JPH059542A - Molten metal vessel - Google Patents

Molten metal vessel

Info

Publication number
JPH059542A
JPH059542A JP15907391A JP15907391A JPH059542A JP H059542 A JPH059542 A JP H059542A JP 15907391 A JP15907391 A JP 15907391A JP 15907391 A JP15907391 A JP 15907391A JP H059542 A JPH059542 A JP H059542A
Authority
JP
Japan
Prior art keywords
refractory
fins
molten metal
lining
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15907391A
Other languages
Japanese (ja)
Other versions
JP2875413B2 (en
Inventor
Yoshiaki Hara
義明 原
Yukio Takahashi
幸雄 高橋
Toshikazu Sakuratani
敏和 桜谷
Mitsuo Saito
三男 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26485985&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH059542(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15907391A priority Critical patent/JP2875413B2/en
Publication of JPH059542A publication Critical patent/JPH059542A/en
Application granted granted Critical
Publication of JP2875413B2 publication Critical patent/JP2875413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PURPOSE:To improve heat dissipation efficiency from a lining refractory and to improve this service life by fixing metal-made fins on the inner face of an iron shell in a molten metal vessel for refining furnace and further, forming the lining refractory layer with brick having the specific linear expansion coefficient. CONSTITUTION:On the outer face of the iron shell 1 in the molten metal vessel, cooling pipes 2 are arranged, and by allowing a cooling medium 3 to flow, water-cooling, air-cooling or mist-cooling is executed. On the inner face of this iron shell 1, the metal-made fins 4 are fixed. The bricks 5 are laid among these fins 4 or monolithic refractory is poured to set the lining refractory layer. At this time, the linear expansion coefficient of the above brick 5 or (linear expansion coefficient + {linear changing rate (%) at 500 deg.C}/{500 X 100}) of the monolithic refractory is made to be >=2X10<-6> (1/ deg.C). Further, it is desirable that fin 4 interval (d) <= refractory thickness LX0.5, fin 4 length 1>=0.5L and >=5.0kcal/m hr deg.C thermal conductivity of lining refractory layer at 800 deg.C, or <5.0kcal/m hr deg.C thermal conductivity and L<=200mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、転炉や電気炉の如き精
錬炉に用いる内張りされた耐火物を有する溶融金属容器
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten metal container having a refractory material lined therein for use in a refining furnace such as a converter or an electric furnace.

【0002】[0002]

【従来の技術】溶融金属容器の内張り耐火物を冷却する
ための従来技術は、例えば特開昭57-67110号公報に開示
されているように、鉄皮外面を水、ガス、ミスト等によ
り冷却する方法がある。しかしながら、通常の溶融金属
容器では鉄皮と耐火物の間に生ずるエアギャップおよ
び、耐火物自体が熱抵抗となるため、鉄皮を冷却しても
内張り耐火物稼働面の温度の低下は小さいという問題が
あった。
2. Description of the Related Art A conventional technique for cooling a refractory lining a molten metal container is to cool the outer surface of an iron skin with water, gas, mist, etc., as disclosed in, for example, JP-A-57-67110. There is a way to do it. However, in an ordinary molten metal container, the air gap that occurs between the iron shell and the refractory and the refractory itself provides thermal resistance, so even if the iron shell is cooled, the temperature drop on the lining refractory operating surface is small. There was a problem.

【0003】エアギャップ防止に関しては、ギャップに
不定形耐火物を圧入する技術が特開昭52-36121号公報に
開示されているが、ギャップが溶融金属容器全面で連続
しているとは限らず、そのため、ギャップ全体に不定形
耐火物を圧入することは難しいという問題があった。ま
た、耐火物自体による熱抵抗は、耐火物厚みを薄くする
ことにより小さくできるが、その場合、耐火物の損耗速
度から決まる溶融金属容器の寿命が短くなり、操業に支
障を来すことになる。
Regarding air gap prevention, a technique of press-fitting an irregular shaped refractory into the gap is disclosed in JP-A-52-36121, but the gap is not always continuous over the entire surface of the molten metal container. Therefore, there is a problem that it is difficult to press-fit the irregular refractory into the entire gap. Also, the thermal resistance due to the refractory itself can be reduced by reducing the refractory thickness, but in that case, the life of the molten metal container, which is determined by the wear rate of the refractory, will be shortened, which will hinder operation. .

【0004】[0004]

【発明が解決しようとする課題】鉄皮外面を冷却するこ
とにより耐火物の温度を低下させる際に鉄皮・耐火物間
に生ずるエアギャップ及び耐火物自体が大きな熱抵抗と
なって炉内からの抜熱を妨げることに対する従来の対策
技術にも問題があったので、本発明は、鉄皮・耐火物間
にエアギャップが生じても内張り耐火物温度を低下させ
ることのできる構造を有する溶融金属容器を提案するこ
とを目的とするものである。
When the temperature of the refractory is lowered by cooling the outer surface of the iron shell, the air gap generated between the iron shell and the refractory and the refractory itself become a large thermal resistance from the inside of the furnace. Since there is a problem in the conventional countermeasure technology for preventing the heat removal of steel, the present invention has a structure having a structure capable of lowering the temperature of the lining refractory even if an air gap occurs between the iron shell and the refractory. The purpose is to propose a metal container.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明は、水
冷、空冷あるいはミスト冷却される鉄皮外面を有する溶
融金属容器において、該鉄皮内面に金属製フィンを固着
し、内張り耐火物層を線膨張係数が2×10-6(1/℃)
以上のレンガで構成するか、あるいは内張り耐火物層を
〔線膨張係数+{ 500℃での線変化率(%)}/{ 500
×100 }〕が2×10-6(1/℃)以上の不定形耐火物で
構成したことを特徴とする溶融金属容器であり、望まし
くは、該フィンの間隔を内張り耐火物層の厚みの 0.5倍
以下で、かつ該フィンの長さを内張り耐火物層の厚みの
0.5倍以上とするか、内張り耐火物層を 800℃での熱伝
導率が 5.0kcal/m・hr・℃以上のレンガあるいは不定
形耐火物で構成するか、あるいは内張り耐火物層を熱伝
導率が 5.0kcal/m・hr・℃未満の耐火物で 200mm以下
の厚みに構成する溶融金属容器である。
That is, according to the present invention, in a molten metal container having an outer surface of an iron shell that is water-cooled, air-cooled or mist-cooled, metal fins are fixed to the inner surface of the iron shell, and a refractory layer lined inside is formed. Linear expansion coefficient is 2 × 10 -6 (1 / ° C)
It is made of the above bricks, or the refractory layer lined is [linear expansion coefficient + {linear change rate (%) at 500 ° C) / {500
X100}] is an amorphous refractory having a size of 2 × 10 -6 (1 / ° C) or more, and it is desirable that the space between the fins is lined with the thickness of the refractory layer. 0.5 times or less, and the length of the fin to the thickness of the refractory layer lining
0.5 times or more, or the inner refractory layer is made of bricks or amorphous refractory having a thermal conductivity of 5.0 kcal / m · hr · ° C or higher at 800 ° C, or the inner refractory layer has thermal conductivity Is a refractory material with a temperature of less than 5.0 kcal / m · hr · ° C and a thickness of 200 mm or less.

【0006】[0006]

【作 用】本発明方法の実施例を図1、図2に示す。鉄
皮1の外面には冷却管2が溶接され、その中を水、ガス
などの冷却媒体が流れることによって鉄皮及び内張り耐
火物を冷却する。冷却方法としては、これ以外に鉄皮に
冷却媒体を吹付ける方法等の鉄皮を介して内張り耐火物
を冷却する方法であれば、その方式にこだわらない。
[Operation] An embodiment of the method of the present invention is shown in FIGS. A cooling pipe 2 is welded to the outer surface of the iron shell 1, and a cooling medium such as water or gas flows therein to cool the iron shell and the refractory lining. The cooling method is not limited to this method as long as it is a method of cooling the lining refractory through the iron shell, such as a method of spraying a cooling medium on the iron shell.

【0007】鉄皮の内面にはフィン4が溶接などで固着
されており、このフィン4の間にレンガ5が積まれるか
(図1参照)、あるいは不定形耐火物6が流し込まれる
(図2参照)。フィンの材質は熱伝導率の高い金属であ
ればよく、最も一般的には、鉄や銅が考えられる。通
常、鉄皮1とレンガ5、不定形耐火物6などの内張り耐
火物との間にはエアギャップが生じ、これが熱抵抗とな
って容器内部からの抜熱が妨げられる。本発明では、内
張り耐火物の内部に熱伝導率の高いフィン4が埋込まれ
ており、フィンを通して容器内部の熱を容器外へ効果的
に逃がすことができる。
Fins 4 are fixed to the inner surface of the iron skin by welding or the like, and bricks 5 are piled up between the fins 4 (see FIG. 1) or an irregular refractory material 6 is poured (FIG. 2). reference). The fin material may be a metal having a high thermal conductivity, and most commonly, iron or copper can be considered. Usually, an air gap is created between the iron skin 1 and the refractory lining such as the brick 5 and the irregular shaped refractory 6, which serves as heat resistance and prevents heat removal from the inside of the container. In the present invention, the fins 4 having high thermal conductivity are embedded inside the refractory lining, and the heat inside the container can be effectively released to the outside of the container through the fins.

【0008】耐火物の温度低下量を増すためには、フィ
ンと内張り耐火物との間の接着を良くすることが必要で
あり、そのためには、内張り耐火物の線膨張係数が重要
な指標となる。レンガを内張りした溶融金属容器におい
て、レンガの線膨張係数とレンガ稼働面近傍の温度との
関係を図9に示す。稼働面近傍とは稼働面から10mm内部
の位置を示す。フィンなしの場合に比べて線膨張係数が
2×10-6(1/℃)以上の場合、稼働面近傍の温度が20
0 ℃低下する。これは、温度が上昇するにつれてレンガ
が膨張し、フィンとレンガとの間が接触するが、線膨張
係数が2×10-6(1/℃)以上のレンガを用いることに
より、フィンとレンガの間の密着がほぼ完全になること
に起因すると考えられる。
In order to increase the temperature decrease of the refractory material, it is necessary to improve the adhesion between the fin and the lining refractory material. For that purpose, the coefficient of linear expansion of the lining refractory material is an important index. Become. In a molten metal container lined with bricks, the relationship between the linear expansion coefficient of the bricks and the temperature near the brick working surface is shown in FIG. The vicinity of the working surface means a position within 10 mm from the working surface. When the coefficient of linear expansion is 2 × 10 -6 (1 / ° C) or more compared to the case without fins, the temperature near the operating surface is 20
Decrease by 0 ° C. This is because the brick expands as the temperature rises, and the fin and the brick come into contact with each other, but by using the brick having a linear expansion coefficient of 2 × 10 -6 (1 / ° C) or more, the fin and the brick It is considered that this is because the close contact between the two becomes almost complete.

【0009】不定形耐火物を内張りした場合には、流込
み後の乾燥により水分が抜けて収縮するため、レンガよ
り大きな線膨張係数でないとフィンとの接触が完全にな
らない。不定形耐火物を内張りした溶融金属容器におい
て、不定形耐火物の線膨張係数+ 500℃での線変化率
(%)/ 500×100と稼働面近傍の温度との関係を図10
に示す。フィンなしの場合に比べて、 線膨張係数+ 500℃での線変化率(%)/ 500×100 が2×10-6(1/℃)以上の場合、稼働面近傍の温度が
200℃低下する。不定形耐火物の場合、乾燥時の収縮分
を補うだけの線膨張係数の大きさが必要であるといえ
る。また、不定形耐火物の材質によっては、残存膨張性
を有するものがあり、この場合には線変化率が正の値と
なる。この場合も収縮する場合と同様に、 線膨張係数+{ 500℃での線変化率(%)}/{ 500×100 } が2×10-6(1/℃)以上とすることによって、稼働面
近傍の温度を低下させることができる。なお 500℃での
線変化率で収縮分を代表させたのは、使用中の耐火物の
うち、フィンと接触する部分の温度が 100〜900 ℃とな
るためである。
When an amorphous refractory material is lined, moisture is released by the drying after pouring and shrinks. Therefore, contact with fins cannot be completed unless the coefficient of linear expansion is larger than that of brick. In a molten metal container lined with an irregular refractory, the relationship between the linear expansion coefficient of the irregular refractory + linear change rate at 500 ℃ (%) / 500 × 100 and the temperature near the operating surface is shown in Fig. 10.
Shown in. Compared to the case without fins, when the linear expansion coefficient + linear change rate (%) at 500 ° C / 500 × 100 is 2 × 10 -6 (1 / ° C) or more, the temperature near the operating surface is
200 ° C lower. In the case of amorphous refractories, it can be said that the linear expansion coefficient must be large enough to compensate for the shrinkage during drying. Further, some amorphous refractory materials have residual expansivity, and in this case, the linear change rate has a positive value. In this case, as in the case of shrinkage, the linear expansion coefficient + {linear change rate (%) at 500 ° C} / {500 × 100} is set to 2 × 10 -6 (1 / ° C) or more The temperature near the surface can be reduced. The shrinkage was represented by the linear change rate at 500 ° C because the temperature of the part of the refractory in use that comes into contact with the fins is 100 to 900 ° C.

【0010】上述のことから、線膨張係数が2×10
-6(1/℃)以上のレンガ、または線膨張係数+{ 500
℃での線変化率(%)/( 500×100 )}が2×10
-6(1/℃)以上の不定形耐火物を内張りすることが、
容器内部からの効果的な抜熱のために極めて有効である
ことが明らかになった。ここで本発明者らは耐火物の温
度低下量を増すためには、フィンの間隔dとフィンの長
さlが重要であることを見出した。フィンの間隔が大き
い場合、あるいはフィンの長さが短い場合には、フィン
を通しての抜熱の効果に比べて鉄皮と耐火物の間のギャ
ップの影響の方が大きくなり、フィンの効果は小さくな
る。フィンの間隔dと耐火物層の厚みLとの比d/Lと
耐火物稼働面近傍の温度との関係を図3に示す。フィン
の間隔を耐火物層厚みの 0.5倍以下とすると耐火物温度
がフィンの無い場合に比べて100℃以上低くなる。
From the above, the coefficient of linear expansion is 2 × 10.
Brick of -6 (1 / ℃) or more, or linear expansion coefficient + {500
Line change rate (%) / (500 × 100)} is 2 × 10
-6 (1 / ° C) or more of irregular shaped refractory can be lined
It has been found to be extremely effective for effective heat removal from the inside of the container. Here, the present inventors have found that the fin spacing d and the fin length l are important in order to increase the temperature decrease amount of the refractory material. If the fin spacing is large, or if the fin length is short, the effect of the gap between the iron skin and the refractory is greater than the effect of heat removal through the fin, and the fin effect is small. Become. FIG. 3 shows the relationship between the ratio d / L of the fin spacing d to the refractory layer thickness L and the temperature near the refractory working surface. If the fin spacing is less than 0.5 times the refractory layer thickness, the refractory temperature will be 100 ° C or more lower than when there is no fin.

【0011】またフィンの長さlと耐火物層の厚みLと
の比l/Lと耐火物稼働面近傍の温度との関係を図4に
示す。フィンの長さを耐火物層厚みの 0.5倍以上とする
と、耐火物温度がフィンの無い場合に比べて 100℃以上
低くなる。因みに図5に耐火物、鉄皮および冷却水の測
温結果から数1により求めたフィンが有る場合と無い場
合のエアギャップでの熱抵抗R1 を示す。
FIG. 4 shows the relationship between the ratio 1 / L of the length l of the fin and the thickness L of the refractory layer and the temperature near the refractory working surface. If the fin length is 0.5 times the refractory layer thickness or more, the refractory temperature will be 100 ℃ or more lower than that without fins. By the way, FIG. 5 shows the thermal resistance R 1 in the air gap with and without the fin, which is obtained from the temperature measurement results of the refractory, the iron shell and the cooling water by the equation 1 .

【0012】 R1 =(T1 −T2 )/q …(数1) 但し、T1 :耐火物の鉄皮側温度、T2 :鉄皮の耐火物
側温度、q:冷却水の入出側温度差から求めた抜熱量で
ある。フィンが無い場合に比べて、フィンを取付けるこ
とによりエアギャップでの熱抵抗が1〜2桁小さくなる
ことが明らかとなった。
R 1 = (T 1 −T 2 ) / q (Equation 1) where T 1 is the temperature of the refractory side of the refractory, T 2 is the temperature of the refractory side of the refractory, and q is the input / output of cooling water. It is the amount of heat removed from the side temperature difference. It has been clarified that the thermal resistance in the air gap is reduced by one to two orders of magnitude by attaching the fins as compared with the case without the fins.

【0013】次に図6に数2から求めた耐火物層の見掛
けの熱伝導率λを示す。 λ=q・Δx/(T3 −T4 ) …(数2) 但し、T3 、T4 :耐火物層の厚み方向の2点の温度、
Δx:2点の測温点間の距離である。フィンを取付ける
ことにより、耐火物層の見掛けの熱伝導率は2〜3倍に
向上し、耐火物自体の熱抵抗を小さくしていることが明
らかとなった。
Next, FIG. 6 shows the apparent thermal conductivity λ of the refractory layer obtained from Equation 2. λ = q · Δx / (T 3 −T 4 ) ... (Equation 2) where T 3 and T 4 are temperatures at two points in the thickness direction of the refractory layer,
Δx: The distance between two temperature measurement points. By attaching the fins, it was revealed that the apparent thermal conductivity of the refractory layer was improved to 2-3 times, and the thermal resistance of the refractory itself was reduced.

【0014】このようにフィンを取付けた場合、エアギ
ャップと耐火物自体の熱抵抗はいずれも小さくなるが、
その絶対値は通常耐火物の方が大きいため、耐火物稼動
面近傍の温度は耐火物層の熱抵抗によって決まると考え
られる。次に図7に、耐火物の熱伝導率と稼動面近傍の
温度との関係を示す。前述したように稼動面近傍とは稼
動面から10mm内部の位置を示す。
When the fins are attached as described above, the thermal resistances of the air gap and the refractory itself are small,
Since the absolute value of the refractory is usually larger than that of the refractory, the temperature near the refractory operating surface is considered to be determined by the thermal resistance of the refractory layer. Next, FIG. 7 shows the relationship between the thermal conductivity of the refractory material and the temperature near the operating surface. As mentioned above, the vicinity of the working surface means a position within 10 mm from the working surface.

【0015】耐火物の熱伝導率を 800℃で 5.0kcal/m
・hr・℃以上とすることにより、稼動面近傍の温度が15
00℃以下となることが明らかとなった。また、図8に示
すように、熱伝導率が 5.0kcal/m・hr・℃より低い耐
火物を使用した場合には、耐火物層の厚みを 200mm以下
とすることにより稼動面近傍の温度が1500℃以下となる
ことが明らかとなった。
The thermal conductivity of refractory is 5.0 kcal / m at 800 ° C.
・ By setting the temperature to be above hr ・ ° C, the temperature near the operating surface will be 15
It became clear that the temperature was below 00 ° C. Further, as shown in FIG. 8, when a refractory material having a thermal conductivity lower than 5.0 kcal / m · hr · ° C is used, the temperature in the vicinity of the working surface is controlled by setting the thickness of the refractory material to 200 mm or less. It became clear that the temperature was 1500 ° C or lower.

【0016】[0016]

【実施例】本発明を5t転炉の炉口絞り部に適用した例
を表1に示す。実施例1では、内張り耐火物として厚み
300mm、 800℃での熱伝導率が15kcal/m・hr・℃、線
膨張係数10×10-6(1/℃)の MgO−Cレンガを用い、
フィンの間にレンガを一層ずつ積む方法とした。フィン
の向きはレンガを積む方向と一致させ、円周方向に半周
ずつ段違いにフィンを取付けた。
EXAMPLES Table 1 shows an example in which the present invention is applied to a narrowing part of a furnace opening of a 5t converter. In Example 1, as the refractory lining, the thickness
300mm, the thermal conductivity at 800 ℃ 15kcal / m · hr · ℃, using a linear expansion coefficient of 10 × 10 -6 (1 / ℃) MgO-C brick,
A method of stacking bricks one by one between the fins was adopted. The fins were oriented in the same direction as the bricks were piled up, and the fins were attached in half steps in the circumferential direction.

【0017】実施例2では、内張り耐火物として、 800
℃での熱伝導率が 5.5kcal/m・hr・℃、線膨張率2×
10-6(1/℃)、 500℃での線変化率+ 0.2%の不定形
耐火物を 300mmの厚みで流し込んだ。実施例3では、内
張り耐火物として 800℃での熱伝導率が 3.5kcal/m・
hr・℃、線膨張係数8×10-6(1/℃)、 500℃での線
変化率− 0.2%の不定形耐火物を 150mmの厚みで流し込
んだ。フィンの材質は実施例1〜3とも鉄とした。
In Example 2, as the refractory lining, 800
Thermal conductivity at ℃ 5.5kcal / m ・ hr ・ ℃, coefficient of linear expansion 2 ×
An amorphous refractory with a linear change rate of + 10% at 10 -6 (1 / ° C) and 500 ° C was poured into a thickness of 300 mm. In Example 3, the lining refractory has a thermal conductivity of 3.5 kcal / m at 800 ° C.
Irregular refractories with a hr · ° C, linear expansion coefficient of 8 × 10 -6 (1 / ° C) and a linear change rate at 500 ° C of -0.2% were cast into a thickness of 150 mm. The material of the fin was iron in Examples 1 to 3.

【0018】比較例1では、実施例1と同じレンガを用
い、フィンは使わない。比較例2では、実施例2と同じ
不定形耐火物を用い、フィンは使わない。比較例3で
は、 800℃での熱伝導率が 3.5kcal/m・hr・℃のマグ
ネシア・ドロマイトレンガを用い、実施例1と同様にフ
ィンを取付けた。比較例4では、 800℃での熱伝導率が
3.5kcal/m・hr・℃の不定形耐火物を用い、実施例2
と同様にフィンを取付けた。
In Comparative Example 1, the same brick as in Example 1 was used, and no fin was used. In Comparative Example 2, the same amorphous refractory material as in Example 2 was used and no fin was used. In Comparative Example 3, magnesia dolomite brick having a thermal conductivity of 3.5 kcal / m · hr · ° C at 800 ° C was used, and fins were attached in the same manner as in Example 1. In Comparative Example 4, the thermal conductivity at 800 ° C is
Example 2 using an amorphous refractory material of 3.5 kcal / m · hr · ° C
The fins were attached in the same manner as in.

【0019】実施例1〜3、比較例1〜4とも鉄皮外面
に溶接付けした冷却管内に冷却水を250l/min 流すこ
とによって冷却し、上吹き酸素による二次燃焼が起こる
条件で上底酸素吹き吹錬を行った。吹錬実施2時間後の
耐火物稼働面近傍の温度は、表1から明らかなように、
比較例1〜4に比べて実施例1〜3では内張り耐火物稼
働面近傍の温度が約 200℃低下しており、本発明に係る
実施例の方が冷却効果が大きいことが明らかである。
In each of Examples 1 to 3 and Comparative Examples 1 to 4, cooling water is cooled by flowing 250 l / min into a cooling pipe welded to the outer surface of the steel shell, and the upper bottom is conditioned under the condition that secondary combustion by top-blown oxygen occurs. Oxygen was blown. As is clear from Table 1, the temperature near the refractory operating surface 2 hours after the blowing was
Compared to Comparative Examples 1 to 4, in Examples 1 to 3, the temperature in the vicinity of the working surface of the refractory lining was reduced by about 200 ° C., and it is clear that the examples according to the present invention have a greater cooling effect.

【0020】[0020]

【表1】 [Table 1]

【0021】さらに本発明を5t転炉の炉口絞り部に適
用した例を表2に示す。実施例4では内張り耐火物とし
て厚み 200mm、線膨張係数10×10-6(1/℃)の MgO−
Cレンガを用い、フィンの間隔を80mm、フィンの長さを
150mmとして、フィンの間にレンガを一層ずつ積む方法
とした。フィンの向きはレンガを積む方向と一致させ、
円周方向に全周フィンを取付けた。
Further, Table 2 shows an example in which the present invention is applied to a narrowed part of a furnace opening of a 5t converter. In Example 4, MgO- having a thickness of 200 mm and a linear expansion coefficient of 10 × 10 −6 (1 / ° C.) was used as the refractory lining.
Using C bricks, the fin spacing is 80 mm and the fin length is
It was set to 150 mm, and bricks were stacked one by one between the fins. Match the direction of the fins with the direction of stacking bricks,
All circumferential fins are attached in the circumferential direction.

【0022】実施例5では内張り耐火物として線変化率
+0.2 (500℃)、線膨張係数2×10-6(1/℃)の不
定形耐火物を 200mmの厚みで流込み、フィンの間隔50m
m、フィンの長さを 140mmとした。フィンの向きは鉄皮
に垂直な方向とし、フィンの材質は実施例4、5とも鉄
とした。比較例5では実施例4と同じレンガを用い、フ
ィンは使わない。
In Example 5, an amorphous refractory having a linear change rate of +0.2 (500 ° C.) and a linear expansion coefficient of 2 × 10 −6 (1 / ° C.) was poured as a refractory lining with a thickness of 200 mm to form a fin. 50m interval
m, and the fin length was 140 mm. The direction of the fins was perpendicular to the iron shell, and the material of the fins was iron in Examples 4 and 5. In Comparative Example 5, the same brick as in Example 4 was used, and no fin was used.

【0023】比較例6では実施例5と同じ不定形耐火物
を用い、フィンは使わない。実施例4、5、比較例5、
6とも鉄皮外面に溶接付けした冷却管に冷却水を 250l
/min 流すことによって冷却し、上吹き酸素による二次
燃焼が起こる条件で上底酸素吹き吹錬を行った。吹錬実
施2時間後の耐火物稼働面近傍の温度を、表2に示す。
In Comparative Example 6, the same amorphous refractory material as in Example 5 was used and no fin was used. Examples 4, 5 and Comparative Example 5,
250L of cooling water was welded to the outer surface of the iron 6
/ Min., And the upper bottom oxygen blowing was carried out under the condition that secondary combustion by top blowing oxygen occurs. Table 2 shows the temperatures near the refractory working surface 2 hours after the blowing operation.

【0024】表2から明らかなように、比較例5、6に
比べて実施例4、5では内張り耐火物稼働面近傍の温度
が約 200℃低下しており、本発明に係る実施例の方が冷
却効果が大きいことが明らかである。
As is clear from Table 2, the temperatures in the vicinity of the working surface of the lining refractory were reduced by about 200 ° C. in Examples 4 and 5 as compared with Comparative Examples 5 and 6, indicating that the Examples according to the present invention were better. However, it is clear that the cooling effect is large.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】溶融金属容器の内張り耐火物を鉄皮を介
して冷却するにあたり、鉄皮にフィンを固着した本発明
によると、鉄皮・耐火物間のギャップによる熱抵抗が小
さくなり容器内部からの熱を効果的に抜熱することがで
きた。これによって内張り耐火物温度が下がり、内張り
耐火物の寿命が著しく向上した。
EFFECTS OF THE INVENTION According to the present invention in which fins are fixed to the iron shell when cooling the refractory lining of the molten metal container through the iron shell, the thermal resistance due to the gap between the iron shell and the refractory becomes small and the inside of the container is reduced. It was possible to effectively remove the heat from. This lowered the temperature of the refractory lining and significantly improved the life of the refractory lining.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のレンガにおける実施例を示す断面図で
ある。
FIG. 1 is a cross-sectional view showing an example of a brick of the present invention.

【図2】本発明の不定形耐火物における実施例を示す断
面図である。
FIG. 2 is a cross-sectional view showing an embodiment of the irregular refractory material of the present invention.

【図3】フィンの間隔/耐火物層厚みと耐火物稼働面近
傍の温度との関係を示す特性図である。
FIG. 3 is a characteristic diagram showing the relationship between fin spacing / refractory layer thickness and temperature near the refractory operating surface.

【図4】フィンの長さ/耐火物層厚みと耐火物稼働面近
傍の温度との関係を示す特性図である。
FIG. 4 is a characteristic diagram showing the relationship between fin length / refractory layer thickness and temperature near the refractory operating surface.

【図5】フィンの有無によるエアギャップの熱抵抗の比
較図である。
FIG. 5 is a comparison diagram of thermal resistance of air gaps with and without fins.

【図6】フィンの有無による見掛けの熱伝導率の比較図
である。
FIG. 6 is a comparison diagram of apparent thermal conductivity with and without fins.

【図7】耐火物の熱伝導率と稼動面近傍の温度との関係
図である。
FIG. 7 is a diagram showing the relationship between the thermal conductivity of the refractory material and the temperature near the operating surface.

【図8】耐火物層厚みと稼動面近傍の温度との関係図で
ある。
FIG. 8 is a diagram showing the relationship between the refractory layer thickness and the temperature in the vicinity of the operating surface.

【図9】レンガにおける耐火物稼働面近傍の温度と線膨
張係数との関係を示す特性図である。
FIG. 9 is a characteristic diagram showing a relationship between a temperature near a refractory working surface of a brick and a linear expansion coefficient.

【図10】不定形耐火物における耐火物稼働面近傍の温度
と線膨張係数との関係を示す特性図である。
FIG. 10 is a characteristic diagram showing a relationship between a temperature near a refractory operating surface and a linear expansion coefficient in an amorphous refractory.

【符号の説明】 1 鉄皮 2 冷却管 3 冷却媒体 4 金属製フィン 5 レンガ 6 不定形耐火物 7 ギャップ L 内張り耐火物層の厚み d フィンの間隔 l フィンの長さ[Explanation of symbols] 1 iron skin 2 cooling tubes 3 Cooling medium 4 metal fins 5 bricks 6 Irregular refractories 7 gap L Lined refractory layer thickness d Fin spacing l Fin length

フロントページの続き (72)発明者 斉藤 三男 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内Continued front page    (72) Inventor Mitsuo Saito             1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd.             Corporate Technology Research Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水冷、空冷あるいはミスト冷却される鉄
皮外面を有する溶融金属容器において、該鉄皮内面に金
属製フィンを固着し、内張り耐火物層を線膨張係数が2
×10-6(1/℃)以上のレンガあるいは、〔線膨張係数
+{ 500℃での線変化率(%)}/{ 500×100 }〕が
2×10-6(1/℃)以上の不定形耐火物で構成したこと
を特徴とする溶融金属容器。
1. A molten metal container having an outer surface of an iron shell that is water-cooled, air-cooled or mist-cooled, a metal fin is fixed to the inner surface of the iron shell, and the lining refractory layer has a linear expansion coefficient of 2
Bricks with a density of × 10 -6 (1 / ° C) or more, or a coefficient of linear expansion of + (rate of linear change (%) at 500 ° C} / {500 × 100}) of 2 × 10 -6 (1 / ° C) or more A molten metal container characterized by being made of an amorphous refractory material.
【請求項2】 金属製フィンの間隔を内張り耐火物層の
厚みの 0.5倍以下で、かつ該フィンの長さを内張り耐火
物層の厚みの 0.5倍以上としたことを特徴とする請求項
1記載の溶融金属容器。
2. The distance between the metal fins is 0.5 times or less the thickness of the lining refractory layer, and the length of the fins is 0.5 times or more the thickness of the lining refractory layer. The molten metal container described.
【請求項3】 内張り耐火物層を 800℃での熱伝導率が
5.0kcal/m・hr・℃以上のレンガあるいは不定形耐火
物で構成したことを特徴とする請求項1記載の溶融金属
容器。
3. The refractory lining has a thermal conductivity at 800 ° C.
The molten metal container according to claim 1, wherein the molten metal container is made of brick or amorphous refractory having a temperature of 5.0 kcal / m · hr · ° C or higher.
【請求項4】 内張り耐火物層を熱伝導率が 5.0kcal/
m・hr・℃未満の耐火物で 200mm以下の厚みに構成した
ことを特徴とする請求項1記載の溶融金属容器。
4. The inner refractory layer has a thermal conductivity of 5.0 kcal /
The molten metal container according to claim 1, wherein the refractory material is less than m · hr · ° C and has a thickness of 200 mm or less.
JP15907391A 1990-07-09 1991-06-28 Molten metal container Expired - Fee Related JP2875413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15907391A JP2875413B2 (en) 1990-07-09 1991-06-28 Molten metal container

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-179569 1990-07-09
JP17956990 1990-07-09
JP15907391A JP2875413B2 (en) 1990-07-09 1991-06-28 Molten metal container

Publications (2)

Publication Number Publication Date
JPH059542A true JPH059542A (en) 1993-01-19
JP2875413B2 JP2875413B2 (en) 1999-03-31

Family

ID=26485985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15907391A Expired - Fee Related JP2875413B2 (en) 1990-07-09 1991-06-28 Molten metal container

Country Status (1)

Country Link
JP (1) JP2875413B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995022732A1 (en) * 1994-02-16 1995-08-24 The University Of Melbourne Internal refractory cooler
WO2004038317A3 (en) * 2002-10-22 2004-06-10 Refractory Intellectual Prop Metallurgical melting container
JP2011075183A (en) * 2009-09-30 2011-04-14 Pan Pacific Copper Co Ltd Water-cooled jacket, and furnace body cooling structure and method using the same
JP2014214881A (en) * 2013-04-22 2014-11-17 新日鉄住金エンジニアリング株式会社 Furnace structure, and construction method and dismantling method of the same
RU2555697C2 (en) * 2013-10-15 2015-07-10 Общество С Ограниченной Ответственностью "Медногорский Медно-Серный Комбинат" Metallurgical furnace wall lining

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995022732A1 (en) * 1994-02-16 1995-08-24 The University Of Melbourne Internal refractory cooler
WO2004038317A3 (en) * 2002-10-22 2004-06-10 Refractory Intellectual Prop Metallurgical melting container
JP2011075183A (en) * 2009-09-30 2011-04-14 Pan Pacific Copper Co Ltd Water-cooled jacket, and furnace body cooling structure and method using the same
JP2014214881A (en) * 2013-04-22 2014-11-17 新日鉄住金エンジニアリング株式会社 Furnace structure, and construction method and dismantling method of the same
RU2555697C2 (en) * 2013-10-15 2015-07-10 Общество С Ограниченной Ответственностью "Медногорский Медно-Серный Комбинат" Metallurgical furnace wall lining

Also Published As

Publication number Publication date
JP2875413B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
US3849587A (en) Cooling devices for protecting refractory linings of furnaces
US3940552A (en) Water-cooled panel for arc furnace
EP1525425B1 (en) Cooling element
JPH059542A (en) Molten metal vessel
JP2774918B2 (en) Incinerator sidewall structure
US3990686A (en) Furnace for producing steel from scrap steel and the like
EP0040440B2 (en) A shaft furnace, particularly the refractory construction of the bottom thereof
CN110906740A (en) Ferronickel electric furnace with magnesium-carbon composite furnace lining
US5719897A (en) Furnace vessel for a direct current arc furnace
JP3584982B2 (en) Water cooled wall
JPS5989980A (en) Furnace cover of arc furnace for steel manufacture with induction current preventive mechanism
GB1585155A (en) Arc-furnace lining
JPS6028653Y2 (en) Blast furnace bottom refractory structure
JP2613781B2 (en) Cooling method for refractories on the furnace wall of industrial kiln
JPH04329814A (en) Molten metal vessel
KR101619070B1 (en) Refractory structure preventing corrosion in slag and bath boundary area and method for forming the structure
JPS6031064Y2 (en) Protection wall brickwork structure of blast furnace furnace wall
JPH05306405A (en) Furnace protecting wall provided with slow-cooling type stave cooler
JPS5848344Y2 (en) hot metal trough
JPH10183233A (en) Heat insulating skid pipe
KR100851188B1 (en) method for prolonging of blast furnace stave campaign life
JP2000292072A (en) Furnace wall of arc furnace and water-cooled panel for furnace cover
JP2718274B2 (en) Cooling capacity control method for blast furnace bottom
JPS5846400Y2 (en) Arc furnace lid for steelmaking
JPH017704Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090114

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees