value reflects the degree of uniform processing of the filament, and it is said that the larger the value, the better the characteristic. It is what That is, when an electric current is passed through the superconducting wire, a resistance is generated and a voltage is generated at a certain current value (critical current) or more, but the relationship between the current and the generated voltage is empirically shown in (5) below. It is represented by an approximate expression like the expression, and the value of n in this expression is called the n value. V = V 0 (I / Ic) n (5) where V: generated voltage V 0 : constant Ic: critical current

【0022】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく前・後記の趣旨に徴して設計変更することはいず
れも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples. The following examples are not intended to limit the scope of the present invention, and any modification of the design can be made according to the gist of the preceding and the following. It is included in the target range.

【0023】[0023]

【実施例】【Example】

実施例1 図5に示す手順によって本発明の超電導線材を作成し
た。まずCu−13%Sn−0.3%Tiの組成をもつ
Cu−Sn基合金管2にNb線1を埋設して、断面減少
加工を施した後、六角形に成形して単芯線3を作製し
た。このとき、前記(4)式で規定される断面積比t
(r)が、0.22,0.42,0.54の3種類のも
のを作製した。これを複数本づつスタック(一次スタッ
ク)し、Cu−13%Sn−0.3%Tiの組成をもつ
Cu−Sn基合金製母材4に埋設して、断面減少加工を
施した後、六角形に成形して一次スタック材5を作製し
た。
Example 1 A superconducting wire of the present invention was prepared by the procedure shown in FIG. First, the Nb wire 1 is embedded in a Cu-Sn base alloy tube 2 having a composition of Cu-13% Sn-0.3% Ti, and subjected to cross-section reduction processing, and then molded into a hexagonal shape to form a single core wire 3. It was made. At this time, the sectional area ratio t defined by the above equation (4)
Three types (r) of 0.22, 0.42, and 0.54 were prepared. A plurality of these are stacked (primary stack), embedded in a Cu—Sn based alloy base material 4 having a composition of Cu—13% Sn—0.3% Ti, and subjected to cross-section reduction processing. A primary stack material 5 was produced by forming it into a rectangular shape.

【0024】次に、複数の一次スタック材5をCu−1
3%Sn−0.3%Tiの組成をもつCu−Sn基合金
管(最外層9)に挿入して、二次スタック材11を組み
立てた。ここで中心部の3層構造部材は、Cu−13%
Sn−0.3%Ti組成の合金パイプ(内部層7)に、
Taパイプ(拡散バリア層8)および無酸素銅(安定化
銅6)を挿入したものを用いた。また一次スタック材5
は、図5に示す様に、内層部に断面積比t(r)が0.
22のものを、中層部に断面積比t(r)が0.42の
ものを、外層部に断面積比t(r)が0.54のものを
夫々配置した。得られた二次スタック材11に断面減少
加工を施し、線径0.7mmφの線材とした。
Next, a plurality of primary stack materials 5 are Cu-1
The secondary stack material 11 was assembled by inserting it into a Cu-Sn based alloy tube (outermost layer 9) having a composition of 3% Sn-0.3% Ti. Here, the central three-layer structure member is Cu-13%.
For an alloy pipe of Sn-0.3% Ti composition (inner layer 7),
A Ta pipe (diffusion barrier layer 8) and oxygen-free copper (stabilized copper 6) were used. Primary stack material 5
As shown in FIG. 5, the cross-sectional area ratio t (r) is 0.
No. 22 having a cross-sectional area ratio t (r) of 0.42 was arranged in the middle layer, and one having a cross-sectional area ratio t (r) of 0.54 was arranged in the outer layer. The obtained secondary stack material 11 was subjected to cross-section reduction processing to obtain a wire material having a wire diameter of 0.7 mmφ.

【0025】一方、比較の為に、図6に示す様な従来と
同様の方法によって、二次スタック材11を組み立て
た。即ち、前記断面積比t(r)が0.42の単芯線3
を複数本スタックして一次スタック材5を作製する以外
は、上記と同様にして二次スタック材11を組み立て
た。そして、これに断面減少加工を施して線径0.7m
mφの線材とした。
On the other hand, for comparison, the secondary stack material 11 was assembled by the same method as the conventional one as shown in FIG. That is, the single core wire 3 having the sectional area ratio t (r) of 0.42
Secondary stack material 11 was assembled in the same manner as above except that a plurality of sheets were stacked to produce primary stack material 5. Then, the cross-section reduction processing is applied to this and the wire diameter is 0.7 m.
It was a wire of mφ.

【0026】これらの線材に、680℃で50時間の最
終熱処理(Nb3 Sn生成熱処理)を施した後、各層内
の残存Nb芯の直径を電子顕微鏡で観察した。その結果
を、下記表1に示すが、従来法に比べて本発明法によっ
て作製した線材に方が残存Nb芯の分布が均一であるこ
とがわかる。
After these wires were subjected to a final heat treatment (Nb 3 Sn formation heat treatment) at 680 ° C. for 50 hours, the diameter of the remaining Nb core in each layer was observed with an electron microscope. The results are shown in Table 1 below, and it can be seen that the distribution of the residual Nb core is more uniform in the wire produced by the method of the present invention than in the conventional method.

【0027】[0027]

【表1】 [Table 1]

【0028】次に、超電導線材の臨界電流密度Jcやn
値等に及ぼす歪みの影響について測定を行った。その結
果を従来法で作製した線材と比較して図7に示すが、本
発明法によって作製した超電導線材は、従来の方法によ
って作製した超電導線材に比べ、臨界電流密度Jcやn
値等の超電導特性が向上すると共に、耐歪み特性が向上
していることがわかる。
Next, the critical current densities Jc and n of the superconducting wire are
The effect of strain on the values was measured. The results are shown in FIG. 7 in comparison with the wire produced by the conventional method. The superconducting wire produced by the method of the present invention has a critical current density Jc or n higher than that of the superconducting wire produced by the conventional method.
It can be seen that the strain resistance characteristics are improved as well as the superconducting characteristics such as values are improved.

【0029】更に、これらに2種類の線材を用いてマグ
ネットを構成し、永久電流モードでの電流減衰の程度
(ドリフト量)を測定した。その結果、従来法によって
作製した線材で構成したマグネットのドリフト量は0.
045ppm/hであったのに対し、本発明法によって
作製した線材によって構成したマグネットではドリフト
量は0.008ppm/hであった。このことから、本
発明方法は、超電導マグネットの永久電流モードでの運
転電流減衰の低減に有効であることがわかる。
Further, a magnet was constructed by using two types of wire rods for these, and the degree of current attenuation (drift amount) in the persistent current mode was measured. As a result, the drift amount of the magnet composed of the wire produced by the conventional method is 0.
While it was 045 ppm / h, the drift amount was 0.008 ppm / h in the magnet constituted by the wire rod manufactured by the method of the present invention. From this, it is understood that the method of the present invention is effective in reducing the operating current attenuation of the superconducting magnet in the permanent current mode.

【0030】実施例2 図8に示す手順によって本発明の超電導線材を作製し
た。まずCu−13%Sn−0.3%Tiの組成をもつ
Cu−Sn基合金製線状母材4に、複数のNb線1を埋
設して、断面減少加工を施した後、六角形に成形して一
次スタック材5を作製した。このとき、前記(4)式で
規定される断面積比t(r)が、0.22,0.42,
0.54の3種類のものを作製した。
Example 2 A superconducting wire of the present invention was produced by the procedure shown in FIG. First, a plurality of Nb wires 1 are embedded in a Cu-Sn-based alloy linear base material 4 having a composition of Cu-13% Sn-0.3% Ti, and subjected to cross-section reduction processing, and then formed into a hexagonal shape. It shape | molded and produced the primary stack material 5. At this time, the cross-sectional area ratio t (r) defined by the equation (4) is 0.22, 0.42,
Three types of 0.54 were prepared.

【0031】次に、複数の一次スタック材5をCu−1
3%Sn−0.3%Tiの組成をもつCu−Sn基合金
管(最外層9)に挿入して、二次スタック材11を組み
立てた。ここで中心部の3層構造部材は、Cu−13%
Sn−0.3%Ti組成の合金パイプ(内部層7)に、
Taパイプ(拡散バリア層8)および無酸素銅(安定化
銅6)を挿入したものを用いた。また一次スタック材5
は、図8に示す様に、内層部に断面積比t(r)が0.
22のものを、中層部に断面積比t(r)が0.42の
ものを、外層部に断面積比t(r)が0.54のものを
夫々配置した。得られた二次スタック材11に断面減少
加工を施し、線径0.7mmφの線材とした。
Next, a plurality of primary stack materials 5 are Cu-1.
The secondary stack material 11 was assembled by inserting it into a Cu-Sn based alloy tube (outermost layer 9) having a composition of 3% Sn-0.3% Ti. Here, the central three-layer structure member is Cu-13%.
For an alloy pipe of Sn-0.3% Ti composition (inner layer 7),
A Ta pipe (diffusion barrier layer 8) and oxygen-free copper (stabilized copper 6) were used. Primary stack material 5
As shown in FIG. 8, the cross-sectional area ratio t (r) is 0.
No. 22 having a cross-sectional area ratio t (r) of 0.42 was arranged in the middle layer, and one having a cross-sectional area ratio t (r) of 0.54 was arranged in the outer layer. The obtained secondary stack material 11 was subjected to cross-section reduction processing to obtain a wire material having a wire diameter of 0.7 mmφ.

【0032】一方、比較の為に、図9に示す様な従来と
同様の方法によって、二次スタック材11を組み立て
た。即ち、前記断面積比t(r)が0.42の一次スタ
ック材5を用いる以外は、上記と同様にして二次スタッ
ク材11を組み立てた。そして、これに断面減少加工を
施して線径0.7mmφの線材とした。。
On the other hand, for comparison, the secondary stack material 11 was assembled by the same method as the conventional one as shown in FIG. That is, the secondary stack material 11 was assembled in the same manner as above except that the primary stack material 5 having a cross-sectional area ratio t (r) of 0.42 was used. Then, this was subjected to cross-section reduction processing to obtain a wire rod having a wire diameter of 0.7 mmφ. .

【0033】これらの線材に、680℃で50時間の最
終熱処理(Nb3 Sn生成熱処理)を施した後、各層内
の残存Nb芯の直径を電子顕微鏡で観察した。その結果
を、下記表2に示すが、従来法に比べて本発明法によっ
て作製した線材に方が残存Nb芯の分布が均一であるこ
とがわかる。
After these wires were subjected to a final heat treatment (Nb 3 Sn formation heat treatment) at 680 ° C. for 50 hours, the diameter of the remaining Nb core in each layer was observed with an electron microscope. The results are shown in Table 2 below, and it can be seen that the distribution of the residual Nb core is more uniform in the wire produced by the method of the present invention than in the conventional method.

【0034】[0034]

【表2】 [Table 2]

【0035】次に、これらに2種類の線材を用いてマグ
ネットを構成し、永久電流モードでの電流減衰の程度
(ドリフト量)を測定した。その結果、従来法によって
作製した線材で構成したマグネットのドリフト量は0.
025ppm/hであったのに対し、本発明法によって
作製した線材によって構成したマグネットではドリフト
量は0.007ppm/hであった。このことから、本
発明方法は、超電導マグネットの永久電流モードでの運
転電流減衰の低減に有効であることがわかる。
Next, a magnet was constructed by using two kinds of wire rods for these, and the degree of current attenuation (drift amount) in the permanent current mode was measured. As a result, the drift amount of the magnet composed of the wire produced by the conventional method is 0.
While it was 025 ppm / h, the drift amount was 0.007 ppm / h in the magnet constituted by the wire rod manufactured by the method of the present invention. From this, it is understood that the method of the present invention is effective in reducing the operating current attenuation of the superconducting magnet in the permanent current mode.

【0036】実施例3 図10および11に示す手順で本発明による超電導線材
を作製した。まずCu−13%Sn−0.3%Tiの組
成をもつCu−Sn基合金製線状母材4に、複数のNb
線1を埋め込み断面減少加工した後、六角成形した一次
スタック材5を作製した。このとき、図10に示す様
に、前記断面積比t(r)が0.20,0.45,0.
60の3種類の組のもの(これを本発明法Aと呼ぶ)
と、図11に示す様に、前記断面積比t(r)が0.2
2,0.47,0.55の3種類の組のもの(これを本
発明法Bと呼ぶ)の2組を作製した。
Example 3 A superconducting wire according to the present invention was produced by the procedure shown in FIGS. First, a plurality of Nb is added to the Cu-Sn based alloy linear base material 4 having a composition of Cu-13% Sn-0.3% Ti.
After embedding the wire 1 and reducing the cross section, a hexagonally shaped primary stack material 5 was produced. At this time, as shown in FIG. 10, the cross-sectional area ratio t (r) is 0.20, 0.45, 0.
60 sets of 3 types (this is called the method A of the present invention)
Then, as shown in FIG. 11, the cross-sectional area ratio t (r) is 0.2.
Two sets of three kinds of sets of 2, 0.47 and 0.55 (this is called the method B of the present invention) were prepared.

【0037】これら2組の一次スタック材を、Cu−1
3%Sn−0.3%Tiの組成をもち内径の異なる2つ
の合金管(最外層9および内部層7)中に、内層部から
外層部にかけて断面積比t(r)の小さいものから順に
スタックし(図10および図11参照)、中央部に無酸
素銅(安定化銅)を、またその周囲にTaからなる拡散
バリヤ層8を設けて断面減少加工を施し、線径0.7m
mの線材とした。これら2種類の線材に680℃で50
時間の熱処理を施し、各線材の各層内の残存Nb芯を電
子顕微鏡で観察した。その結果を表3に示す。
Cu-1 was used as the primary stack material for these two sets.
In two alloy pipes (outermost layer 9 and inner layer 7) having a composition of 3% Sn-0.3% Ti and different inner diameters, the cross-sectional area ratio t (r) from the inner layer portion to the outer layer portion is small in order. Stacked (see FIG. 10 and FIG. 11), oxygen-free copper (stabilized copper) is provided in the central portion, and a diffusion barrier layer 8 made of Ta is provided in the periphery thereof to reduce the cross-section, and the wire diameter is 0.7 m.
m wire rod. 50 at 680 ° C for these two types of wire
After heat treatment for a time, the remaining Nb core in each layer of each wire was observed with an electron microscope. Table 3 shows the results.

【0038】[0038]

【表3】 [Table 3]

【0039】また、これらの線材を用いてマグネットを
作製してドリフト量を測定した。以上の結果を上記実施
例1、2の結果とあわせて図12に示す。このグラフか
ら、比の値(σ/x)が0.05〜0.4の範囲内では
ドリフト量0.01ppm/hという極めて高い磁場安
定度が実現できていることがわかる。この結果から、本
発明法は超電導マグネットの永久電流モードでの電流減
衰の低減に有効な線材の提供を可能にすることがわか
る。
Further, a magnet was produced using these wire rods and the amount of drift was measured. The above results are shown in FIG. 12 together with the results of Examples 1 and 2 above. From this graph, it can be seen that extremely high magnetic field stability with a drift amount of 0.01 ppm / h can be realized when the ratio value (σ / x) is in the range of 0.05 to 0.4. From this result, it is understood that the method of the present invention makes it possible to provide a wire rod effective for reducing the current attenuation in the persistent current mode of the superconducting magnet.

【0040】[0040]

【発明の効果】本発明は以上の様に構成されており、最
終熱磁処理後の超電導線材の残存Nb芯の分布を均一に
することができる様になった。これによって、Nb3
nの超電導線材強度を高め、歪みによる臨界電流密度J
cやn値の劣化を防止することができると共に、臨界電
流密度Jcやn値自体の向上も達成することができる様
になる。また本発明の超電導線材は、優れた超電導マグ
ネットの構成素材となり得るものであり、これによって
分析、医療等の幅広い分野における機器の性能向上が期
待できる。
The present invention is constructed as described above, and the distribution of the remaining Nb cores of the superconducting wire after the final thermomagnetic treatment can be made uniform. As a result, Nb 3 S
n superconducting wire strength is increased and the critical current density due to strain J
It is possible to prevent the deterioration of the c and n values and also to improve the critical current density Jc and the n value itself. Further, the superconducting wire of the present invention can be a constituent material of an excellent superconducting magnet, which can be expected to improve the performance of devices in a wide range of fields such as analysis and medical treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】ブロンズ法の手順を説明する為の概略図であ
る。
FIG. 1 is a schematic diagram for explaining a procedure of a bronze method.

【図2】ブロンズ法の他の手順説明する為の概略図であ
る。
FIG. 2 is a schematic diagram for explaining another procedure of the bronze method.

【図3】従来法によって製造したNb3 Sn超電導線材
におけるSn濃度の半径方向の分布を示すグラフであ
る。
FIG. 3 is a graph showing a radial distribution of Sn concentration in a Nb 3 Sn superconducting wire manufactured by a conventional method.

【図4】本発明法によって製造したNb3 Sn超電導線
材における典型的なSn濃度の半径方向の分布を示すグ
ラフである。
FIG. 4 is a graph showing a typical radial distribution of Sn concentration in a Nb 3 Sn superconducting wire manufactured by the method of the present invention.

【図5】実施例1で行なった本発明法の手順を説明する
為の概略図である。
FIG. 5 is a schematic view for explaining the procedure of the method of the present invention performed in Example 1.

【図6】実施例1で行なった従来法の手順を説明する為
の概略図である。
FIG. 6 is a schematic diagram for explaining the procedure of the conventional method performed in Example 1.

【図7】超電導線材の臨界電流密度Jcやn値等に及ぼ
す歪みの影響について示したグラフである。
FIG. 7 is a graph showing the effect of strain on the critical current density Jc and n value of a superconducting wire.

【図8】実施例2で行なった本発明法の手順を説明する
為の概略図である。
FIG. 8 is a schematic diagram for explaining the procedure of the method of the present invention performed in Example 2.

【図9】実施例2で行なった従来法の手順を説明する為
の概略図である。
FIG. 9 is a schematic diagram for explaining the procedure of the conventional method performed in Example 2.

【図10】実施例3で行なった本発明法Aの手順を説明
する為の概略図である。
FIG. 10 is a schematic diagram for explaining the procedure of the method A of the present invention performed in Example 3.

【図11】実施例3で行なった本発明法Bの手順を説明
する為の概略図である。
FIG. 11 is a schematic view for explaining the procedure of the method B of the present invention performed in Example 3.

【図12】σ/xとドリフト量の関係を示すグラフであ
る。
FIG. 12 is a graph showing the relationship between σ / x and the amount of drift.

【符号の説明】[Explanation of symbols]

1 Nb線 2 Cu−Sn基合金製管 3 単芯線 4 Cu−Sn基合金製線状母材 5 一次スタック材 6 無酸素銅(安定化銅) 7 内部層 8 NbまたはTa層(拡散バリア層) 9 外層ケース(最外層) 10 線材群 11 二次スタック材 1 Nb wire 2 Cu-Sn group alloy pipe 3 Single core wire 4 Cu-Sn group alloy linear matrix 5 Primary stack material 6 Oxygen-free copper (stabilized copper) 7 Inner layer 8 Nb or Ta layer (diffusion barrier layer) ) 9 outer layer case (outermost layer) 10 wire group 11 secondary stack material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 康彦 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 倉橋 秀文 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 枩倉 功和 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiko Inoue 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel Co., Ltd. Kobe Research Institute (72) Inventor Hidefumi Kurahashi Takatsuka, Nishi-ku, Kobe-shi, Hyogo 1-5-5 Taiwan Kobe Works, Kobe Steel Co., Ltd. (72) Inventor Kazukazu Hakukura 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel Works, Kobe Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 線・棒状の安定化銅、円筒状の拡散バリ
ア層、略円筒状のCu−Sn基合金製内部層、Cu−S
n基合金製線状母材に複数のNb線を埋設した一次スタ
ック材を円筒状に複数束ねた線材群、および略円筒状の
CuまたはCu−Sn基合金製最外層を、半径方向中心
側から外側に向かって上記々載順序で配置して二次スタ
ック材を構成し、該二次スタック材を伸線加工した後、
熱処理して前記Nb線の表面近傍にNb3 Snを生成さ
せるNb3 Sn超電導線材の製造方法において、中心か
らr1 ,r2 (但し、r1 >r2 )の距離にある一次ス
タック材に埋設されたNb線の断面積比を、夫々t(r
1 ),t(r2 )とすると共に、中心から最外方側およ
び最内方側までの夫々の距離rout ,rinにある一次ス
タック材に埋設されたNb線の断面積比を、夫々t(r
out ),t(rin)としたとき、これらが下記(1)式
および(2)式を満足する様に二次スタック材を構成し
て前記熱処理を行なうことを特徴とするNb3 Sn超電
導線材の製造方法。 t(r1 )≧t(r2 ) …(1) t(rout )>t(rin) …(2)
1. A wire / rod-shaped stabilized copper, a cylindrical diffusion barrier layer, a substantially cylindrical inner layer made of a Cu—Sn based alloy, and Cu—S.
A wire rod group in which a plurality of primary stack materials in which a plurality of Nb wires are embedded in an n-base alloy linear base material are bundled in a cylindrical shape, and a substantially cylindrical Cu or Cu-Sn base alloy outermost layer are provided on the radial center side. From the above to the outside to configure the secondary stack material arranged in the above-mentioned mounting order, and after drawing the secondary stack material,
In a method for producing an Nb 3 Sn superconducting wire which is heat-treated to generate Nb 3 Sn near the surface of the Nb wire, in a primary stack material at a distance of r 1 , r 2 (where r 1 > r 2 ) from the center, The cross-sectional area ratios of the buried Nb wires are t (r
1 ), t (r 2 ) and the cross-sectional area ratios of the Nb wires embedded in the primary stack material at the distances r out and r in from the center to the outermost side and the innermost side, respectively, T (r)
out ), t (r in ), the Nb 3 Sn superconducting material is characterized in that the heat treatment is performed by forming a secondary stack material so that these satisfy the following expressions (1) and (2). Manufacturing method of wire. t (r 1 ) ≧ t (r 2 ) ... (1) t (r out )> t (r in ) ... (2)
【請求項2】 Nb3 Sn超電導線材中に分散して存在
する残存Nb芯が下記(3)式を満足することを特徴と
するNb3 Sn超電導線材。 0.05≦σ/x≦0.4 …(3) 但し、σ:残存Nb芯の直径の標準偏差 x:残存Nb芯の直径の平均値
2. A Nb 3 Sn superconducting wire, characterized in that the residual Nb cores dispersedly present in the Nb 3 Sn superconducting wire satisfy the following formula (3). 0.05 ≦ σ / x ≦ 0.4 (3) where σ: standard deviation of the diameter of the remaining Nb core x: average value of the diameter of the remaining Nb core
JP27679794A 1994-11-10 1994-11-10 Nb3Sn superconducting wire Expired - Fee Related JP3608232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27679794A JP3608232B2 (en) 1994-11-10 1994-11-10 Nb3Sn superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27679794A JP3608232B2 (en) 1994-11-10 1994-11-10 Nb3Sn superconducting wire

Publications (2)

Publication Number Publication Date
JPH08138468A true JPH08138468A (en) 1996-05-31
JP3608232B2 JP3608232B2 (en) 2005-01-05

Family

ID=17574519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27679794A Expired - Fee Related JP3608232B2 (en) 1994-11-10 1994-11-10 Nb3Sn superconducting wire

Country Status (1)

Country Link
JP (1) JP3608232B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109961901A (en) * 2017-12-25 2019-07-02 西部超导材料科技股份有限公司 A kind of preparation method of multicore high-tin bronze/Nb compound bar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109961901A (en) * 2017-12-25 2019-07-02 西部超导材料科技股份有限公司 A kind of preparation method of multicore high-tin bronze/Nb compound bar

Also Published As

Publication number Publication date
JP3608232B2 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
EP2099080A1 (en) Nb3Sn superconducting wire manufactured by internal Sn process and precursor for manufacturing the same
EP2466660B1 (en) Precursor for a Nb3Sn superconductor wire, method for manufacturing the same, and Nb3Sn superconductor wire
WO2007099820A1 (en) PRECURSOR FOR MANUFACTURE OF Nb3Sn SUPERCONDUCTING WIRE ROD, AND Nb3Sn SUPERCONDUCTING WIRE ROD
JP6585519B2 (en) Precursor for producing Nb3Sn superconducting wire, and method for producing Nb3Sn superconducting wire
JP2007128686A (en) Nb3Sn SUPERCONDUCTING WIRE MATERIAL MANUFACTURED BY INSIDE DIFFUSION METHOD
JPH08138468A (en) Nb3sn superconductive wire material and manufacture of it
EP0405405B1 (en) Multifilament superconducting wire of nb3al
JP2910586B2 (en) Nb (3) Sn superconducting wire
JP3920606B2 (en) Powder method Nb (3) Method for producing Sn superconducting wire
JP3182978B2 (en) Nb (3) Sn Superconducting Wire for Magnet Operated by Permanent Current and Manufacturing Method Thereof
Kamisada et al. Research and development of superconductors for commercial frequency
JPH08180752A (en) Nb3sn superconductive wire and manufacture thereof
JP5164815B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JP2009059652A (en) BRONZE PROCESS Nb3Sn SUPERCONDUCTING WIRE ROD AND ITS PRECURSOR
JP4013335B2 (en) Nb3Sn compound superconductor precursor wire and method for manufacturing the same, Nb3Sn compound superconductor conductor manufacturing method, and Nb3Sn compound superconductor coil manufacturing method
JP3754522B2 (en) Nb (3) Sn superconducting wire
JP2003045247A (en) Superconductive cable
JPH0982149A (en) Nb3sn superconducting wire excellent in strength and workability
Nakayama et al. Alumina dispersion-strengthened copper alloy matrix Ti added Nb3Sn wire by the tube process
JP3265618B2 (en) Composite billet for compound superconducting wire and method for producing compound superconducting wire
JPH11111081A (en) Oxide superconducting wire
JPS5978404A (en) Nb3sn compound superconductive wire
JPH05182534A (en) Nbti alloy group superconductive wire for ac service
JP2000348547A (en) Superconductor and manufacture thereof
JPH087681A (en) A3b type compound superconductive wire rod and manufacture thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees