JPH081337B2 - Refrigerant control device for refrigeration system - Google Patents

Refrigerant control device for refrigeration system

Info

Publication number
JPH081337B2
JPH081337B2 JP24296386A JP24296386A JPH081337B2 JP H081337 B2 JPH081337 B2 JP H081337B2 JP 24296386 A JP24296386 A JP 24296386A JP 24296386 A JP24296386 A JP 24296386A JP H081337 B2 JPH081337 B2 JP H081337B2
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
degree
superheat degree
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24296386A
Other languages
Japanese (ja)
Other versions
JPS6399460A (en
Inventor
研作 小国
重昭 黒田
孝 佐野
廣則 衛藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24296386A priority Critical patent/JPH081337B2/en
Publication of JPS6399460A publication Critical patent/JPS6399460A/en
Publication of JPH081337B2 publication Critical patent/JPH081337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧縮機、凝縮器、膨脹弁、蒸発器を主構成
機器として形成されるヒートポンプ式冷凍装置の膨脹弁
の制御方式に係り、特に、圧縮機の吐出ガスの過熱度に
よって膨脹弁の開度を制御する方式に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a control system for an expansion valve of a heat pump type refrigerating apparatus, which has a compressor, a condenser, an expansion valve, and an evaporator as main components. In particular, the present invention relates to a method of controlling the opening degree of the expansion valve depending on the degree of superheat of gas discharged from the compressor.

〔従来の技術〕[Conventional technology]

従来、冷凍サイクルの高圧側の冷媒過熱度に応じて膨
脹弁の開度を制御する方式として実開昭55−143470号が
提案されているが、この従来技術は、吐出管温度と凝縮
器における高圧側飽和冷媒温度との差に応じて膨脹弁の
開閉を行うようになっている。この様に、高圧側飽和温
度として、凝縮器における飽和温度を検出する方式であ
り、圧縮機に冷媒吐出部での飽和温度検出については配
慮されていなかった。また、膨脹弁の開閉制御の演算方
法についても配慮されていなかった。また、他の従来例
として、圧縮機の吸入側の過熱度に応じて膨脹弁開度を
制御するものは、特開昭49−128350号、特開昭59−1918
54号、あるいは、特開昭59−205559号などがあるが、吐
出ガスの過熱度によって膨脹弁を制御する方式について
は記載されていない。
Conventionally, as a method of controlling the opening degree of the expansion valve according to the refrigerant superheat degree on the high pressure side of the refrigeration cycle, No. 55-143470 has been proposed. The expansion valve is opened and closed according to the difference with the high-temperature side saturated refrigerant temperature. In this way, the saturation temperature in the condenser is detected as the saturation temperature on the high pressure side, and no consideration has been given to the detection of the saturation temperature in the refrigerant discharge part of the compressor. Further, no consideration was given to the calculation method of the opening / closing control of the expansion valve. Further, as another conventional example, the one in which the expansion valve opening degree is controlled according to the superheat degree on the suction side of the compressor is disclosed in JP-A-49-128350 and JP-A-59-1918.
No. 54 or JP-A-59-205559, but there is no description of a method of controlling the expansion valve by the superheat of the discharge gas.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、圧縮機の冷媒吐出部での冷媒過熱度
を検出する方式については配慮されていなかった。即
ち、従来技術では、高圧側の飽和温度として凝縮器の冷
媒温度Tcを検出し、圧縮機の吐出管部の温度Tdを検知し
て温度差(Td−Tc)に応じて膨脹弁を制御していた。
The above-mentioned prior art does not consider the method of detecting the degree of refrigerant superheat in the refrigerant discharge portion of the compressor. That is, in the prior art, the refrigerant temperature Tc of the condenser is detected as the saturation temperature on the high pressure side, the temperature Td of the discharge pipe of the compressor is detected, and the expansion valve is controlled according to the temperature difference (Td-Tc). Was there.

このため、まず、圧縮機と凝縮器の間の接続配管が長
い場合には、接続配管部での圧力損失により凝縮器での
飽和圧力が低下し、飽和温度も低くなる。このように、
検出、演算される吐出冷媒の過熱度は上記配管長さによ
り変化することになり、圧縮機吐出部での正確な過熱度
が得られないという問題があった。
Therefore, first, when the connecting pipe between the compressor and the condenser is long, the saturation pressure in the condenser decreases due to the pressure loss in the connecting pipe portion, and the saturation temperature also decreases. in this way,
The degree of superheat of the discharged refrigerant, which is detected and calculated, changes depending on the length of the pipe, and there is a problem that an accurate degree of superheat at the compressor discharge portion cannot be obtained.

本発明の目的は、正確な吐出冷媒の過熱度を検出し、
設定過熱度と上記検出過熱度とを対応させて膨脹弁開度
を制御し、吐出ガスの過熱度を安定させ、冷凍装置を効
率よく運転させる制御方式を提供することにある。
An object of the present invention is to accurately detect the superheat degree of discharged refrigerant,
An object of the present invention is to provide a control method that controls the expansion valve opening degree by making the set superheat degree correspond to the detected superheat degree, stabilizes the superheat degree of the discharge gas, and operates the refrigeration system efficiently.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、圧縮機近傍の吐出配管部に、一端が閉ざ
された枝管を設け、この枝管を冷却することによってこ
の枝管内で吐出ガスを凝縮させ、この吐出圧力に対応し
た飽和温度を検出し、吐出ガス温度と上記検出飽和温度
にて正確な吐出冷媒の過熱度を検出し、この検出過熱度
と設定過熱度を比較して膨脹弁の制御を行ない、また、
上記差の時間的変化ならびに時間的積分結果を加味し、
吐出ガスの過熱度制御の定数を適正化して、上記過熱度
が設定過熱度より低ければ弁開度を閉方向に、高ければ
弁開度を開方向に制御を行なうことにより、冷凍装置の
安定化が達成される。
The above-mentioned purpose is to provide a branch pipe with one end closed in the discharge pipe section near the compressor, and cool the branch pipe to condense the discharge gas in this branch pipe, and to adjust the saturation temperature corresponding to this discharge pressure. The superheat degree of the discharge refrigerant is detected accurately at the discharge gas temperature and the detection saturation temperature, and the expansion valve is controlled by comparing the detected superheat degree with the set superheat degree.
Taking into consideration the temporal change of the above difference and the temporal integration result,
Stabilize the refrigeration system by optimizing the constant of superheat control of the discharge gas and controlling the valve opening in the closing direction if the above superheat is lower than the set superheat and opening the valve if it is higher. Is achieved.

〔作用〕[Action]

圧縮機の吐出ガス雰囲気部に、一端が閉じられた枝管
を設け、これを冷却することにより、吐出ガスが冷却さ
れて凝縮が生じる。上記枝管内で凝縮が生じる領域に温
度センサを設けることにより、吐出ガス雰囲気部の圧力
に対応した正確な飽和温度を検出することができる。上
記検出飽和温度と吐出ガス温度にて吐出冷媒の過熱度を
検知し、この検出過熱度と設定過熱度を比較し、吐出冷
媒の過熱度がほぼ一定になるように膨脹弁開度を制御
し、流通冷媒量制御が行なわれる。しかして、膨脹弁開
度は、冷凍装置の起動後の過渡状態から定常状態になる
までの膨脹弁の異常な閉動作をなくすことができ、冷凍
装置の起動時の立上り運転時の膨脹弁制御が最適化され
る。
The discharge gas atmosphere of the compressor is provided with a branch pipe whose one end is closed, and by cooling the branch pipe, the discharge gas is cooled and condensation occurs. By providing the temperature sensor in the region where condensation occurs in the branch pipe, it is possible to detect the accurate saturation temperature corresponding to the pressure of the discharge gas atmosphere portion. The degree of superheat of the discharge refrigerant is detected by the detection saturation temperature and the discharge gas temperature, the detected degree of superheat and the set superheat degree are compared, and the expansion valve opening is controlled so that the degree of superheat of the discharge refrigerant becomes almost constant. The amount of circulating refrigerant is controlled. Therefore, the expansion valve opening can eliminate the abnormal closing operation of the expansion valve from the transient state after the start of the refrigeration system to the steady state, and the expansion valve control during the startup operation at the start of the refrigeration system. Is optimized.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面にもとずき説明する。
第1図は、本発明の冷凍サイクルの構成を示す。第1図
において1は圧縮機、2は凝縮器、3は蒸発器、4は電
気的に駆動される膨脹弁、5は圧縮機の吐出ガス管、6
は、一端が閉じられ他端が吐出ガス管5に開口する枝
管、7は枝管6の温度を検知する第1のセンサー、8は
吐出ガスの温度を検出する第2のセンサー、9は第1の
センサ7の温度Teatを第2のセンサ8の温度Tdを検出
し、過熱度SHd(=Td−Tsat)を演算して、膨脹弁4の
開度を駆動する制御装置、10は吸入ガス管である。枝管
6の先端部は、吸入管10と熱交換可能なように取付けら
れている。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows the structure of the refrigeration cycle of the present invention. In FIG. 1, 1 is a compressor, 2 is a condenser, 3 is an evaporator, 4 is an electrically driven expansion valve, 5 is a discharge gas pipe of the compressor, and 6 is a compressor.
Is a branch pipe whose one end is closed and the other end is open to the discharge gas pipe 5, 7 is a first sensor for detecting the temperature of the branch pipe 6, 8 is a second sensor for detecting the temperature of the discharge gas, and 9 is The control device 10 detects the temperature Teat of the first sensor 7 and the temperature Td of the second sensor 8, calculates the degree of superheat SHd (= Td-Tsat), and drives the opening of the expansion valve 4, 10 is the intake It is a gas pipe. The tip of the branch pipe 6 is attached to the suction pipe 10 so that heat can be exchanged.

第1図の冷凍サイクルにおいて、圧縮機1から吐出さ
れた冷媒は、吐出ガス管5、凝縮器2、膨脹弁4、蒸発
器3、吸入ガス管と一巡する。次に第2図に枝管6の詳
細を示す。枝管6は、吐出ガス管5に対して垂直に取付
けられている。第2図中に示すように、枝管6内の冷媒
は、吸入管10により冷却されて温度が低下し、枝管6の
ある位置で凝縮が生じ枝管6の長さ方向に温度がほゞ一
定となる。枝管6内では、枝管6の先端付近の液冷媒が
落下し、落下した液冷媒は、吐出ガスにより蒸発する一
巡の流れが生じ、液冷媒が存在する枝管6内の領域では
温度は一定となる。第1のセンサ7は、枝管6の温度が
一定となる領域に取付けられ、吐出ガス雰囲気の圧力に
対応した飽和温度Tsatが検知される。
In the refrigeration cycle of FIG. 1, the refrigerant discharged from the compressor 1 goes through the discharge gas pipe 5, the condenser 2, the expansion valve 4, the evaporator 3, and the suction gas pipe. Next, FIG. 2 shows details of the branch pipe 6. The branch pipe 6 is attached vertically to the discharge gas pipe 5. As shown in FIG. 2, the refrigerant in the branch pipe 6 is cooled by the suction pipe 10 to lower its temperature, and condensation occurs at a certain position of the branch pipe 6, so that the temperature in the longitudinal direction of the branch pipe 6 is almost constant.ゞ It will be constant. In the branch pipe 6, the liquid refrigerant near the tip of the branch pipe 6 falls, and the dropped liquid refrigerant undergoes a cycle of vaporization due to the discharge gas, and the temperature in the region inside the branch pipe 6 where the liquid refrigerant exists is It will be constant. The first sensor 7 is attached to a region where the temperature of the branch pipe 6 is constant, and the saturation temperature Tsat corresponding to the pressure of the discharge gas atmosphere is detected.

一方、第2のセンサ8は、吐出ガス温度Tdを検知し、
制御装置9によって、温度差(Td−Tsat)すなわち吐出
ガスの過熱度SHdに応じて膨脹弁を開閉する。第3図に
過熱度SHdと圧縮機吸入側の過熱度、湿り度の関係を示
す。吐出ガス過熱度SHdが小さいと吸入側は液冷媒を含
んだ湿り状態となり、SHdが大きいと吸入冷媒は過熱し
た状態となる。冷凍能力が最大となるのは、吸入冷媒の
過熱度が0deg付近である。したがって、第3図に示す例
では、吐出ガス過熱度SHdの設定値を40degとすれば、冷
凍サイクルの能力を最大限に発揮することができる。
On the other hand, the second sensor 8 detects the discharge gas temperature Td,
The controller 9 opens and closes the expansion valve according to the temperature difference (Td-Tsat), that is, the superheat degree SHd of the discharged gas. Fig. 3 shows the relationship between the superheat degree SHd and the superheat degree and wetness degree on the suction side of the compressor. When the discharge gas superheat degree SHd is small, the suction side is in a wet state containing the liquid refrigerant, and when SHd is large, the suction refrigerant is overheated. The refrigerating capacity is maximized when the superheat of the suction refrigerant is around 0 deg. Therefore, in the example shown in FIG. 3, if the set value of the discharge gas superheat degree SHd is 40 deg, the capacity of the refrigeration cycle can be maximized.

以上説明したように、本実施例によれば、圧縮機近傍
の吐出ガス過熱度SHdを確実に検知することが可能であ
り、吐出ガス過熱度の適切な設定値を与えることによ
り、冷凍サイクルの性能を最大限に発揮させることがで
きる。また、吐出ガス過熱度の設定値を、圧縮機の回転
数や凝縮器、蒸発器の熱媒体の温度などにより変更すれ
ば、冷凍サイクルの運転状態が変化しても、能力を最大
に制御することが可能である。
As described above, according to the present embodiment, it is possible to reliably detect the discharge gas superheat degree SHd in the vicinity of the compressor, and by providing an appropriate set value for the discharge gas superheat degree, the refrigeration cycle You can maximize the performance. In addition, if the set value of the discharge gas superheat degree is changed according to the number of revolutions of the compressor, the temperature of the heat medium of the condenser, and the evaporator, the capacity is controlled to the maximum even if the operating state of the refrigeration cycle changes. It is possible.

また、圧縮機1と凝縮器2との間の接続配管が長い場
合にも、本実施例によれば、吐出ガス過熱度SHdに対し
て何ら影響することがない。
Further, even when the connecting pipe between the compressor 1 and the condenser 2 is long, according to the present embodiment, there is no influence on the discharge gas superheat degree SHd.

第2図では、パイプ6を吸入管により冷却する実施例
を示したが、凝縮器から圧縮機吸入部にいたる冷媒によ
り冷却することも可能である。
Although FIG. 2 shows the embodiment in which the pipe 6 is cooled by the suction pipe, it is also possible to cool the pipe 6 by the refrigerant from the condenser to the compressor suction portion.

また、第一センサ7をパイプ6内に挿入すれば飽和温
度をさらに正確に検知することが可能である。
Moreover, if the first sensor 7 is inserted into the pipe 6, the saturation temperature can be detected more accurately.

以上、吐出ガス雰囲気の圧力に相当する飽和温度を検
出する手段と、吐出ガス過熱度制御の作用について述べ
た。
The means for detecting the saturation temperature corresponding to the pressure of the discharge gas atmosphere and the operation of the discharge gas superheat control have been described above.

次に膨脹弁の開閉制御方式の具体的実施例を説明す
る。
Next, a specific example of the opening / closing control system of the expansion valve will be described.

まず、膨脹弁開度の調整量ΔVは次式で表わされる。 First, the adjustment amount ΔV of the expansion valve opening is expressed by the following equation.

εは、検出演算される吐出ガス過熱度SHdと設定過熱度S
Hdsetの差であり、上式の右辺の第1項は現時点の誤差
を表わし、第2項は誤差の積分値を表わし、第3項は誤
差の微分値を表わす。この制御方式は所謂PiD制御法で
ある。係数K1、K2、K3は定数であり、この係数K1、K2
K3を適正化することにより、制御対象の吐出ガスの過熱
度を安定に制御でき、ヒートポンプ式冷凍サイクルを安
定して運転できる。
ε is the discharge gas superheat degree SHd to be detected and calculated and the set superheat degree S
It is the difference in Hdset, and the first term on the right side of the above equation represents the current error, the second term represents the integral value of the error, and the third term represents the differential value of the error. This control method is a so-called PiD control method. The coefficients K 1 , K 2 , K 3 are constants, and these coefficients K 1 , K 2 ,
By optimizing K 3 , the degree of superheat of the discharge gas to be controlled can be controlled stably, and the heat pump refrigeration cycle can be operated stably.

次に、起動時などの過渡状態時の制御方式の実施例を
説明する。第4図はヒートポンプ装置が起動されてから
の運転状態を表わす。停止中は、吐出ガスの過熱度は0
であるから、前式によれば修正量が0となり、膨脹弁を
開路する信号を出すことができない。
Next, an example of a control method in a transient state such as startup will be described. FIG. 4 shows an operating state after the heat pump device is started. When stopped, the superheat of discharge gas is 0
Therefore, according to the above equation, the correction amount becomes 0, and the signal for opening the expansion valve cannot be output.

本発明では、ヒートポンプ装置の起動と同時または起
動から所定時間後に一定量膨脹弁を強制的に所定量開路
する。開路後、所定時間は一定開度に保持され、所定時
間経過後から上述のPiD制御が行なわれる。即ち、起動
後の吐出ガスの過熱度は設定過熱度に対して小さく、ε
はマイナスとなるため、係数K1、K2、K3の選び方によっ
ては、膨脹弁は閉められたままで開かない。本発明で
は、上記誤差εが所定巾になるまでは、係数K3を大きく
し、εが所定巾になった後は、係数K3を小さくする。こ
れにより、起動後、過熱度SHdが急激に小さくなると、
つまり、吐出ガス温度が急激に高くなると前式で第3項
はプラスであり、係数K3は大きいため、膨脹弁に開指令
が出る。従って、起動後膨脹弁が異常に小さい開度にな
ることがない。誤差εが所定巾になるとK3は小さくな
り、ヒートポンプ装置は安定した運転ができる。
In the present invention, the expansion valve is forcibly opened by a predetermined amount at the same time as the activation of the heat pump device or after a lapse of a predetermined time after the activation. After the circuit is opened, the opening degree is kept constant for a predetermined time, and the PiD control is performed after the predetermined time has elapsed. That is, the superheat degree of the discharged gas after starting is smaller than the set superheat degree,
Is negative, the expansion valve remains closed and does not open depending on how to select the coefficients K 1 , K 2 , and K 3 . In the present invention, the coefficient K 3 is increased until the error ε reaches the predetermined width, and the coefficient K 3 is decreased after the error ε reaches the predetermined width. As a result, after the start-up, when the degree of superheat SHd suddenly decreases,
That is, when the discharge gas temperature rises sharply, the third term in the above equation is positive and the coefficient K 3 is large, so an opening command is issued to the expansion valve. Therefore, the expansion valve does not have an abnormally small opening after startup. When the error ε has a predetermined width, K 3 becomes small, and the heat pump device can operate stably.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、圧縮機近傍の吐
出ガス雰囲気の圧力に対応した飽和温度を検知すること
が可能であり、圧縮機の吐出冷媒の過熱度を正確に検知
し、この過熱度がほぼ設定値になるように制御すること
ができ、冷凍装置の性能を効率良く且つ安定して運転す
ることが出来る。また、特に、冷凍装置の起動後の過渡
状態から定常状態になるまでの膨脹弁の異常な閉動作を
なくすることができ、冷凍装置の起動時の立上り運転が
良好になる等の効果を有する。
As described above, according to the present invention, it is possible to detect the saturation temperature corresponding to the pressure of the discharge gas atmosphere in the vicinity of the compressor, accurately detect the degree of superheat of the refrigerant discharged from the compressor, and The control can be performed so that the temperature becomes almost the set value, and the performance of the refrigeration system can be efficiently and stably operated. Further, in particular, it is possible to eliminate the abnormal closing operation of the expansion valve from the transient state after the start of the refrigeration system to the steady state, and there is an effect that the start-up operation at the time of startup of the refrigeration system becomes good. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す冷凍サイクルの構成
図、第2図は第1図の枝管部の拡大詳細図、第3図は冷
凍サイクルの特性図、第4図は起動時の運転状態を説明
するもので、経過時間と、吐出ガス温度、吐出ガス過熱
度、膨脹弁開度の関係を示す線図である。 1…圧縮機、2…凝縮器、3…蒸発器、4…膨脹弁、5
…吐出管、6…枝管、7…第1センサ、8…第2セン
サ、9…制御装置
FIG. 1 is a configuration diagram of a refrigeration cycle showing an embodiment of the present invention, FIG. 2 is an enlarged detailed view of a branch pipe portion of FIG. 1, FIG. 3 is a characteristic diagram of the refrigeration cycle, and FIG. FIG. 4 is a diagram for explaining the operating state of FIG. 4 and is a diagram showing the relationship between the elapsed time, the discharge gas temperature, the discharge gas superheat degree, and the expansion valve opening degree. 1 ... Compressor, 2 ... Condenser, 3 ... Evaporator, 4 ... Expansion valve, 5
... Discharge pipe, 6 ... Branch pipe, 7 ... First sensor, 8 ... Second sensor, 9 ... Control device

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】圧縮機と、凝縮器と、膨脹弁と、蒸発器と
を順次接続して形成される冷媒回路を備えた冷凍装置に
おいて、 前記圧縮機の吐出部に該吐出部から分岐され先端が閉じ
た枝管を設け、該枝管に枝管内部に流入した冷媒温度に
対応した冷媒の飽和温度を検出する第1のセンサーを、
前記圧縮機の吐出部に該吐出部を流過する冷媒の温度を
検出する第2のセンサーを夫々設け、前記第1のセンサ
ーと第2のセンサーの出力とから前記吐出部を流過する
冷媒の過熱度とその過熱度の時間的変化を演算する演算
手段と、該演算手段の出力に基づいて前記膨脹弁の弁開
度を制御する制御手段とを備えてなることを特徴とする
冷凍装置の冷媒制御装置。
1. A refrigerating apparatus comprising a refrigerant circuit formed by sequentially connecting a compressor, a condenser, an expansion valve, and an evaporator, wherein the discharge section of the compressor branches from the discharge section. A first pipe is provided with a branch pipe whose tip is closed, and a first sensor for detecting the saturation temperature of the refrigerant corresponding to the temperature of the refrigerant flowing into the branch pipe is provided in the branch pipe.
A second sensor that detects the temperature of the refrigerant flowing through the discharge portion is provided in the discharge portion of the compressor, and the refrigerant that flows through the discharge portion based on the outputs of the first sensor and the second sensor. And a control means for controlling the valve opening degree of the expansion valve based on the output of the computing means. Refrigerant control device.
【請求項2】前記演算手段は前記第1のセンサー及び第
2のセンサーの出力から演算した過熱度(SHd)と設定
過熱度(SHd set)の差と、誤差の時間積分と、誤差の
時間的変化とに基づいて前記膨脹弁の弁開度を制御する
特許請求の範囲第1項に記載の冷凍装置の冷媒制御装
置。
2. The difference between the superheat degree (SHd) calculated from the outputs of the first sensor and the second sensor and the set superheat degree (SHd set), the time integration of the error, and the time of the error. The refrigerant control device for a refrigeration system according to claim 1, wherein the valve opening degree of the expansion valve is controlled based on the dynamic change.
【請求項3】前記制御手段は前記演算した過熱度が前記
設定過熱度より低いときには前記膨脹弁の弁開度を閉方
向に制御することを特徴とする特許請求の範囲第1項ま
たは第2項に記載の冷凍装置の冷媒制御装置。
3. The control means for controlling the valve opening degree of the expansion valve in the closing direction when the calculated superheat degree is lower than the set superheat degree. Refrigerant control device for a refrigerating apparatus according to paragraph.
【請求項4】前記演算した過熱度(SHd)と前記設定過
熱度(SHd set)との差には係数K1、該差の時間積分項
には係数K2,前記設定過熱度の時間的変化分には係数K3
を重み付けして膨脹弁開度を演算する特許請求の範囲第
1項ないし第3項のいずれか一つに記載の冷凍装置の冷
媒制御装置。
4. A coefficient K 1 for the difference between the calculated superheat degree (SHd) and the set superheat degree (SHd set), a coefficient K 2 for the time integral term of the difference, and a temporal value of the set superheat degree. Coefficient K 3 for changes
The refrigerant control device for a refrigerating apparatus according to any one of claims 1 to 3, wherein the expansion valve opening degree is calculated by weighting the.
【請求項5】冷凍装置の起動後、所定時間は前記膨脹弁
の開度を所定値に保持する特許請求の範囲第1項ないし
第4項のいずれか一つに記載の冷凍装置の冷媒制御装
置。
5. The refrigerant control of the refrigerating apparatus according to claim 1, wherein the opening degree of the expansion valve is held at a predetermined value for a predetermined time after the refrigerating apparatus is activated. apparatus.
JP24296386A 1986-10-15 1986-10-15 Refrigerant control device for refrigeration system Expired - Fee Related JPH081337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24296386A JPH081337B2 (en) 1986-10-15 1986-10-15 Refrigerant control device for refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24296386A JPH081337B2 (en) 1986-10-15 1986-10-15 Refrigerant control device for refrigeration system

Publications (2)

Publication Number Publication Date
JPS6399460A JPS6399460A (en) 1988-04-30
JPH081337B2 true JPH081337B2 (en) 1996-01-10

Family

ID=17096835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24296386A Expired - Fee Related JPH081337B2 (en) 1986-10-15 1986-10-15 Refrigerant control device for refrigeration system

Country Status (1)

Country Link
JP (1) JPH081337B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368575A (en) * 2011-09-08 2012-03-07 广东欧珀移动通信有限公司 Built-in secondary radiating antenna

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122534B2 (en) * 1989-12-14 1995-12-25 ダイキン工業株式会社 Defrost operation controller for air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368575A (en) * 2011-09-08 2012-03-07 广东欧珀移动通信有限公司 Built-in secondary radiating antenna

Also Published As

Publication number Publication date
JPS6399460A (en) 1988-04-30

Similar Documents

Publication Publication Date Title
US4706469A (en) Refrigerant flow control system for use with refrigerator
CN114777395B (en) Control method of refrigerator
US9874381B2 (en) Method to control electronic expansion valve
US4878355A (en) Method and apparatus for improving cooling of a compressor element in an air conditioning system
JPH11501114A (en) Feedforward control of expansion valve
JPH09178274A (en) Refrigerating system
EP1275918A2 (en) Ice making machine
US11300339B2 (en) Method for optimizing pressure equalization in refrigeration equipment
JPH081337B2 (en) Refrigerant control device for refrigeration system
JP3034781B2 (en) refrigerator
JPH0861815A (en) Air conditioner
JP2765613B2 (en) heat pump
JP4301546B2 (en) Refrigeration equipment
JP3178453B2 (en) Refrigeration equipment
KR100557038B1 (en) Method for Controlling Expansion Valve of Heat pump
JP2785546B2 (en) Refrigeration equipment
JPH0518615A (en) Refrigerator
JP2646917B2 (en) Refrigeration equipment
JP2526435B2 (en) Refrigeration system operation controller
KR100421617B1 (en) Method for low temperature driveing control of electronic refrigerator
JPH0772648B2 (en) Refrigerant flow control method
JP2701634B2 (en) Refrigeration equipment
JPH025317Y2 (en)
JPH04366365A (en) Controlling device for operation of refrigerating plant
JPS5823291A (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees