JPH08134519A - Stave cooler - Google Patents

Stave cooler

Info

Publication number
JPH08134519A
JPH08134519A JP29906694A JP29906694A JPH08134519A JP H08134519 A JPH08134519 A JP H08134519A JP 29906694 A JP29906694 A JP 29906694A JP 29906694 A JP29906694 A JP 29906694A JP H08134519 A JPH08134519 A JP H08134519A
Authority
JP
Japan
Prior art keywords
furnace
stave cooler
refractory
base material
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29906694A
Other languages
Japanese (ja)
Inventor
Takaaki Okuda
隆昭 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29906694A priority Critical patent/JPH08134519A/en
Publication of JPH08134519A publication Critical patent/JPH08134519A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To prevent an obstruction of the descent of raw material caused by the metallic ribs of a base material even after losing cast-in refractories and to make the heat deformation difficult to occur even in the end period of furnace life by forming the lines of refractory materials in the vertical direction and holding the refractory materials with the metallic ribs of the base material, in the stave cooler used for the furnace wall, etc., of a blast furnace. CONSTITUTION: In the stave cooler for cooling furnace wall integrally constituted by assembling a pipe for cooling at the outside of the furnace using a metallic base material and refractory materials at the inside of the furnace, plural lines of the refractory materials 3 are formed in the vertical direction and held with the metallic ribs 5 of the base material. For example, the refractory brick as the refractory material 3 and a spheroidal graphite cast iron as the metallic rib 5 of the base material are used. Further, a ceramic wool which can hold the compressivity and stability without melting and deteriorating even under the high temp. such as about 1300 deg.C, is used as a heat insulating material 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉の炉壁などに使用
するステーブクーラーの構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a stave cooler used for a furnace wall of a blast furnace.

【0002】[0002]

【従来の技術】高炉の炉壁などに使用する図9に示すス
テーブクーラー6は鉄皮10の内側に設置され、さらに
その内側に耐火煉瓦層15を設けることで炉内の高熱に
対して鉄皮を保護する冷却装置である。ステーブクーラ
ー自体は図10のように耐火煉瓦12を水平列状に内面
側に配し、冷却水を通す冷却管13を鋳鉄等の母材金属
14で一体に構成するものである。この冷却管は図11
に示すようにステーブクーラーからその上のステーブク
ーラーへ連絡管16により冷却水を通し、ヘッドタンク
17、クーラー18、ポンプ19という閉循環系を構成
する。
2. Description of the Related Art A stave cooler 6 shown in FIG. 9 which is used for a furnace wall of a blast furnace is installed inside a steel shell 10 and a refractory brick layer 15 is provided inside the stave cooler 6 to prevent the heat from rising in the furnace. A cooling device that protects the skin. In the stave cooler itself, as shown in FIG. 10, refractory bricks 12 are arranged in a horizontal row on the inner surface side, and a cooling pipe 13 for passing cooling water is integrally formed of a base metal 14 such as cast iron. This cooling pipe is shown in FIG.
As shown in FIG. 3, cooling water is passed from the stave cooler to the stave cooler thereabove through the connecting pipe 16 to form a closed circulation system including a head tank 17, a cooler 18, and a pump 19.

【0003】従来の技術として、例えば、特公昭52−
8241号公報に開示されている「治金用炉の冷却装置
の冷却器」がある。この技術の特徴は図6に示すよう
に、母材金属筋(リブ)5からアスベスト製ガスケット
20で絶縁された耐火煉瓦12の列をステーブクーラー
の横方向に幅全体に設けるものである。これは耐火煉瓦
を母材金属リブにより、水平方向に挟み込んで支持する
ことで耐火煉瓦の脱落を防止しようとの考えに立つもの
である。また、炉内側に温度変動に対して膨張や収縮の
熱変形が生じる際に耐火煉瓦と母材金属リブの間のガス
ケットが膨張、収縮することで追従を容易にするとの考
えもある。
As a conventional technique, for example, Japanese Patent Publication No. 52-
There is a "cooler for a cooling device for a metallurgical furnace" disclosed in Japanese Patent No. 8241. As shown in FIG. 6, the feature of this technique is that a row of refractory bricks 12 insulated from a base metal bar (rib) 5 with an asbestos gasket 20 is provided across the width of a stave cooler. This is based on the idea of preventing the refractory brick from falling off by horizontally sandwiching and supporting the refractory brick with the base metal ribs. There is also an idea that the gasket between the refractory brick and the metal rib of the base metal expands and contracts when thermal deformation such as expansion and contraction occurs in the furnace due to temperature fluctuations, thereby facilitating tracking.

【0004】実際の製造に当っては耐火煉瓦の長さを大
小2種類準備し、ステーブクーラーの各煉瓦列の全長に
近くなるように大小の煉瓦を組み合わせて配列する。こ
れは、ステーブクーラーが図9に示すように円錐台状の
高炉の炉内形状を構成するように配置することから上辺
と下辺の長さが異なり、従って、各ステーブクーラーの
煉瓦列の長さもその位置に応じて変化していくことに対
応する必要があるからである。このような煉瓦構成は円
錐台内面に煉瓦層を設ける場合には一般的にとられる手
法である。また、特公昭52−8241号公報には耐火
煉瓦を鉄製の格子状リブによって取り囲む構造も記述さ
れている。
In actual manufacturing, two types of refractory bricks of different lengths are prepared, and bricks of different sizes are arranged so as to be close to the total length of each brick row of the stave cooler. This is because the stave coolers are arranged so as to form the shape of a truncated cone-shaped blast furnace as shown in FIG. 9, and therefore the lengths of the upper side and the lower side are different, and therefore the length of the brick row of each stave cooler is also different. This is because it is necessary to deal with the change depending on the position. Such a brick structure is a method generally used when a brick layer is provided on the inner surface of a truncated cone. Further, Japanese Patent Publication No. 52-8241 describes a structure in which a refractory brick is surrounded by grid ribs made of iron.

【0005】[0005]

【発明が解決しようとする課題】前記の従来技術は次の
問題点を有する。第一の問題点は、高炉の稼働年数を経
るにつれて耐火煉瓦が母材金属リブよりも早く消失し、
その結果、ステーブ稼働面は横方向の母材金属リブのみ
が残ることである。耐火煉瓦は炉内壁を構成する一般材
として使用されるが、高炉壁の内面は高温のガスが上向
きに流れることより極めて温度変動の激しい条件下にあ
り、煉瓦材質ではこの温度変動に追従できず、炉内面よ
り徐々に剥離、脱落していく。これはスポーリングと称
される煉瓦の損耗形態の一つである。
The above-mentioned prior art has the following problems. The first problem is that the refractory brick disappears faster than the base metal ribs as the blast furnace goes into operation.
As a result, only the lateral base metal ribs remain on the stave working surface. Although refractory bricks are used as a general material for forming the inner wall of the furnace, the inner surface of the blast furnace wall is in a condition where the temperature changes extremely due to the upward flow of hot gas, and the brick material cannot follow this temperature change. , Gradually peeling from the inner surface of the furnace and falling off. This is one of the forms of brick wear called spalling.

【0006】図12は実高炉での炉壁内面での温度変動
状況を縦軸に炉壁内面ガス温度を、横軸に時刻をとって
示した例である。本例では、3時の時点において約40
0℃であるがその後、急激に温度上昇し、7時の時点で
は800℃を越える状況にある。また、その間、短時間
内での昇温、降温を繰返している状況が示されている。
これにより、高炉の稼働年を経るにつれて、ステーブク
ーラーの内側の耐火煉瓦層が消失し、ついでステーブク
ーラーの内面側が原料や炉内ガスと接触することになる
が、ステーブクーラー自身の耐火煉瓦もやがて消失し
て、横方向に並んだ母材金属リブのみが残存する状況と
なる。また、格子リブの場合でも横方向に金属リブが残
存する状況は同じである。
FIG. 12 shows an example in which the vertical axis represents the temperature of the gas inside the furnace wall and the horizontal axis represents the time, showing the temperature fluctuations on the inner surface of the furnace wall in the actual blast furnace. In this example, it is about 40 at 3 o'clock.
Although the temperature is 0 ° C, the temperature rises sharply thereafter, and the temperature exceeds 800 ° C at 7 o'clock. In addition, a situation is shown in which during that time, the temperature is raised and lowered repeatedly within a short time.
As a result, over the years of operation of the blast furnace, the refractory brick layer inside the stave cooler disappears, and then the inner surface side of the stave cooler comes into contact with the raw materials and furnace gas, but the refractory bricks of the stave cooler will soon disappear. It disappears and only the base metal ribs arranged in the lateral direction remain. Even in the case of the grid rib, the situation in which the metal rib remains in the lateral direction is the same.

【0007】前記金属リブによってできる横方向の母材
金属の凹凸は、図7に示すように、炉内での原料降下に
おいて、炉壁近傍でコークス層7と鉱石層8との混合層
9を発生させる。混合層は原料と壁面との摩擦抵抗がス
テーブクーラー母材金属の凹凸により増大するため、壁
面近傍での原料降下速度が遅くなることにより発生する
ものである。一般にコークス粒は鉱石に比して粒径が大
きく、コークス層は鉱石層よりガスの通気圧損が少な
い。通常の高炉操業ではコークス層と鉱石層が交互に層
状に積み重なるように炉内に装入していく。炉壁近傍に
混合層が発生するとこの部分ではガスの通気圧損が鉱石
層とコークス層の中間的な値となり、鉱石層よりガスが
通過しやすくなる。従って、炉内のガス流れを炉壁周辺
のみ制御困難な不均一なものとし、高炉の操業安定性を
乱し、炉内ガスの利用率を低減させる原因となる。
As shown in FIG. 7, the unevenness of the base metal in the lateral direction formed by the metal ribs causes the mixed layer 9 of the coke layer 7 and the ore layer 8 to be formed in the vicinity of the furnace wall when the raw material is dropped in the furnace. generate. The mixed layer is generated because the frictional resistance between the raw material and the wall surface increases due to the unevenness of the metal of the stave cooler base metal, and the raw material descent rate near the wall surface becomes slow. Generally, coke grains have a larger grain size than ores, and the coke layer has less gas pressure loss than the ore layer. In a normal blast furnace operation, the coke layers and the ore layers are charged into the furnace so that they are alternately stacked. When a mixed layer occurs near the furnace wall, the gas ventilation pressure loss in this part becomes an intermediate value between the ore layer and the coke layer, and the gas easily passes through the ore layer. Therefore, it is difficult to control the gas flow in the furnace only around the furnace wall, which disturbs the operation stability of the blast furnace and reduces the utilization rate of the gas in the furnace.

【0008】第二の問題点は、炉命末期になると図8の
ようにステーブ6の下端部が熱変形により炉内側にせり
出す場合があることである。これも炉内の原料降下を阻
害し、あるいは炉壁付着物の発生源となって操業の不安
定要因となる。また、変形が甚だしい場合には給排水の
パイプが破断したり、ステーブクーラーと鉄皮との間に
高温ガスが流れ込むことでキャスタブル11が損傷し、
鉄皮を赤熱させることもある。
The second problem is that at the end of the life of the furnace, the lower end of the stave 6 may protrude into the furnace due to thermal deformation as shown in FIG. This also hinders the fall of the raw materials in the furnace, or becomes a source of deposits on the furnace wall, which becomes an unstable factor in the operation. Also, if the deformation is severe, the pipes for water supply and drainage may be broken, or hot gas may flow between the stave cooler and the iron shell, damaging the castable 11,
Sometimes the iron skin glows red.

【0009】本発明の目的は鋳込み煉瓦が消失した後で
も、上記のような母材金属リブによる原料降下の阻害を
生じず、また、炉命末期においても熱変形を生じにくい
ステーブクーラーを提供することである。
An object of the present invention is to provide a stave cooler which does not cause the above-mentioned inhibition of the raw material drop by the metal ribs of the base metal even after the cast brick disappears, and is resistant to thermal deformation even at the end of the life of the furnace. That is.

【0010】[0010]

【課題を解決するための手段】本発明は前記課題を解決
するものであって、母材金属により炉外側に冷却用パイ
プを、炉内側に耐火性物質を組み込んで一体に構成する
ステーブクーラーにおいて、耐火性物質の列を縦方向に
複数列配列するとともに、母材金属リブにより保持する
ことを特徴とするステーブクーラーである。
SUMMARY OF THE INVENTION The present invention is to solve the above problems and provides a stave cooler in which a base metal is used to integrally form a cooling pipe on the outside of the furnace and a refractory material on the inside of the furnace. The stave cooler is characterized by arranging a plurality of rows of refractory material in a longitudinal direction and holding the rows by a base metal rib.

【0011】[0011]

【作用】本発明のステーブクーラーの構造は、炉内側に
配列する耐火物物質の列を縦方向に複数配列し、母材金
属リブにより保持するように一体に構成する。したがっ
て、稼働年数が経過し、耐火性物質が消失した後には、
縦方向の母材金属リブが残存するが、この縦方向の母材
金属の凹凸は炉内原料の降下時に抵抗とはならず、従っ
て、炉壁近傍での原料降下速度が遅くなることがなく、
コークス層と鉱石層の混合層が生じない。また、本発明
のステーブクーラーの構造は、母材金属リブが縦方向に
残存するため、ステーブ本体の水平断面剛性が従来構造
のステーブクーラーより高まることにより、熱変形を生
じにくく、炉内原料降下を阻害せず、あるいは炉壁付着
物の発生源とならず、操業の安定維持に寄与し、また冷
却パイプの破損や鉄皮赤熱の危険性も低減する。
In the structure of the stave cooler of the present invention, a plurality of rows of the refractory material arranged inside the furnace are arranged in the vertical direction, and are integrally constructed so as to be held by the base metal ribs. Therefore, after the years of operation have passed and the refractory material has disappeared,
Although the base metal ribs in the vertical direction remain, the unevenness of the base metal in the vertical direction does not act as a resistance when the raw material in the furnace descends, so the raw material descending speed in the vicinity of the furnace wall does not slow down. ,
There is no mixed layer of coke layer and ore layer. Further, in the structure of the stave cooler of the present invention, since the base metal ribs remain in the vertical direction, the horizontal sectional rigidity of the stave body is higher than that of the stave cooler of the conventional structure, so that thermal deformation is less likely to occur, and the raw material descent in the furnace is reduced. It does not interfere with the above, or does not become a source of deposits on the furnace wall, contributes to stable operation maintenance, and reduces the risk of damage to the cooling pipe and red heat of the skin.

【0012】[0012]

【実施例】以下、本発明の一実施例を図面により説明す
る。図1は本発明の一実施例を示すステーブクーラーの
炉内より見た平面図であり、図2はその側面図、図3は
図1のA−A面における断面図である。図1の例におい
ては、耐火性物質3として耐火煉瓦を使用し、母材金属
1として球状黒鉛鋳鉄を使用している。また、断熱材4
として1300℃程度の高温の下で溶解および変質せ
ず、圧縮性、復元性を維持できるセラミックウールを使
用する。母材金属リブ5の厚みは鋳造時の湯流れを確保
するために30mm以上とする。
An embodiment of the present invention will be described below with reference to the drawings. 1 is a plan view of a stave cooler showing an embodiment of the present invention as seen from the inside of a furnace, FIG. 2 is a side view thereof, and FIG. 3 is a sectional view taken along the line AA of FIG. In the example of FIG. 1, refractory bricks are used as the refractory material 3, and spheroidal graphite cast iron is used as the base metal 1. Insulation material 4
As the material, ceramic wool is used, which does not melt and deteriorate at a high temperature of about 1300 ° C. and can maintain the compressibility and the restoring property. The thickness of the base metal rib 5 is 30 mm or more in order to secure the flow of molten metal during casting.

【0013】一般にステーブクーラーは図9に示すよう
に円錐台状の炉内プロフィールを構成するように並べる
ことから上辺の長さと下辺の長さが異なるが、耐火煉瓦
は一種類の金型で製作することができ、煉瓦や金型の種
類を増やさずにすむ。すなわち、該耐火煉瓦の列は、ど
の列も同じ幅とし、母材金属リブの厚みを上方から下方
へ適宜変化させることでステーブの上辺と下辺の長さの
違いに対処することができる。
Generally, the stave cooler is arranged so as to form a truncated cone-shaped in-furnace profile as shown in FIG. 9, and therefore the length of the upper side and the length of the lower side are different, but the refractory brick is made of one type of mold. It can be done without increasing the number of bricks and molds. That is, the rows of the refractory bricks have the same width, and by appropriately changing the thickness of the base metal rib from the upper side to the lower side, it is possible to cope with the difference in length between the upper side and the lower side of the stave.

【0014】冷却用パイプ2は耐火性物質3の炉外側に
配置し、母材金属1の中に一体鋳造する。母材金属とし
ては、前記の球状黒鉛鋳鉄の他に、ねずみ鋳鉄、耐熱鋳
鉄、耐熱鋳鋼でもよい。耐火性物質としては、シャモッ
ト系煉瓦、高アルミナ系煉瓦、炭化珪素系煉瓦でもよ
い。また、図4の他の実施例に示すように耐火煉瓦層1
5をステーブクーラー自体に一体化した二重煉瓦構造も
製造可能である。この場合は耐火煉瓦層の築造作業が不
要となり工事期間を短縮できるという効果がある。耐火
性物質は煉瓦12である場合は、鋳造時に一体に鋳造す
る場合と、金属リブによる溝型を製作後、その溝に固形
煉瓦を差し込む場合がある。
The cooling pipe 2 is arranged outside the furnace of the refractory material 3 and is integrally cast into the base metal 1. The base metal may be gray cast iron, heat-resistant cast iron, or heat-resistant cast steel, in addition to the spheroidal graphite cast iron described above. The refractory material may be chamotte brick, high alumina brick, or silicon carbide brick. Further, as shown in another embodiment of FIG. 4, the refractory brick layer 1
It is also possible to manufacture a double brick structure in which 5 is integrated into the stave cooler itself. In this case, the construction work of the refractory brick layer is not required, and the construction period can be shortened. When the refractory material is the brick 12, it may be integrally cast at the time of casting, or a solid brick may be inserted into the groove after the groove mold made of the metal rib is manufactured.

【0015】耐火性物質をキャスタブル25とする場合
は図5のさらに他の実施例のように金属リブ5による溝
型を製作後、その溝にキャスタブルを流し込んでから乾
燥成形させることも可能である。この場合はキャスタブ
ルの保持能力を向上させるために金属リブの上にスタッ
ド21を立てる場合もある。
When the castable 25 is made of a refractory material, it is also possible to fabricate a groove mold with the metal ribs 5 as in the other embodiment of FIG. 5, then cast the castable into the groove and dry-mold it. . In this case, the stud 21 may be stood on the metal rib in order to improve the castable holding ability.

【0016】次に水平断面剛性の向上について述べる。
図6の従来技術の場合にはステーブクーラーの水平断面
は母材金属リブ5間の溝底部において最小面積となり、
図3における本発明の水平断面図中のステーブクーラー
の厚みh1 ×幅bに相当し、断面係数をZ1 とするとZ
1 =bh1 2/6となる。これに対し、本発明では母材金
属リブ5の高さの分だけ水平断面の厚みが増し、h2
なる。従って、その断面係数Z2 はZ2 =bh2 2/6と
なり、Z1 <Z2 であるから、従来より断面剛性は向上
し、変形に対して耐力を高めることができる。
Next, the improvement of the horizontal sectional rigidity will be described.
In the case of the prior art of FIG. 6, the horizontal cross section of the stave cooler has the minimum area at the groove bottom between the base metal ribs 5,
Corresponding to the thickness h 1 × width b of the stave cooler in the horizontal sectional view of the present invention in FIG. 3, where Z 1 is the sectional modulus, Z
A 1 = bh 1 2/6. On the other hand, in the present invention, the thickness of the horizontal cross section is increased by the height of the base metal rib 5 to be h 2 . Therefore, the section modulus Z 2 is because it is Z 2 = bh 2 2/6 becomes, Z 1 <Z 2, can be cross rigidity than conventionally improved, increasing the strength against deformation.

【0017】以上の発明になるステーブクーラーによ
り、稼働年数が経過し、耐火性物質が消失した後には縦
方向の母材金属リブが残存するが、これは炉内原料降下
時に抵抗とはならず、従って、炉壁近傍での原料降下速
度が遅くなることなく、コークス層と鉱石層の混合層が
発生して高炉の操業安定性を乱すという問題が解決され
る。また、ステーブクーラーの水平断面剛性が向上する
ことにより、熱変形によるせり出しによる、炉内原料降
下阻害、あるいは付着物発生による操業の不安定要因と
なったり、冷却パイプの破損や鉄皮赤熱をきたすという
危険性を低減できる。
With the stave cooler according to the above invention, the vertical metal ribs remain in the vertical direction after the refractory material disappears after the operating years have passed, but this does not become a resistance when the raw material falls in the furnace. Therefore, the problem that the mixed layer of the coke layer and the ore layer is generated and the operation stability of the blast furnace is disturbed is solved without slowing down the raw material descent rate near the furnace wall. In addition, since the horizontal cross-section rigidity of the stave cooler is improved, it may cause the material to fall in the furnace due to thermal deformation, which may cause unstable operation due to the generation of deposits, or damage to the cooling pipe or red heat of the skin. The risk can be reduced.

【0018】[0018]

【発明の効果】以上説明したように、本発明のステーブ
クーラーの構造によれば、以下の優れた効果が得られ
る。 (1)炉内側に配列する耐火性物質を縦方向に配列し、
母材金属により保持するように一体に構成したので、稼
働年数が経過し耐火性物質が消失した後には、縦方向の
母材金属リブが残存しても炉内の原料降下の妨げとなら
ず、炉壁近傍でのコークス層と鉱石層の混合層を生じ
ず、従って炉断面におけるガス通気抵抗を炉頂装入装置
により計画的に制御可能に維持でき、炉末期における操
業の安定性を確保できる。
As described above, according to the structure of the stave cooler of the present invention, the following excellent effects can be obtained. (1) Arrange refractory materials arranged inside the furnace in the longitudinal direction,
Since it is integrally configured to be held by the base metal, after the operating years have passed and the refractory material has disappeared, even if the base metal rib in the vertical direction remains, it does not hinder the raw material descent in the furnace. In addition, the mixed layer of coke layer and ore layer in the vicinity of the furnace wall is not generated, therefore the gas ventilation resistance in the furnace cross section can be maintained systematically controllable by the furnace top charging device, and the stability of the operation at the end of the furnace is secured. it can.

【0019】(2)炉内での原料降下が炉壁近傍でもス
ムースになされ、炉断面におけるガス通気抵抗を炉頂装
入装置により制御可能にでき、最適な操業条件を維持で
きることにより結果として溶銑1トン当りの生産に要す
るコークス重量(コークス比)が削減でき多大な経済効
果を発揮できる。 (3)炉内の炉壁近傍での混合層発生が抑制されるので
炉壁に沿って上昇する高炉のガス流が減り、ステーブク
ーラーへの熱負荷が低減するのでステーブクーラー本体
への熱衝撃が緩和され、ステーブクーラー本体の寿命が
延長でき、その結果高炉の寿命延長が図れる。
(2) The material can be smoothly dropped in the furnace even near the furnace wall, the gas ventilation resistance in the furnace cross section can be controlled by the furnace top charging device, and the optimum operating conditions can be maintained. The coke weight (coke ratio) required for production per ton can be reduced and a great economic effect can be exhibited. (3) Since the mixed layer generation near the furnace wall in the furnace is suppressed, the gas flow of the blast furnace rising along the furnace wall is reduced, and the thermal load on the stave cooler is reduced, so that the thermal shock to the stave cooler body is reduced. Is reduced, the life of the stave cooler body can be extended, and as a result, the life of the blast furnace can be extended.

【0020】(4)母材金属リブが縦方向に残存するた
め、ステーブクーラー本体の水平断面剛性が高まること
により熱変形を生じにくく、従って炉内の原料降下を阻
害することがなくなり、また炉壁付着物の発生源となる
こともなく、操業の安定性を維持できる。 (5)ステーブクーラーの熱変形が生じにくいため、冷
却パイプの給排水部の破損を防止できる。
(4) Since the base metal ribs remain in the vertical direction, the horizontal cross-section rigidity of the stave cooler body is increased, so that thermal deformation is less likely to occur, and therefore the raw material descent in the furnace is not hindered. It does not become a source of deposits on the wall, and the stability of operation can be maintained. (5) Since the stave cooler is less likely to be thermally deformed, damage to the water supply / drainage part of the cooling pipe can be prevented.

【0021】(6)ステーブクーラーの熱変形が生じに
くいために、隣接するステーブクーラーの間の目地部が
拡がらず、高温の炉内ガスがステーブクーラーと鉄皮と
の間に流れることが防止され、従ってステーブクーラー
目地部での鉄皮の赤熱を防止でき、鉄皮の亀裂を生じ
ず、高炉の寿命延長が図れる。 (7)耐火性物質に耐火煉瓦を使用する場合、耐火煉瓦
および金型の種類が減るので、設計、製造、管理上きわ
めて効果がある。
(6) Since the stave cooler is less likely to be thermally deformed, the joint portion between the adjacent stave coolers does not spread, and high temperature furnace gas is prevented from flowing between the stave cooler and the iron shell. Therefore, it is possible to prevent the reddish heat of the iron shell at the joints of the stave cooler, to prevent cracking of the iron shell, and to extend the life of the blast furnace. (7) When refractory bricks are used as the refractory material, the types of refractory bricks and molds are reduced, which is extremely effective in designing, manufacturing, and managing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るステーブクーラーの実施例を示す
炉内側から見た平面図
FIG. 1 is a plan view of an example of a stave cooler according to the present invention as viewed from the inside of a furnace.

【図2】図1の側面図FIG. 2 is a side view of FIG.

【図3】図1のA−A面における断面図FIG. 3 is a sectional view taken along the line AA of FIG.

【図4】他の実施例のステーブクーラーの断面図FIG. 4 is a sectional view of a stave cooler according to another embodiment.

【図5】他の実施例のステーブクーラーの断面図FIG. 5 is a sectional view of a stave cooler of another embodiment.

【図6】従来のステーブクーラーを示す炉内側から見た
平面図
FIG. 6 is a plan view of a conventional stave cooler viewed from the inside of the furnace.

【図7】従来のステーブクーラーでの炉内原料降下阻害
状況を説明する図
FIG. 7 is a diagram for explaining a situation in which a raw material descent in a furnace is prevented in a conventional stave cooler.

【図8】従来のステーブクーラーの下端部熱変形状況を
説明する図
FIG. 8 is a diagram for explaining a thermal deformation state of a lower end portion of a conventional stave cooler.

【図9】高炉の炉壁構造全体図[Fig. 9] Overall view of furnace wall structure of blast furnace

【図10】従来のステーブクーラーの斜視図FIG. 10 is a perspective view of a conventional stave cooler.

【図11】ステーブクーラー冷却水循環系を示す図FIG. 11 is a diagram showing a stave cooler cooling water circulation system.

【図12】高炉の炉壁内面での温度変動状況の例を示す
グラフ
FIG. 12 is a graph showing an example of temperature fluctuations on the inner surface of the furnace wall of the blast furnace.

【符号の説明】[Explanation of symbols]

1 母材金属 2 冷却パイプ 3 耐火性物質 4 断熱材 5 母材金属リブ 6 ステーブクーラー 7 コークス層 8 鉱石層 9 混合層 10 鉄皮 11 キャスタブル 12 耐火煉瓦 13 冷却管 14 母材金属 15 耐火煉瓦層 16 連絡管 17 ヘッドタンク 18 クーラー 19 ポンプ 20 ガスケット 21 スタッド 25 キャスタブル 1 Base Metal 2 Cooling Pipe 3 Refractory Material 4 Heat Insulating Material 5 Base Metal Rib 6 Stave Cooler 7 Coke Layer 8 Ore Layer 9 Mixed Layer 10 Iron Crust 11 Castable 12 Refractory Brick 13 Cooling Pipe 14 Base Metal 15 Fire Brick Layer 16 Connecting pipe 17 Head tank 18 Cooler 19 Pump 20 Gasket 21 Stud 25 Castable

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 母材金属により炉外側に冷却用パイプ
を、炉内側に耐火性物質を組み込んで一体に構成する炉
壁冷却用ステーブクーラーにおいて、耐火性物質の列を
縦方向に複数列配列するとともに、母材金属リブにより
保持することを特徴とするステーブクーラー。
1. A furnace wall cooling stave cooler in which a cooling pipe is incorporated into the outside of the furnace and a refractory material is incorporated into the inside of the furnace by a base metal to integrally form a plurality of rows of the refractory material in a vertical direction. In addition, the stave cooler is characterized by being held by the metal rib of the base material.
JP29906694A 1994-11-09 1994-11-09 Stave cooler Withdrawn JPH08134519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29906694A JPH08134519A (en) 1994-11-09 1994-11-09 Stave cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29906694A JPH08134519A (en) 1994-11-09 1994-11-09 Stave cooler

Publications (1)

Publication Number Publication Date
JPH08134519A true JPH08134519A (en) 1996-05-28

Family

ID=17867765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29906694A Withdrawn JPH08134519A (en) 1994-11-09 1994-11-09 Stave cooler

Country Status (1)

Country Link
JP (1) JPH08134519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100402670C (en) * 2002-07-31 2008-07-16 奥托库姆普联合股份公司 Cooling element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100402670C (en) * 2002-07-31 2008-07-16 奥托库姆普联合股份公司 Cooling element

Similar Documents

Publication Publication Date Title
EP2419542B1 (en) Cooling plate for a metallurgical furnace
CA2209682A1 (en) Plate cooler for metallurgical furnaces
JP5511601B2 (en) Water cooling jacket, furnace body cooling structure and furnace body cooling method using the same
JP5691786B2 (en) Stave
JP4762172B2 (en) Furnace body water cooling structure of flash furnace
KR100333760B1 (en) Refractory wall metallurgical vessel comprising such a refractory wall and method in which such a refractory wall is applied
JP3796981B2 (en) Stave
JP5441593B2 (en) Water cooling jacket, furnace body cooling structure and furnace body cooling method using the same
JPH08134519A (en) Stave cooler
WO2006040394A1 (en) Metallurgical furnace
CN214470084U (en) Wall plate protection system for metallurgical furnace and metallurgical furnace wall plate body
JP7294830B2 (en) A cooling structure for the outlet of a melting furnace and a method for manufacturing a metal plate block used in the cooling structure.
NL1011838C2 (en) Cooling panel for a shaft furnace, shaft furnace provided with such cooling panels and a method for the manufacture of such a cooling panel.
JP2713023B2 (en) Furnace body protection wall for metallurgical furnace and repair method thereof
EP3458786B1 (en) Furnace stave
JP2778339B2 (en) Stave cooler with thermal stress relaxation type functionally gradient material
JP4757960B2 (en) Blast furnace morning glory structure and design method thereof
JP7037419B2 (en) Metal smelting furnace and its operation method
RU2263150C1 (en) Blast furnace
JP2014173164A (en) Stave cooler and blast furnace including the same
US1703517A (en) Blast furnace
JPH059542A (en) Molten metal vessel
JPH0345108Y2 (en)
CN214496367U (en) Wall plate protection system for metallurgical furnace and metallurgical furnace wall plate body
JPS6238234Y2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115