JPH04329814A - Molten metal vessel - Google Patents

Molten metal vessel

Info

Publication number
JPH04329814A
JPH04329814A JP10153191A JP10153191A JPH04329814A JP H04329814 A JPH04329814 A JP H04329814A JP 10153191 A JP10153191 A JP 10153191A JP 10153191 A JP10153191 A JP 10153191A JP H04329814 A JPH04329814 A JP H04329814A
Authority
JP
Japan
Prior art keywords
refractory
molten metal
lining
shell
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10153191A
Other languages
Japanese (ja)
Inventor
Takao Suzuki
孝夫 鈴木
Sumio Yamada
純夫 山田
Yoshiaki Hara
義明 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10153191A priority Critical patent/JPH04329814A/en
Publication of JPH04329814A publication Critical patent/JPH04329814A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To efficiently transfer heat and to improve service life of a refractory by welding cooling pipes on an iron shell and cooling the lining refractory. CONSTITUTION:The cooling pipes 2 are welded on outer surface of the iron shell 1, and by flowing cooling medium 3 of water, gas, etc., therethrough, the iron shell is cooled. Onto inner surface of the iron shell, the lining refractory 4 is enclosed with an iron plate 5 and fixed to the iron shell 1. The lining refractory is used as brick or monolithic refractory having heat conductivity of >=5.0kcal/m.hr. deg.C at 800 deg.C and working thickness is made to be <=200mm.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、転炉や電気炉の如き精
錬炉に用いる内張りされた耐火物を有する溶融金属容器
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten metal vessel having a refractory lining for use in refining furnaces such as converters and electric furnaces.

【0002】0002

【従来の技術】溶融金属容器の内張り耐火物を冷却する
ための従来技術は、例えば特開昭57−67110号公
報に開示されているように、鉄皮外面を水, ガス, 
ミスト等により冷却する方法がある。しかしながら、通
常の溶融金属容器では鉄皮と耐火物との間に生ずるエア
ギャップ、および耐火物自体が熱抵抗となるため、鉄皮
を冷却しても内張り耐火物稼動面の温度の低下は小さい
という問題があった。
BACKGROUND OF THE INVENTION A conventional technique for cooling the refractory lining of a molten metal container is disclosed, for example, in Japanese Patent Laid-Open No. 57-67110.
There is a method of cooling using mist or the like. However, in normal molten metal containers, there is an air gap between the shell and the refractory, and the refractory itself provides heat resistance, so even if the shell is cooled, the temperature of the operating surface of the refractory lining will only decrease slightly. There was a problem.

【0003】エアギャップの防止に関しては、ギャップ
に不定形耐火物を圧入する技術が特開昭52−3612
1号公報に開示されているが、ギャップが溶融金属容器
全面で連続しているとは限らず、このため、ギャップ全
体に不定形耐火物を圧入することは難しいという問題が
あった。 また、耐火物自体による熱抵抗は、耐火物厚みを薄くす
ることにより小さくできるが、その場合、耐火物の損耗
速度から決まる溶融金属容器の寿命が短く経済的ではな
くなり、生産性が悪くなる。
Regarding the prevention of air gaps, a technique for press-fitting monolithic refractories into the gaps was disclosed in Japanese Patent Laid-Open No. 52-3612.
Although disclosed in Publication No. 1, the gap is not necessarily continuous over the entire surface of the molten metal container, and for this reason, there is a problem in that it is difficult to press fit the monolithic refractory into the entire gap. Further, the thermal resistance due to the refractory itself can be reduced by reducing the thickness of the refractory, but in that case, the life of the molten metal container, which is determined by the rate of wear of the refractory, is short and becomes uneconomical, resulting in poor productivity.

【0004】0004

【発明が解決しようとする課題】本発明は、溶融金属容
器で鉄皮と耐火物の間にエアギャップを生じることなく
、内張り耐火物稼動面の温度を低下させることのできる
構造を有する溶融金属容器を提供することを目的とする
ものである。
[Problems to be Solved by the Invention] The present invention provides a molten metal container having a structure capable of lowering the temperature of the working surface of the refractory lining without creating an air gap between the shell and the refractory in the molten metal container. The purpose is to provide a container.

【0005】[0005]

【課題解決のための手段】すなわち、本発明は、水冷,
空冷あるいはミスト冷却される鉄皮外面を有する溶融金
属容器において、耐火物層の鉄皮と直角方向の少なくと
も2面をメタルでくるんだ炉材とし、かつ鉄皮内面にメ
タル部を固着したことを特徴とする溶融金属容器であり
、望ましくは内張り耐火物層を 800℃での熱伝導率
が5.0kcal/m ・hr・℃以上のれんがあるい
は不定形耐火物で構成するか、あるいは内張り耐火物層
の熱伝導率が5.0kcal/m ・hr・℃未満の耐
火物で 200mm以下の稼働厚みに構成した溶融金属
容器である。
[Means for Solving the Problems] That is, the present invention provides water cooling,
In a molten metal container having an outer surface of a shell that is cooled by air or mist, at least two sides of the refractory layer in a direction perpendicular to the shell are covered with metal, and the metal part is fixed to the inner surface of the shell. It is a molten metal container characterized by a refractory lining, preferably made of brick or a monolithic refractory having a thermal conductivity of 5.0 kcal/m・hr・℃ or more at 800°C, or a refractory lining. This is a molten metal container made of a refractory material whose layers have a thermal conductivity of less than 5.0 kcal/m·hr·°C and has an operating thickness of 200 mm or less.

【0006】[0006]

【作用】本発明法による作用を図1に基づいて説明する
。鉄皮1の外面には冷却管2が溶接され、その中を水,
ガスなどの冷却媒体3が流れることによって鉄皮1およ
び内張り耐火物4を冷却する。冷却方法としては、これ
以外に鉄皮に冷却媒体を吹付ける等の鉄皮を介して内張
り耐火物を冷却する方法であれば、その方式にこだわら
ない。
[Operation] The operation of the method of the present invention will be explained based on FIG. A cooling pipe 2 is welded to the outer surface of the steel shell 1, and water, water, etc.
The iron skin 1 and the lining refractory 4 are cooled by the flow of a cooling medium 3 such as gas. The cooling method is not limited to any other method as long as it cools the lining refractory through the steel shell, such as by spraying a cooling medium onto the steel shell.

【0007】鉄皮内面には、耐火物層の鉄皮と直角方向
の少なくとも2面をメタルでくるんだ炉材とし、かつ鉄
皮内面にメタル部を固着する。この時の固着方法として
は、稼動中にエアギャップが生じなければよく、溶接法
であればスポット溶接で十分機能を満足できるので、全
周すみ肉溶接をするまでもないが、その他の固着方法例
えば、高温・高強度の有機系の接着材でもかまわない。 また、耐火物をくるむメタルの材質は熱伝導率の高い金
属であればよく、一般的には鉄板が賞用される。さらに
、このメタルの厚みは、極端に厚い場合はこのメタルか
らの漏鋼の危険性が増すことになるので、従来築炉方法
での目地鉄板の経験から 0.6〜1.8mm 程度が
望ましい。
[0007] The inner surface of the steel shell is a furnace material in which at least two sides of the refractory layer in a direction perpendicular to the steel shell are covered with metal, and a metal portion is fixed to the inner surface of the steel shell. As for the fixing method at this time, there is no need to create an air gap during operation, and if the welding method is used, spot welding can sufficiently satisfy the function, so there is no need to fillet weld the entire circumference, but other fixing methods can be used. For example, a high-temperature, high-strength organic adhesive may be used. Further, the material of the metal enclosing the refractory may be any metal with high thermal conductivity, and iron plates are generally used. Furthermore, if this metal is extremely thick, there is an increased risk of steel leakage from this metal, so based on experience with joint iron plates in conventional furnace construction methods, it is desirable that the thickness be around 0.6 to 1.8 mm. .

【0008】次に、本発明法と従来法による見掛けの熱
伝導率λを、耐火物内部の温度および冷却水の温度測定
をすることで評価した。なお、見掛けの熱伝導率λは(
1)式から求めた。 λ=q・Δx/(T1 −T2 )・・・(1)ここで
、q=冷却水の入側・出側温度差から求めた抜熱量 T1 −T2 =耐火物層の厚み方向の2点の温度差Δ
x=2点の測温点間の距離 (1)式で求めた見掛けの熱伝導率λと耐火物の平均温
度の関係を、本発明と従来の場合を比較して図2に示す
。本発明の場合メタルケースで4面をくるんだ耐火物を
取付けたが、従来のものより耐火物の見掛けの熱伝導率
は約2〜3倍に向上し、耐火物自体の熱抵抗を小さくし
ていることが明らかとなった。このようにメタルを取付
けることにより、エアギャップが生ずることなく耐火物
自体の熱抵抗は小さくなるが、その絶対値は耐火物の方
が大きいため、耐火物稼動面近傍の温度は耐火物層の熱
抵抗によって決まると考えられる。
Next, the apparent thermal conductivity λ by the method of the present invention and the conventional method was evaluated by measuring the temperature inside the refractory and the temperature of the cooling water. Note that the apparent thermal conductivity λ is (
1) It was determined from the formula. λ=q・Δx/(T1 −T2)...(1) Here, q=Amount of heat removed from the temperature difference between the inlet and outlet sides of the cooling water T1 -T2=Two points in the thickness direction of the refractory layer temperature difference Δ
The relationship between the average temperature of the refractory and the apparent thermal conductivity λ determined by the distance between x=2 temperature measurement points (1) is shown in FIG. 2, comparing the present invention and the conventional case. In the case of the present invention, a refractory wrapped on all four sides with a metal case is installed, and the apparent thermal conductivity of the refractory is improved by about 2 to 3 times compared to conventional ones, reducing the thermal resistance of the refractory itself. It became clear that By attaching the metal in this way, the thermal resistance of the refractory itself is reduced without creating an air gap, but the absolute value is larger for the refractory, so the temperature near the working surface of the refractory is lower than that of the refractory layer. It is thought that it is determined by thermal resistance.

【0009】次に図3に、耐火物の熱伝導率と稼動面近
傍(稼動面から10〜20mm内部)の温度との関係を
示す。 耐火物の熱伝導率 800℃で5.0kcal/m ・
hr・℃以上とすることにより、稼動面近傍の温度が1
,500 ℃以下となることが明らかとなった。また、
図4に示すように、熱伝導率が 800℃で 5.0k
cal/m・hr・℃より低い耐火物を使用した場合に
は、耐火物の稼働厚みを 200mm以下とすることに
より稼働面近傍の温度が1500℃以下となることが明
らかとなった。
Next, FIG. 3 shows the relationship between the thermal conductivity of the refractory and the temperature near the operating surface (10 to 20 mm inside from the operating surface). Thermal conductivity of refractories: 5.0 kcal/m at 800°C
By setting the temperature to hr・℃ or more, the temperature near the operating surface can be reduced to 1
, 500°C or less. Also,
As shown in Figure 4, the thermal conductivity is 5.0k at 800℃
It has become clear that when using a refractory with a temperature lower than cal/m·hr·°C, the temperature near the working surface can be reduced to 1500°C or less by setting the working thickness of the refractory to 200 mm or less.

【0010】なお、本発明において、耐火物層の鉄皮と
直角方向の面をメタルでくるむ方法として、あらかじめ
メタルケース内に耐火物を封入しておく方法、あるいは
溶融金属容器内で耐火物を築造時、順次耐火物間にメタ
ルを挟み固定していく方法がある。
[0010] In the present invention, as a method of wrapping the surface of the refractory layer in a direction perpendicular to the iron skin with metal, there is a method of enclosing the refractory in a metal case in advance, or a method of enclosing the refractory in a molten metal container. During construction, there is a method in which metal is sandwiched between refractories to secure them in place.

【0011】[0011]

【実施例】本発明を5T転炉の炉口絞り部に適用した例
を表1に示す。実施例1では、内張り耐火物として厚み
 300mmで、1.2mm のメタルケース2面でつ
つんだ不焼成のMgO−Cれんが( 800℃の熱伝導
率が15kcal/m・hr・℃)を施工した。また、
実施例2では、内張り耐火物として厚み 300mmで
、同じく 1.2mmのメタルケース4面でつつんだ低
カーボン型の不焼成MgO−Cれんが( 800℃の熱
伝導率が 5.5kcal/m・hr・℃)を施工した
。さらに、実施例3では、内張り耐火物として厚み 1
50mmで、Al2O3−SiC キャスタブルを 1
.2mmのメタルケースに流し込んだプレキキャスト品
( 800℃の熱伝導率が 3.5kcal/m・hr
・℃)をれんがと同様に施工した。メタルケースの材質
は実施例1〜3とも同じ鉄板製とし、固着方法はスポッ
ト溶接とした。
[Example] Table 1 shows an example in which the present invention was applied to the throat constriction of a 5T converter. In Example 1, unfired MgO-C bricks (thermal conductivity at 800°C of 15 kcal/m・hr・°C) with a thickness of 300 mm and surrounded by two 1.2 mm metal cases were used as the lining refractory. did. Also,
In Example 2, the lining refractory was made of low carbon unfired MgO-C bricks (with a thermal conductivity of 5.5 kcal/m at 800°C) having a thickness of 300 mm and surrounded by four 1.2 mm metal cases. hr・℃) was constructed. Furthermore, in Example 3, the thickness of the lining refractory was 1
50mm, Al2O3-SiC castable 1
.. Precast product poured into a 2mm metal case (thermal conductivity at 800℃ is 3.5kcal/m・hr)
・°C) was constructed in the same way as bricks. The material of the metal case was made of iron plate, which is the same as in Examples 1 to 3, and the fixing method was spot welding.

【0012】比較例1および2では、実施例1および2
と同じれんがを用いメタルケースを用いていない。実施
例1〜3および比較例1,2とも、鉄皮外面に溶接付け
した冷却管内に冷却水を 250l/min 流すこと
によって冷却し、上吹き酸素による二次燃焼が起こる条
件で上底酸素吹き吹錬を行った。吹錬実施2時間後の耐
火物稼動面近傍の温度は、表1から明らかなように比較
例1,2に比べて実施例1〜3では内張り耐火物の稼動
面近傍の温度が約 200℃低下しており、本発明に係
わる実施例のほうが冷却効果が大きいことが明確である
In Comparative Examples 1 and 2, Examples 1 and 2
It uses the same bricks and does not use a metal case. In both Examples 1 to 3 and Comparative Examples 1 and 2, cooling was performed by flowing cooling water at a rate of 250 l/min into a cooling pipe welded to the outer surface of the steel shell, and the top and bottom oxygen was blown under conditions that caused secondary combustion due to top blown oxygen. We performed blowing. As is clear from Table 1, the temperature near the working surface of the refractory after 2 hours of blowing was approximately 200°C in Examples 1 to 3, compared to Comparative Examples 1 and 2. It is clear that the cooling effect is greater in the embodiment according to the present invention.

【0013】また、吹錬の前後でれんがの厚みをレーザ
ービーム法で測定し、その損耗量から表1に示す損耗指
数を算出した。本発明に係わる実施例の損耗量は、比較
例に比べて 1/2〜 1/3であり、耐用回数に換算
すると2〜3倍となる。
[0013] Furthermore, the thickness of the bricks was measured by a laser beam method before and after blowing, and the wear index shown in Table 1 was calculated from the amount of wear. The amount of wear and tear in the examples according to the present invention is 1/2 to 1/3 of that in the comparative example, which is 2 to 3 times the number of lifetimes.

【0014】[0014]

【表1】[Table 1]

【0015】[0015]

【発明の効果】溶融金属容器の内張り耐火物を鉄皮を介
して冷却するにあたり、鉄皮にメタルを固着した本発明
によると、鉄皮・耐火物間のギャップによる熱抵抗が小
さくなり容器内部からの熱を効果的に抜熱することがで
きた。これによって内張り耐火物の温度が下がり、内張
り耐火物の寿命が著しく向上した。
Effects of the Invention: When cooling the refractory lining of a molten metal container through the steel shell, according to the present invention, in which the metal is fixed to the steel shell, the thermal resistance due to the gap between the steel shell and the refractory is reduced, thereby reducing the heat resistance inside the container. We were able to effectively remove the heat from the This lowered the temperature of the refractory lining and significantly increased the lifespan of the refractory lining.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の1実施例を示すれんが断面図である。FIG. 1 is a sectional view of a brick showing one embodiment of the present invention.

【図2】メタルケースの有無による見掛けの熱伝導率の
比較図である。
FIG. 2 is a comparison diagram of apparent thermal conductivity with and without a metal case.

【図3】耐火物の熱伝導率と耐火物の稼動面近傍の温度
との関係図である。
FIG. 3 is a diagram showing the relationship between the thermal conductivity of a refractory and the temperature near the operating surface of the refractory.

【図4】耐火物層の厚み耐火物の稼動面近傍の温度との
関係図である。
FIG. 4 is a diagram showing the relationship between the thickness of the refractory layer and the temperature near the operating surface of the refractory.

【符号の説明】[Explanation of symbols]

1  鉄皮 2  冷却管 3  冷却媒体 4  耐火物 5  メタル 1 Iron skin 2 Cooling pipe 3 Cooling medium 4 Refractories 5 Metal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  水冷,空冷あるいはミスト冷却される
鉄皮外面を有する溶融金属容器において、耐火物層の鉄
皮と直角方向の少なくとも2面をメタルでくるんだ炉材
とし、かつ鉄皮内面にメタル部を固着したことを特徴と
する溶融金属容器。
Claim 1: In a molten metal container having an outer surface of a shell that is water-cooled, air-cooled, or mist-cooled, at least two surfaces of the refractory layer in a direction perpendicular to the shell are covered with metal, and the inner surface of the steel shell is A molten metal container characterized by a fixed metal part.
【請求項2】  内張り耐火物層を 800℃での熱伝
導率が5.0kcal/m ・hr・℃以上のれんがあ
るいは不定形耐火物で構成したことを特徴とする請求項
1記載の溶融金属容器。
2. The molten metal according to claim 1, wherein the lining refractory layer is made of brick or a monolithic refractory having a thermal conductivity of 5.0 kcal/m·hr·°C or more at 800°C. container.
【請求項3】  内張り耐火物層の熱伝導率が5.0k
cal/m ・hr・℃未満の耐火物で 200mm以
下の稼働厚みに構成したことを特徴とする請求項1記載
の溶融金属容器。
[Claim 3] The thermal conductivity of the lining refractory layer is 5.0k.
The molten metal container according to claim 1, characterized in that it is made of a refractory of less than cal/m·hr·° C. and has an operating thickness of 200 mm or less.
JP10153191A 1991-05-07 1991-05-07 Molten metal vessel Pending JPH04329814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10153191A JPH04329814A (en) 1991-05-07 1991-05-07 Molten metal vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10153191A JPH04329814A (en) 1991-05-07 1991-05-07 Molten metal vessel

Publications (1)

Publication Number Publication Date
JPH04329814A true JPH04329814A (en) 1992-11-18

Family

ID=14303041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10153191A Pending JPH04329814A (en) 1991-05-07 1991-05-07 Molten metal vessel

Country Status (1)

Country Link
JP (1) JPH04329814A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249995A (en) * 2012-05-31 2013-12-12 Ariake Serako Kk Metal case lining
JP2020050932A (en) * 2018-09-28 2020-04-02 日本製鉄株式会社 Converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249995A (en) * 2012-05-31 2013-12-12 Ariake Serako Kk Metal case lining
JP2020050932A (en) * 2018-09-28 2020-04-02 日本製鉄株式会社 Converter

Similar Documents

Publication Publication Date Title
US4021603A (en) Roof for arc furnace
CA1076629A (en) Furnace wall structure capable of tolerating high heat load for use in electric arc furnace
WO2000046561A1 (en) Water-cooling panel for furnace wall and furnace cover of arc furnace
KR100333760B1 (en) Refractory wall metallurgical vessel comprising such a refractory wall and method in which such a refractory wall is applied
JPH0370989A (en) Cooling element through which liquid for vertical furnace flows
RU2281974C2 (en) Cooling member for cooling metallurgical furnace
JP2774918B2 (en) Incinerator sidewall structure
JPH04329814A (en) Molten metal vessel
JP2875413B2 (en) Molten metal container
JP3785449B2 (en) Refractory structure of blast furnace cast iron
JPH11286708A (en) Method for fitting stave cooler, and structure for fitting stave cooler
JP2000292072A (en) Furnace wall of arc furnace and water-cooled panel for furnace cover
CA1040694A (en) Roof for arc furnace
EP1064410B1 (en) Wall structure for a metallurgical vessel and blast furnace provided with a wall structure of this nature
JP2001324274A (en) Rotary hearth heating furnace for steel billets
JPH07270081A (en) Lined refractory structure for molten metal container
JPH10183233A (en) Heat insulating skid pipe
US20120018122A1 (en) Furnace and a Method for Cooling a Furnace
JPH01162719A (en) Gas-cooled skid
JP2613781B2 (en) Cooling method for refractories on the furnace wall of industrial kiln
JPH09296205A (en) Cooling plate for furnace wall in blast furnace
JPH0723498B2 (en) Iron bath smelting reduction furnace
JP4413146B2 (en) Melting furnace cooling unit structure
JPH0314890B2 (en)
JPH017704Y2 (en)