JPS6399460A - Refrigerant controller for refrigerator - Google Patents
Refrigerant controller for refrigeratorInfo
- Publication number
- JPS6399460A JPS6399460A JP24296386A JP24296386A JPS6399460A JP S6399460 A JPS6399460 A JP S6399460A JP 24296386 A JP24296386 A JP 24296386A JP 24296386 A JP24296386 A JP 24296386A JP S6399460 A JPS6399460 A JP S6399460A
- Authority
- JP
- Japan
- Prior art keywords
- degree
- superheat
- expansion valve
- refrigerant
- refrigeration system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003507 refrigerant Substances 0.000 title claims description 27
- 238000005057 refrigeration Methods 0.000 claims description 19
- 230000002123 temporal effect Effects 0.000 claims description 6
- 230000010354 integration Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 claims 2
- 238000000034 method Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 230000005494 condensation Effects 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Air Conditioning Control Device (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野〕
本発明は、圧縮機、凝縮器、膨脹弁、蒸発器を主構成機
器として形成されるヒートポンプ式冷凍装置の膨脹弁の
制御方式に係り、特に、圧縮機の吐出ガスの過熱度によ
って膨脹弁の開度を制御する方式に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a control method for an expansion valve of a heat pump type refrigeration system formed of a compressor, a condenser, an expansion valve, and an evaporator as main components. In particular, the present invention relates to a method for controlling the opening degree of an expansion valve depending on the degree of superheating of gas discharged from a compressor.
従来、冷凍サイクルの高圧側の冷媒過熱度に応じて膨脹
弁の開度を制御する方式として実開昭55−14847
0号が提案されているが、この従来技術は、吐出管温度
と凝縮器(こおける高圧側飽和冷媒温度との差に応じて
膨脹弁の開閉を行うよう船こなっている。この様fこ、
高圧側飽和温度として、凝縮器(こおける飽和己度を検
出する方式であり、圧縮機の冷媒吐出部での飽和幅度検
出1こついては配慮されていなかった。また、膨脹弁の
開閉制御の演算方法についても配慮されていなかった。Conventionally, the method of controlling the opening degree of the expansion valve according to the degree of superheating of the refrigerant on the high pressure side of the refrigeration cycle was developed in Utility Model Application No. 55-14847.
No. 0 has been proposed, but this prior art is designed to open and close the expansion valve according to the difference between the discharge pipe temperature and the high pressure side saturated refrigerant temperature in the condenser. child,
This method detects the saturation level in the condenser as the high-pressure side saturation temperature, and does not take into account the saturation range at the refrigerant discharge part of the compressor. No consideration was given to the method.
また、他の従来例として、圧縮機の吸入側の過熱度に応
じて膨脹弁開度を制御するものは、特開昭49−128
850号、特開昭59−191854号、あるいは1%
開昭59−205559号などがあるが、吐出ガスの過
熱度によって膨脹弁を制御する方式については記載され
ていない。In addition, as another conventional example, the opening degree of the expansion valve is controlled according to the degree of superheating on the suction side of the compressor, as disclosed in Japanese Patent Laid-Open No. 49-128.
No. 850, JP-A-59-191854, or 1%
There is a patent publication No. 59-205559, etc., but there is no description of a system for controlling an expansion valve depending on the degree of superheating of discharged gas.
上記従来技術は、圧縮機の冷媒吐出部での冷媒過熱度を
検出する方式については配慮されていなかった。即ち、
従来技術では、高圧側の飽和温度として凝縮器の冷媒温
度Tcを検出し、圧縮機の吐出管部の温度Tdを検知し
て温度差(TcL−Tc)lこ応じて膨脹弁を制御して
いた。The above-mentioned conventional technology does not consider a method for detecting the degree of superheating of the refrigerant at the refrigerant discharge section of the compressor. That is,
In the conventional technology, the refrigerant temperature Tc of the condenser is detected as the saturation temperature on the high pressure side, the temperature Td of the discharge pipe section of the compressor is detected, and the expansion valve is controlled according to the temperature difference (TcL-Tc). Ta.
このため、まず、圧縮機と凝縮器の間の接続配管が長い
場合には、接続配管部での圧力損失により凝縮器での飽
和圧力が低下し、飽和温度も低くなる。このように、検
出、演算される吐出冷媒の過熱度は上記配管長さにより
変化することになり、圧縮機吐出部での正確な過熱度が
得られないという問題があった。For this reason, first, when the connecting pipe between the compressor and the condenser is long, the saturation pressure in the condenser decreases due to pressure loss at the connecting pipe, and the saturation temperature also decreases. In this way, the degree of superheat of the discharged refrigerant that is detected and calculated varies depending on the length of the piping, and there is a problem in that an accurate degree of superheat at the compressor discharge section cannot be obtained.
本発明の目的は、正確な吐出冷媒の過熱度を検出し、設
定過熱度と上記検出過熱度とt対応させ提供すること(
こめる。An object of the present invention is to accurately detect the degree of superheat of a discharged refrigerant and to provide a correspondence between the set degree of superheat and the detected degree of superheat.
Comer.
(問題点を解決する六めの手段〕
上記目的は、圧縮機近傍の吐出配管部に、一端が閉ざさ
れた技管を設け、この技管を冷却するこことによってこ
の技管内で吐出ガスを凝縮させ、この吐出圧力に対応し
た飽和温度を検出し、吐出ガスm度と上記検出飽和温度
)こて正確な吐出冷媒の過熱度を検出し、この検出過熱
度と設定過熱度を比較して膨脹弁の制(2)を行ない、
また、上記差の時間的変化ならびに時間的積分結米を〃
口昧し、吐出ガスの過熱度制−の定数を適正化して、上
記過熱度が設定過熱度より低けれは弁開度を閉方向に、
高ければ弁開度を開方向に制御を行なうことにより、冷
凍装置の安定化が達成される。(Sixth means to solve the problem) The above purpose is to provide a pipe with one end closed in the discharge piping near the compressor, and cool the pipe to cool the discharge gas within the pipe. Detect the saturation temperature corresponding to this discharge pressure, detect the discharged gas m degree and the detected saturation temperature above), detect the accurate degree of superheat of the discharged refrigerant, and compare this detected degree of superheat with the set degree of superheat. Control the expansion valve (2),
In addition, we also calculated the temporal change of the above difference and the temporal integration of the difference.
If the above superheat degree is lower than the set superheat degree, adjust the valve opening degree in the closing direction.
If it is high, the refrigeration system can be stabilized by controlling the valve opening in the opening direction.
圧縮機の吐出ガス雰囲気部に、一端が閉じられた。技管
を設け、これを冷却することにより、吐出ガスが冷却さ
れて凝縮が生じる。上記技管内で凝縮が生じる領域にs
度センナを設けることにより、吐出ガス雰囲気部の圧力
に対応した正確な飽和温度を検出することができる。上
記検出飽和温度と吐出ガス温度1こて吐出冷媒の過熱度
を検知し、御し、流通冷媒量制御が行なわれる。しかし
て、膨脹弁開度は、冷凍装置の起動後の過渡状態から定
常状態になるまでの膨脹弁の異常な閉動作をなくすこと
ができ、冷凍装置の起動時の立上り運転時の膨脹弁制御
が最適化される。One end was closed to the discharge gas atmosphere of the compressor. By providing a pipe and cooling it, the discharge gas is cooled and condensation occurs. s in the area where condensation occurs within the above technique.
By providing a temperature sensor, it is possible to detect an accurate saturation temperature corresponding to the pressure of the discharge gas atmosphere. The detected saturation temperature and discharge gas temperature 1 The degree of superheat of the refrigerant discharged from the trowel is detected and controlled, and the amount of refrigerant in circulation is controlled. Therefore, the expansion valve opening degree can eliminate abnormal closing operation of the expansion valve from the transient state after the start-up of the refrigeration equipment to the steady state. is optimized.
(実施例〕
以下、本発明の一実施例を図面にもとすき説明する。第
1図は1本発明の冷凍サイクルの構成を示す。第1図に
おいて1は圧縮機、2は凝縮器、8は蒸発器、4は電気
的に駆動される膨脹弁、5は圧縮機の吐出ガス管、6は
、一端が閉じられ他端が吐出ガス管5に開口する技管、
7は技管6の温度を検知する第1のセンサー、8は吐出
ガスの温度を検出する第2のセンサー、9は第1のセン
サ7の温度Teatと第2のセンサ8の温度Taを検出
し、過熱度B’fi (=Td−Teat)を演算して
、膨脹弁4の開度を駆動する制御装置、10は吸入ガス
管である。技管6の先端部は、吸入管10と熱交換可能
なように取付けられている。(Embodiment) Hereinafter, an embodiment of the present invention will be explained with reference to the drawings. Fig. 1 shows the configuration of a refrigeration cycle of the present invention. In Fig. 1, 1 is a compressor, 2 is a condenser, 8 is an evaporator, 4 is an electrically driven expansion valve, 5 is a discharge gas pipe of the compressor, and 6 is a technical pipe whose one end is closed and the other end is open to the discharge gas pipe 5;
7 is a first sensor that detects the temperature of the tube 6; 8 is a second sensor that detects the temperature of the discharged gas; 9 is a sensor that detects the temperature Tea of the first sensor 7 and the temperature Ta of the second sensor 8. A control device 10 is an intake gas pipe which calculates the degree of superheat B'fi (=Td-Teat) and drives the opening degree of the expansion valve 4. The tip of the technical tube 6 is attached so as to be able to exchange heat with the suction tube 10.
第1図の冷凍サイクルにおいて、圧縮機1から吐出され
た冷媒は、吐出ガス管5、凝縮器2、膨脹弁4、蒸発器
8、吸入ガス管と一循する。次に第2図1こ技管6の詳
細を示す。伏管6は、吐出ガス管51こ対して垂直(こ
取付けられている。第2図中]こ示すように、技管6内
の冷媒は、吸入管101こ上り冷却されて温度が低下し
、技管6のある位置で凝縮が生じ枝g6の長さ方向に温
度がは’x 一定となる。技管6内では、枝v6の先端
付近の液冷媒が落下し、落下した液冷媒は、吐出ガス(
こより蒸発する一循の流れが生じ、液冷媒が存在する技
管6内の領域では温度は一定となる。第1のセンサ7は
、技管6の温度が一定となる領域fこ取付けられ、吐出
ガス雰囲気の圧力蚤こ対応した飽和温度Tsatが検知
される。In the refrigeration cycle shown in FIG. 1, refrigerant discharged from the compressor 1 circulates through the discharge gas pipe 5, the condenser 2, the expansion valve 4, the evaporator 8, and the suction gas pipe. Next, FIG. 2 shows the details of the tube 6. The down pipe 6 is installed perpendicularly to the discharge gas pipe 51 (see FIG. 2). As shown in FIG. , condensation occurs at a certain position in the pipe 6, and the temperature becomes constant in the length direction of the branch g6.In the pipe 6, the liquid refrigerant near the tip of the branch v6 falls, and the liquid refrigerant that has fallen is , discharge gas (
This causes a circular flow of evaporation, and the temperature remains constant in the area within the tube 6 where the liquid refrigerant exists. The first sensor 7 is attached to a region f where the temperature of the tube 6 is constant, and detects the saturation temperature Tsat corresponding to the pressure of the discharged gas atmosphere.
一方、第2のセンサ8は、吐出ガス温度Tdを検知し、
制御装置9によって、温度差(Td−Tsat)すなわ
ち吐出ガスの過熱度SHdに応じて膨脹弁を開閉する。On the other hand, the second sensor 8 detects the discharge gas temperature Td,
The control device 9 opens and closes the expansion valve according to the temperature difference (Td-Tsat), that is, the superheat degree SHd of the discharged gas.
第8図(こ過熱度SHdと圧縮機吸入側の過熱度、湿り
度の関係を示す。吐出ガス過熱度SHdが小さいと吸入
側は液冷媒を含んだ湿り状態となり、SHaが太きいと
吸入冷媒は過熱した状態となる。冷凍能力が最大となる
のは、吸入冷媒の過熱度がQdeg付近である。したが
って、第8図に示す例では、吐出ガス過熱度SHaの設
定値を40degとすれば、冷凍サイクルの能力を最大
限)こ発揮することができる。Figure 8 (This shows the relationship between the degree of superheating SHd and the degree of superheating and humidity on the suction side of the compressor. If the degree of superheating SHd of the discharge gas is small, the suction side will be in a wet state containing liquid refrigerant, and if SHa is large, the suction side will be in a wet state. The refrigerant is in a superheated state.The refrigerating capacity reaches its maximum when the degree of superheat of the suction refrigerant is around Qdeg.Therefore, in the example shown in FIG. This allows the refrigeration cycle to utilize its full potential.
以上説明したようEこ1本実施例(こよれば、圧縮機近
傍の吐出ガス過熱度SHdを確実Iこ検知することが可
能であシ、吐出ガス過熱度の適切な設定値を与えること
により、冷凍サイクルの性能を最大限に発揮させること
ができる。また、吐出ガス過熱度の設定置を、圧縮機の
回転数や凝縮器、蒸発器の熱媒体の温度などにより変更
すれば、冷凍サイクルの運転状態が変化しても、能力を
最大に制御することが可能である。As explained above, according to this embodiment, it is possible to reliably detect the discharge gas superheat degree SHd near the compressor, and by giving an appropriate setting value for the discharge gas superheat degree. , the performance of the refrigeration cycle can be maximized.Also, by changing the setting of the discharge gas superheat degree depending on the rotation speed of the compressor, the temperature of the heat medium of the condenser, and the evaporator, etc., the refrigeration cycle can be maximized. Even if the operating conditions of the system change, it is possible to control the capacity to the maximum.
また、圧縮機1と凝縮器2との間の接硯配管が長い場合
Eこも、本実施例によれば、吐出ガス過熱度BHJこ対
して何ら影響することがない。Further, even if the connecting pipe between the compressor 1 and the condenser 2 is long, according to this embodiment, there is no effect on the discharge gas superheat degree BHJ.
第2図では、バイブロを吸入管fこより冷却する実施例
を示したが、凝縮器から圧a機成入部をこいたる冷媒に
より冷却すゐことも可能である。Although FIG. 2 shows an embodiment in which the vibro is cooled through the suction pipe f, it is also possible to cool the vibro with a refrigerant flowing from the condenser to the pressure a machine input section.
また、第一センサ7をバイブロ内に挿入すれば飽和幌度
をさらに正確に検知することが可能でちる0
以上、吐出ガス雰囲気の圧力に相当する飽和温度を検出
する手段と、吐出ガス過熱度制御の作用(こついて述べ
た。In addition, by inserting the first sensor 7 into the vibro, it is possible to detect the saturation temperature even more accurately. The effect of control (I mentioned this in detail).
次に膨脹弁の開閉制御方式の具体的実施例を説明する。Next, a specific example of the opening/closing control method of the expansion valve will be described.
まず、膨脹弁開度の調整量ΔVは次式で表わされ石。First, the adjustment amount ΔV of the expansion valve opening is expressed by the following formula.
6は、検出演算される吐出ガス過熱度5H(tと設定過
熱度EIHds atの差であり、上式の右辺の第1項
は現時点の誤差を表わし、第2項は誤差の積分値を表わ
し、第8項は誤差の微分値を表わす。この制御力式は所
謂P i D IIJ御法である。係数Kl 、に2
s K3は定数であり、この係数に1、K2.に3を適
正化することにより、制御対象の吐出ガスの過熱度を安
定に制御でき、ヒートポンプ式冷凍サイクルを安定して
運転できる。6 is the difference between the detected and calculated discharge gas superheat degree 5H (t) and the set superheat degree EIHds at; the first term on the right side of the above equation represents the current error, and the second term represents the integral value of the error. , the eighth term represents the differential value of the error. This control force formula is the so-called P i D IIJ control method. The coefficient Kl is 2
s K3 is a constant, and this coefficient is 1, K2 . By optimizing 3, the degree of superheating of the discharged gas to be controlled can be stably controlled, and the heat pump type refrigeration cycle can be stably operated.
次に、起動時などの過渡状態時の制御方式の実施例を説
明する。第4図はヒートポンプ装置が起動されてからの
運転状態を表わす。停止中は、吐出ガスの過熱度は0で
あるから、前式によれば修正量がOとなり、膨脹弁を開
路する信号を出すことができない。Next, an embodiment of a control method during a transient state such as during startup will be described. FIG. 4 shows the operating state of the heat pump device after it has been started. While the engine is stopped, the degree of superheat of the discharged gas is 0, so according to the above equation, the correction amount becomes 0, and a signal to open the expansion valve cannot be issued.
本発明では、ヒートポンプ装置の起動と同時または起動
から所定時間後に一定量膨脹弁を強制的に所定憧開略す
る。開路後、所定時間は一定開度に保持され、所定時間
経過後から上述のPiD制御が行なわれる。即ち、起動
後の吐出ガスの過熱度は設定過熱度に対して小さく、ε
はマイナスとなるため、係数に、、K2、K3の選び方
によっては、膨脹弁は閉められたままで開かない。本発
明では、上記誤差εが所定巾)こなるまでは、係数に3
ft太きくし、εが所定巾になった後は、係数に3 を
小さくする。これにより、起動後、過熱度EIH(tが
急激に小さくなると、つまり、吐出ガス温度が急激に高
くなると前式で第8項はプラスであり、係数に3d大き
いため、膨脹弁に開指令が出る。従って、起動後膨脹弁
が異常に小さい開度になることがない。誤差とが所定巾
になるとに3は小さくなり、ヒートポンプ装置は安定し
た運転ができる。In the present invention, the expansion valve is forcibly opened by a predetermined amount at the same time as the heat pump device is started or after a predetermined period of time after the start of the heat pump device. After the circuit is opened, the opening is maintained at a constant degree for a predetermined time, and the above-mentioned PiD control is performed after the predetermined time has elapsed. In other words, the superheat degree of the discharged gas after startup is smaller than the set superheat degree, and ε
is negative, so depending on how the coefficients, K2 and K3 are selected, the expansion valve remains closed and does not open. In the present invention, until the above error ε exceeds a predetermined width, the coefficient is
ft thicker, and after ε reaches a predetermined width, reduce the coefficient by 3. As a result, after startup, if the superheat degree EIH (t) suddenly decreases, that is, the discharge gas temperature suddenly increases, the eighth term in the previous equation is positive, and the coefficient is 3d larger, so the expansion valve is commanded to open. Therefore, the expansion valve does not open to an abnormally small degree after startup.When the error is within a predetermined range, 3 becomes small, and the heat pump device can operate stably.
(発明の効果〕
以上説明したようlこ不発明によれば、圧縮機近傍の吐
出ガス雰囲気の圧力に対応し六飽和臨度を検知すること
が可能であり、圧縮機の吐出冷媒の過熱度を正確に検知
し、この過熱度がほぼ設定値になるように制御すること
ができ、冷凍装置の性能を効率良く且つ安定して運転す
ることが出来る。また、特Iこ、冷凍装置の起動後の過
渡状態から定常状態Iこなるまでの膨脹弁の異常な閉動
作をなくすることができ、冷凍装置の起動時の立上り運
転が良好になる等の効果を有する。(Effects of the Invention) As explained above, according to the present invention, it is possible to detect the degree of saturation corresponding to the pressure of the discharge gas atmosphere near the compressor, and the degree of superheat of the refrigerant discharged from the compressor can be detected. It is possible to accurately detect the degree of superheating and control the degree of superheat to approximately the set value, and the performance of the refrigeration equipment can be operated efficiently and stably. It is possible to eliminate the abnormal closing operation of the expansion valve from the subsequent transient state to the steady state I, and has the effect of improving startup operation when starting up the refrigeration system.
第1図は本発明の一実施例を示す冷凍サイクルの構成図
、第2図は第1図のat部の拡大詳細図、第8図は冷凍
サイクルの特注図、第4図は起動時の運転状態を説明す
るもので、経過時間と、吐出ガス温度、吐出ガス過熱度
、膨脹弁開度と関係を示す線図である。
1・・・圧縮機 2・・・凝縮器 8・・・蒸発器 4
・・・膨脹弁 5・・・吐出管 6・・・技管 7・・
・第1センサ 8・・・第2センサ 9・・・制唾装置
竿1四
5 ワ」シJ二イヅウζ4(守
4ρJ 51−/c(菓4」
峰迫時節Fig. 1 is a configuration diagram of a refrigeration cycle showing an embodiment of the present invention, Fig. 2 is an enlarged detailed view of the at part in Fig. 1, Fig. 8 is a custom-made drawing of the refrigeration cycle, and Fig. 4 is a diagram at startup. It is a diagram explaining the operating state and showing the relationship between elapsed time, discharge gas temperature, discharge gas superheat degree, and expansion valve opening degree. 1... Compressor 2... Condenser 8... Evaporator 4
...Expansion valve 5...Discharge pipe 6...Technical pipe 7...
・First sensor 8...Second sensor 9...Saliva suppressor rod 145
Claims (4)
て順次配管接続して形成される冷媒回路を備えたヒート
ポンプにおいて、圧縮機吐出部の冷媒温度を検知する第
1のセンサーと、圧縮機吐出部から分岐され先端が閉じ
られた技管と、この技管の温度を検知する飽和温度検知
第2センサーを備え、第1センサと第2センサーの検知
信号から吐出部の過熱度を演算し、設定過熱度と検出過
熱部との差及び過熱度の時間的変化を演算する手段、こ
の演算結果にもとずいて膨脹弁の開度を制御する手段か
らなり、上記の検出演算した過熱度(SHd)と設定過
熱度(SHdset)の差及びこの差の時間的変化なら
びに過熱度の差の時間的積分結米を加味し、上記過熱度
が設定過熱度より低ければ弁開度を閉方向に、高ければ
弁開度を開方向に膨脹弁の開度を制御することを特徴と
する冷凍装置の冷媒制御装置。1. In a heat pump equipped with a refrigerant circuit formed by connecting a compressor, a condenser, an evaporator, and an expansion valve in sequence as main components, the first sensor detects the refrigerant temperature at the discharge part of the compressor; It is equipped with a technical pipe branched from the discharge part and closed at the tip, and a second saturation temperature detection sensor that detects the temperature of this pipe, and calculates the degree of superheating of the discharge part from the detection signals of the first sensor and the second sensor. , a means for calculating the difference between the set degree of superheat and the detected superheat part and a temporal change in the degree of superheat, and a means for controlling the opening degree of the expansion valve based on the result of this calculation, (SHd) and the set superheat degree (SHdset), the temporal change of this difference, and the temporal integration of the difference in the superheat degree A refrigerant control device for a refrigeration system, characterized in that, if the opening degree is higher, the opening degree of the expansion valve is controlled in the opening direction.
et)の差には係数K_1、(SHd−SHdset)
の時間積分項には係数K_2、(SHdset)の時間
的変化分には係数K_3により重み付けをして膨脹弁開
度を演算する特許請求の範囲第1項記載の冷凍装置の冷
媒制御装置、2. Detected superheat degree (SBd) and set superheat degree (SHds)
et) has a coefficient K_1, (SHd-SHdset)
A refrigerant control device for a refrigeration system according to claim 1, which calculates the expansion valve opening degree by weighting the time integral term of (SHdset) with a coefficient K_2 and the temporal change of (SHdset) with a coefficient K_3;
値に固定する特許請求の範囲第1項または第2項記載の
冷凍装置の冷媒制御装置。3. 3. A refrigerant control device for a refrigeration system according to claim 1, wherein the opening degree of the expansion valve is fixed at a predetermined value for a predetermined period of time after the refrigeration system is started.
る場合と所定巾内にない場合とで係数K_1、K_2、
K_3を変化させることを特徴とする特許請求の範囲第
1項乃至第3項のいずれか一つに記載の冷凍装置の冷媒
制御装置。4. The coefficients K_1, K_2, and
A refrigerant control device for a refrigeration system according to any one of claims 1 to 3, characterized in that K_3 is changed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24296386A JPH081337B2 (en) | 1986-10-15 | 1986-10-15 | Refrigerant control device for refrigeration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24296386A JPH081337B2 (en) | 1986-10-15 | 1986-10-15 | Refrigerant control device for refrigeration system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6399460A true JPS6399460A (en) | 1988-04-30 |
JPH081337B2 JPH081337B2 (en) | 1996-01-10 |
Family
ID=17096835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24296386A Expired - Fee Related JPH081337B2 (en) | 1986-10-15 | 1986-10-15 | Refrigerant control device for refrigeration system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH081337B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03186169A (en) * | 1989-12-14 | 1991-08-14 | Daikin Ind Ltd | Defrosting operation controller of air conditioner |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102368575A (en) * | 2011-09-08 | 2012-03-07 | 广东欧珀移动通信有限公司 | Built-in secondary radiating antenna |
-
1986
- 1986-10-15 JP JP24296386A patent/JPH081337B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03186169A (en) * | 1989-12-14 | 1991-08-14 | Daikin Ind Ltd | Defrosting operation controller of air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JPH081337B2 (en) | 1996-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4878355A (en) | Method and apparatus for improving cooling of a compressor element in an air conditioning system | |
CA2330595C (en) | Electronic controlled expansion valve | |
US6318101B1 (en) | Method for controlling an electronic expansion valve based on cooler pinch and discharge superheat | |
EP0237822B1 (en) | Refrigerant flow control system for use with refrigerator | |
JPH11501114A (en) | Feedforward control of expansion valve | |
US6266964B1 (en) | Use of electronic expansion valve to maintain minimum oil flow | |
JPH04240355A (en) | Controlling method for electronic expansion valve of air conditioner | |
JPS6399460A (en) | Refrigerant controller for refrigerator | |
JPH04222341A (en) | Operation controller for air conditioner | |
JP4301546B2 (en) | Refrigeration equipment | |
JPS5833040A (en) | Method of controlling refrigeration cycle | |
JPH087314Y2 (en) | refrigerator | |
JPH10339509A (en) | Freezer for freezing container | |
JP2785546B2 (en) | Refrigeration equipment | |
JP2522116B2 (en) | Operation control device for air conditioner | |
JPH0682122A (en) | Refrigerating apparatus | |
JPS5912942B2 (en) | Refrigeration equipment | |
JP2646917B2 (en) | Refrigeration equipment | |
JPH0772648B2 (en) | Refrigerant flow control method | |
JP2903860B2 (en) | Operation control device for refrigeration equipment | |
JPS6356465B2 (en) | ||
JPS6383556A (en) | Refrigeration cycle | |
JPS6346347A (en) | Refrigerant flow controller | |
CN117249620A (en) | Air supply control method and device for compressor and air conditioning unit | |
JPH065570Y2 (en) | Refrigeration equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |