JPH08131766A - Method and apparatus for controlling injection amount of reducing agent in denitration facility - Google Patents

Method and apparatus for controlling injection amount of reducing agent in denitration facility

Info

Publication number
JPH08131766A
JPH08131766A JP6277734A JP27773494A JPH08131766A JP H08131766 A JPH08131766 A JP H08131766A JP 6277734 A JP6277734 A JP 6277734A JP 27773494 A JP27773494 A JP 27773494A JP H08131766 A JPH08131766 A JP H08131766A
Authority
JP
Japan
Prior art keywords
reducing agent
injection amount
outlet
denitration
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6277734A
Other languages
Japanese (ja)
Other versions
JP3409929B2 (en
Inventor
Okikazu Ishiguro
興和 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP27773494A priority Critical patent/JP3409929B2/en
Publication of JPH08131766A publication Critical patent/JPH08131766A/en
Application granted granted Critical
Publication of JP3409929B2 publication Critical patent/JP3409929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE: To maintain NOx concentration at the outlet of a denitration facility close to a set value by correcting the injection of a reducing agent the basis of the rate of change in load requirement of a combustion apparatus and the rate of change in NOx concentration at the outlet of the denitration facility. CONSTITUTION: The amount of ammonia to be injected is determined from a signal 13 of an ammonia molar ratio necessary to obtain the rate of denitration which is necessary to maintain NOx concentration at the outlet of a denitration facility at a set value, a signal 15 of a feedback correction molar ratio by the output signal of an outlet NOx concent,ration meter 4, a signal 33 of ammonia injection correction by a fuzzy controller 30, and a signal 32 of a dynamic previous value to a signal 5 of load requirement. In this way, the delay of denitration reaction is compensated by dynamic previous control in response to the rate of change in load to the generation of a peak value in NOx concentration at the time of load variation in a coal burning plant, and the shortage of ammonia due to dynamic previous control is compensated by fuzzy control based on the rate of change in load and the rate of change in outlet NOx concentration. Therefore, even at the time of high speed load variation, the outlet NOx concentration is made close to a set value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、脱硝装置に係り、特に
排ガス中の窒素酸化物を低減するのに好適な脱硝装置の
還元剤注入量制御装置ならびに流入量制御方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a denitration device, and more particularly to a reducing agent injection amount control device and an inflow amount control method for a denitration device suitable for reducing nitrogen oxides in exhaust gas.

【0002】[0002]

【従来の技術】従来の脱硝装置用アンモニア注入量制御
装置は、図2に示すように、処理ガス流量計1の出力信
号と入口NOx濃度計2の出力信号を乗算器7aで乗算
して、入口NOx量信号21とする。一方、入口NOx
濃度計2の出力信号および出口NOx濃度設定器3の出
力信号より、引算器8aおよび割算器9より必要脱硝率
信号10を演算し、この必要脱硝率信号10を関数発生
器11に入力して、NOx量に対して必要なアンモニア
モル比信号13を演算する。
2. Description of the Related Art As shown in FIG. 2, a conventional ammonia injection amount control device for a denitration device multiplies an output signal of a process gas flow meter 1 and an output signal of an inlet NOx concentration meter 2 by a multiplier 7a, The inlet NOx amount signal 21 is used. On the other hand, inlet NOx
From the output signal of the densitometer 2 and the output signal of the outlet NOx concentration setting device 3, the required denitration rate signal 10 is calculated by the subtractor 8a and the divider 9, and the required denitration rate signal 10 is input to the function generator 11. Then, the ammonia molar ratio signal 13 required for the NOx amount is calculated.

【0003】出口NOx濃度設定器3の出力信号と出口
NOx濃度計4の出力信号との間の偏差信号を引算器8
bで求め、調節計12aで信号処理して、フィードバッ
クモル比信号15を演算する。加算器14aでは、必要
モル比信号13とフィードバックモル比信号15を加算
して、全モル比信号16とし、乗算器7bで、入口NO
x量信号21と乗算して、必要アンモニア流量信号22
とする。
A subtracter 8 calculates a deviation signal between the output signal of the outlet NOx concentration setting device 3 and the output signal of the outlet NOx concentration meter 4.
Then, the signal is processed by the controller 12a, and the feedback molar ratio signal 15 is calculated. In the adder 14a, the required molar ratio signal 13 and the feedback molar ratio signal 15 are added to obtain the total molar ratio signal 16, and the multiplier 7b supplies the inlet NO
The required ammonia flow rate signal 22 is multiplied by the x quantity signal 21.
And

【0004】次に、負荷要求信号5を微分器17および
2階微分器18で演算処理した信号を加算器14bに入
力し、加算器14bでは、これらの信号と前述の必要ア
ンモニア流量信号22と加算して、アンモニア流量要求
信号19を演算する。
Next, the load request signal 5 is processed by the differentiator 17 and the second-order differentiator 18 and the resulting signal is input to the adder 14b. In the adder 14b, these signals and the above-mentioned required ammonia flow rate signal 22 are input. Then, the ammonia flow rate request signal 19 is calculated.

【0005】このアンモニア流量要求信号19とアンモ
ニア流量計6のアンモニア流量検出信号の偏差を引算器
8cで求め、調節計12bで信号処理して、アンモニア
流量調整弁20を開、閉することにより、脱硝装置出口
NOx濃度を設定値近傍に維持していた。
The difference between the ammonia flow rate request signal 19 and the ammonia flow rate detection signal of the ammonia flow meter 6 is obtained by the subtractor 8c, the signal is processed by the controller 12b, and the ammonia flow rate adjusting valve 20 is opened and closed. The NOx concentration at the outlet of the denitration device was maintained near the set value.

【0006】この制御方式は、基本的には、入口NOx
量に対する先行値、出口濃度設定値との偏差によるフィ
ードバック補正、および負荷要求信号に対する動的先行
値により、アンモニア注入量を決定する方式である。な
お、動的先行値は、アンモニア注入量の変化に対する脱
硝反応の遅れ、通常10数分を補償するために設けられ
ている。
This control system is basically based on the inlet NOx.
This is a method for determining the amount of ammonia injection based on the preceding value for the amount, feedback correction based on the deviation from the outlet concentration set value, and the dynamic preceding value for the load request signal. The dynamic leading value is provided to compensate for the delay of the denitration reaction with respect to the change in the amount of injected ammonia, which is usually ten or more minutes.

【0007】最近では、火力プラントの高速負荷変化率
運用に伴い、脱硝負荷の変動が急激になってきたにも係
わらず、脱硝装置出口NOx濃度の設定値に対する出口
NOx濃度の偏差の変化幅を小さく抑えることが要求さ
れている。即ち、出口NOx濃度の制御性を向上させる
ことが必要不可欠となっている。
In recent years, with the rapid load change rate operation of a thermal power plant, the variation range of the deviation of the NOx concentration at the outlet with respect to the set value of the NOx concentration at the outlet of the denitrification apparatus has been changed, despite the rapid change in the denitrification load. It is required to keep it small. That is, it is essential to improve the controllability of the outlet NOx concentration.

【0008】特に、石炭焚きボイラにおいては、負荷変
動時にミルの起動停止操作を行うが、この際、ミルウォ
ーミング空気あるいはミル残炭パージ用の空気を供給す
るために、一時的に空気過剰の状態が発生する。このた
め、脱硝装置入口NOx濃度には、ピーク値が発生す
る。このピーク値に対して、脱硝装置出口NOx濃度を
設定値の近傍に維持するために、大量のアンモニアを注
入すると、入口NOx濃度のピークに対応した、出口N
Ox濃度のピークを抑えることはできるが、入口NOx
濃度がピーク値を示さなくなると、アンモニアが過剰と
なる。
Particularly, in the coal-fired boiler, the operation of starting and stopping the mill is performed when the load changes, but at this time, in order to supply the mill warming air or the air for purging the mill residual coal, a temporary excess air is supplied. A condition occurs. Therefore, a peak value occurs in the NOx concentration at the inlet of the denitration device. When a large amount of ammonia is injected to maintain the NOx concentration at the outlet of the denitrification device in the vicinity of the set value with respect to this peak value, the outlet N corresponding to the peak of the inlet NOx concentration is discharged.
The peak of Ox concentration can be suppressed, but the inlet NOx
When the concentration shows no peak value, the ammonia becomes excessive.

【0009】図3はこのような状況の一例を示してお
り、同図の斜線部分がアンモニア過剰となり、リークア
ンモニアが発生し経済的運転が困難となる。
FIG. 3 shows an example of such a situation. The shaded area in FIG. 3 causes excess ammonia and leak ammonia is generated, which makes economical operation difficult.

【0010】[0010]

【発明が解決しようとする課題】上記従来技術は、脱硝
負荷が急激に変化した場合においても、脱硝装置出口N
Ox濃度を設定値近傍に維持するという点について配慮
がされておらず、動的先行制御によって、大量のアンモ
ニアの注入により、出口NOx濃度の上限値はクリアで
きても、下限値を下回り、NH3 消費量が多くなる。
In the above-mentioned conventional technique, even when the denitration load changes abruptly, the denitration device outlet N
No consideration was given to maintaining the Ox concentration in the vicinity of the set value. Even though the upper limit value of the outlet NOx concentration could be cleared by the injection of a large amount of ammonia by the dynamic advance control, the lower limit value was exceeded, and 3 Increases consumption.

【0011】本発明の目的は、高速負荷変動時において
も、脱硝装置出口のNOx濃度を設定値近傍に維持でき
る脱硝装置の還元剤注入量制御装置ならびに注入量制御
方法を提供することにある。
An object of the present invention is to provide a reducing agent injection amount control device and an injection amount control method for a denitration device that can maintain the NOx concentration at the outlet of the denitration device near a set value even when the load changes rapidly.

【0012】[0012]

【課題を解決するための手段】上記目的は、燃焼装置か
ら発生する排ガスに還元剤を注入し、乾式接触還元法に
よって前記排ガス中の窒素酸化物を還元する脱硝装置の
還元剤注入量制御装置において、前記燃焼装置の負荷要
求変化率と、前記脱硝装置出口の窒素酸化物濃度変化率
の両方の変化率に基づいて前記還元剤の注入量を補正す
る第1の補正手段を設けた第1の手段により達成され
る。
The above object is to control a reducing agent injection amount of a denitration device for injecting a reducing agent into exhaust gas generated from a combustion device and reducing nitrogen oxides in the exhaust gas by a dry catalytic reduction method. In the first aspect, the first correction means is provided to correct the injection amount of the reducing agent based on both the change rate of the load demand of the combustion apparatus and the change rate of the nitrogen oxide concentration change rate at the outlet of the denitration apparatus. It is achieved by means of.

【0013】また、第1の手段において、前記第1の補
正手段の他に、前記燃焼装置の負荷要求変化率に基づい
て前記還元剤の注入量を補正する第2の補正手段が設け
られている第2の手段により達成される。
In addition to the first correcting means, the first means is provided with a second correcting means for correcting the injection amount of the reducing agent based on the load demand change rate of the combustion device. It is achieved by the second means.

【0014】また、第1または第2の手段において、前
記第1の補正手段の他に、前記脱硝装置出口の窒素酸化
物濃度と脱硝装置出口の窒素酸化物濃度設定値との偏差
に基づいて前記還元剤の注入量を補正する第3の補正手
段が設けられている第3の手段により達成される。
In the first or second means, based on the deviation between the nitrogen oxide concentration at the outlet of the denitration device and the nitrogen oxide concentration set value at the outlet of the denitration device, in addition to the first correction means. This is achieved by a third means that is provided with a third correction means for correcting the injection amount of the reducing agent.

【0015】また、第1ないし第3の手段のいずれかに
おいて、前記第1の補正手段の他に、前記脱硝装置入口
の窒素酸化物量と脱硝装置出口の窒素酸化物濃度設定値
とに基づいて必要還元剤を演算する演算手段が設けられ
ている第4の手段により達成される。
In any one of the first to third means, in addition to the first correcting means, based on the nitrogen oxide amount at the denitration device inlet and the nitrogen oxide concentration set value at the denitration device outlet. This is achieved by the fourth means which is provided with a computing means for computing the required reducing agent.

【0016】また、第1ないし第4の手段のいずれかに
おいて、前記第1の補正手段がファジ推論を用いた演算
部で構成されている第5の手段により達成される。
Further, in any one of the first to fourth means, the first correcting means is achieved by a fifth means composed of a calculation section using fuzzy inference.

【0017】[0017]

【作用】負荷要求信号の変化率に対応した動的先行信号
は、脱硝反応の遅れを補償するように動作する。なお、
この動的先行信号は、ミルの起動停止信号に合わせて、
任意のタイミングで動作する。
The dynamic advance signal corresponding to the rate of change of the load request signal operates to compensate for the delay of the denitration reaction. In addition,
This dynamic lead signal, along with the mill start / stop signal,
Operates at any timing.

【0018】この信号によるアンモニアの注入量は過大
とならざるを得ないので、過大注入の直後には、アンモ
ニアの注入量を減少させるように動作する。これは、負
荷上昇時であり、負荷下降時は逆の動作となる。
Since the injection amount of ammonia due to this signal is inevitably excessive, the injection amount of ammonia is reduced immediately after the excessive injection. This is when the load is increasing, and the reverse operation when the load is decreasing.

【0019】ファジィ推論を用いてアンモニア注入量の
補正を行う制御装置は、負荷要求信号の変化率および脱
硝装置出口NOx濃度変化率に基づいて、アンモニア注
入量の補正を行うので、例えば、負荷上昇時を考える
と、負荷上昇に伴ってアンモニアの供給量は増大してい
くが、出口NOx濃度が低下し始めると、アンモニア注
入量を絞るように動作する。
The control device for correcting the ammonia injection amount using the fuzzy inference corrects the ammonia injection amount based on the change rate of the load request signal and the NOx concentration change rate of the denitration device. Considering the time, the supply amount of ammonia increases as the load increases, but when the outlet NOx concentration starts to decrease, the ammonia injection amount is reduced.

【0020】要するに、高速負荷変動のような大幅な状
態変化に対しては、動的先行制御で対応し、これによる
アンモニア注入量の過不足分はファジィ制御で対応する
ように動作する。
In short, a dynamic advance control responds to a large state change such as a high-speed load change, and the excess / deficiency of the ammonia injection amount due to this is controlled by fuzzy control.

【0021】それによって、脱硝装置出口のNOx濃度
は、設定値近傍に維持されるようになるので、安定した
出口NOx濃度特性が得られることになる。
As a result, the NOx concentration at the outlet of the denitration device is maintained near the set value, so that stable outlet NOx concentration characteristics can be obtained.

【0022】[0022]

【実施例】本発明になる脱硝装置のアンモニア注入量制
御装置の具体的実施例を図1に示す。なお、図2に示す
従来例と同一個所には同一符号を付して重複する説明は
省略する。
EXAMPLE A concrete example of the ammonia injection amount control device of the denitration apparatus according to the present invention is shown in FIG. Incidentally, the same parts as those of the conventional example shown in FIG.

【0023】本制御装置は、脱硝装置出口NOx濃度を
設定値に維持するに必要な脱硝率を得るための必要アン
モニアモル比信号13(関数発生器11の出力信号)、
出口NOx濃度計4の出力信号によるフィードバック補
正モル比信号15、ファジィ制御器30によるアンモニ
ア注入補正信号33および負荷要求信号5に対する動的
先行値信号32により、アンモニア注入量を決定するも
のである。
The present control apparatus uses the necessary ammonia molar ratio signal 13 (output signal of the function generator 11) for obtaining the NOx removal rate necessary to maintain the NOx concentration at the outlet of the NOx removal apparatus at a set value.
The amount of ammonia injection is determined by the feedback correction molar ratio signal 15 by the output signal of the outlet NOx concentration meter 4, the ammonia injection correction signal 33 by the fuzzy controller 30 and the dynamic lead value signal 32 for the load request signal 5.

【0024】このうち、アンモニアモル比信号13およ
びフィードバック補正モル比信号15については、従来
の制御方式と同様である。なお、31は係数器、34は
動的先行信号演算器である。
Of these, the ammonia molar ratio signal 13 and the feedback correction molar ratio signal 15 are the same as in the conventional control system. Incidentally, 31 is a coefficient unit, and 34 is a dynamic preceding signal calculator.

【0025】ファジィ制御装置30では、負荷要求信号
5および出口NOx濃度計4の出力信号を入力し、以下
の演算処理を行う。
The fuzzy controller 30 receives the load request signal 5 and the output signal of the outlet NOx concentration meter 4 and performs the following arithmetic processing.

【0026】n時刻点における負荷要求信号をx
(n)、出口NOx濃度計の出力信号をy(n)とする
と、それぞれの変化率信号Δx(n),Δy(n)は次
式となる。 Δx(n)=〔x(n)−x(n−1)〕・s(x)……(1) Δy(n)=〔y(n)−y(n−1)〕・s(y)……(2) ここに、s(x),s(y):スケーリングファクタ Δx(n),Δy(n)のメンバシップ関数の一例を図
4に示す。図の記号の意味を以下に示す。
The load request signal at the time point n is x
(N), where y (n) is the output signal of the outlet NOx concentration meter, the change rate signals Δx (n) and Δy (n) are given by the following equations. Δx (n) = [x (n) −x (n−1)] · s (x) (1) Δy (n) = [y (n) −y (n−1)] · s (y ) (2) Here, an example of the membership function of s (x), s (y): scaling factors Δx (n), Δy (n) is shown in FIG. The meanings of the symbols in the figure are shown below.

【0027】NB:負で大きい、NM:負でやや大き
い、NS:負で小さい、ZO:ほぼ零である。PS:正
で小さい、PM:正でやや大きい、PB:正で大きい。
NB: Negative and large, NM: Negative and slightly large, NS: Negative and small, ZO: Almost zero. PS: Positive and small, PM: Positive and slightly large, PB: Positive and large.

【0028】Δx(n),Δy(n)の状況により、補
正すべきアンモニア注入量の増分Hnを決定する制御ル
ールの例を図5に示す。図において、例えば、もし、Δ
x(n)=PSで、Δy(n)=NMなら、Hn=NM
のように読み、これを制御ルールと呼ぶ。
FIG. 5 shows an example of a control rule for determining the increment Hn of the ammonia injection amount to be corrected depending on the conditions of Δx (n) and Δy (n). In the figure, for example, if Δ
If x (n) = PS and Δy (n) = NM, Hn = NM
And read this as a control rule.

【0029】具体的に操作量の基本増分を決定する方法
を図6に示す。
FIG. 6 shows a method for specifically determining the basic increment of the manipulated variable.

【0030】図では、2つの制御ルール(ルール1とル
ール2)を例として示し、負荷要求信号の変化率の代表
量をX、出口NOx濃度の変化率の代表量をYとする。
X=X′,Y=Y′の値に関するファジィ集合をルール
1についてA1 ,B1 とし、ルール2についてA2 ,B
2 とする。ルール1から決まる操作量の増分のファジィ
集合をC1 、ルール2に対応するものをC2 とし、それ
ぞれのメンバシップ関数をμC1 ,μC2 とする。この
時、ルール1から、 w1 =Min{μA1 (X′),μB1 (Y′)}……(3) ルール2から、 w2 =Min{μA2 (X′),μB2 (Y′)}……(4) w1 ,w2 を使用して、ルール1とルール2を満たす操
作量の基本増分のメンバシップ関数μC* を、 μC* =Max{w1 μC1 ,w2 μC2 }……(5) このμC* の重心座標Z* を、図4を参照して次式で計
算する。
In the figure, two control rules (rule 1 and rule 2) are shown as an example, and a representative amount of change rate of the load request signal is X and a representative amount of change rate of the outlet NOx concentration is Y.
The fuzzy sets for the values of X = X ′ and Y = Y ′ are A 1 and B 1 for rule 1, and A 2 and B for rule 2.
Assume 2 . Let C 1 be the fuzzy set of the increment of the operation amount determined from rule 1, C 2 be the one corresponding to rule 2, and the membership functions of them be μC 1 and μC 2 , respectively. At this time, from rule 1, w 1 = Min {μA 1 (X ′), μB 1 (Y ′)} (3) From rule 2, w 2 = Min {μA 2 (X ′), μB 2 ( Y ′)} (4) Using w 1 and w 2 , the membership function μC * of the basic increment of the manipulated variable that satisfies Rule 1 and Rule 2 is μC * = Max {w 1 μC 1 , w 2 μC 2 } (5) The barycentric coordinate Z * of this μC * is calculated by the following formula with reference to FIG.

【0031】 Z* =∫ZμC* (Z)dZ/∫μC* (Z)dZ……(6) この値Z* を操作量の基本増分Hとする。実際には、
X′とY′の値にたいして4つの制御ルールが関与して
いるが、同様の手順でHを決定する。このHに制御ゲイ
ンKを乗算して、K・Hがファジィ制御装置30の出力
信号となる。
Z * = ∫ZμC * (Z) dZ / ∫μC * (Z) dZ (6) This value Z * is the basic increment H of the manipulated variable. actually,
Four control rules are involved for the values of X'and Y ', but H is determined by a similar procedure. This H is multiplied by the control gain K, and K · H becomes the output signal of the fuzzy controller 30.

【0032】このようにして、ファジィ制御器30で
は、(1)〜(6)式に示した演算をサンプル時間ごと
に実施し、アンモニアの注入量制御信号33を求める。
In this way, the fuzzy controller 30 carries out the calculations shown in the equations (1) to (6) at every sample time to obtain the ammonia injection amount control signal 33.

【0033】次に、動的先行値信号32に関しては、負
荷要求信号5を微分器17で微分し、係数器31でスケ
ーリングして乗算器7cに入力する。動的先行信号演算
器34では以下の演算を行う。負荷上昇時を例にとり、
負荷上昇開始前の負荷をL0とし、負荷上昇中の任意の
時刻における負荷をLとし、動的先行信号演算器34の
出力信号をy(動的先行信号調整信号35)とすると、 1.0+C≦L/L0 ≦αの時、y=a……(7) α≦L/L0 ,dL/dt>0の時、 y=−b……(8) ここに、1<α<1.5,0<a≦1,0<b≦1,0
<C<1 (7)式は、アンモニアの動的先行注入であり、アンモ
ニアの注入に対する脱硝反応の遅れを補償するものであ
り、(8)式は動的先行注入によるアンモニアの過剰分
を補償するものである。
Next, for the dynamic preceding value signal 32, the load request signal 5 is differentiated by the differentiator 17, scaled by the coefficient unit 31, and input to the multiplier 7c. The dynamic preceding signal calculator 34 performs the following calculations. Taking load rise as an example,
If the load before the start of load increase is L 0 , the load at any time during load increase is L, and the output signal of the dynamic lead signal calculator 34 is y (dynamic lead signal adjustment signal 35): When 0 + C ≦ L / L 0 ≦ α, y = a (7) When α ≦ L / L 0 and dL / dt> 0, y = −b (8) where 1 <α < 1.5,0 <a ≦ 1,0 <b ≦ 1,0
<C <1 Expression (7) is a dynamic pre-injection of ammonia, which compensates for the delay of the denitration reaction with respect to the injection of ammonia, and Expression (8) compensates for the excess of ammonia due to the dynamic pre-injection. To do.

【0034】負荷変化時には、ミルの台数制御により、
負荷変化中にミルを起動停止させるが、本制御方式で
は、例えば負荷上昇時、投入する1台目のミルの給炭開
始指令に合わせて、アンモニアの動的先行注入を開始
し、2台目のミルの給炭開始指令に基づいてアンモニア
の動的先行注入を停止する等、任意の時点においてアン
モニアの大量投入を行うものである。
When the load changes, by controlling the number of mills,
The mill is started and stopped while the load changes, but in this control method, for example, when the load rises, the dynamic pre-injection of ammonia is started in accordance with the coal feed start command of the first mill to be charged, and the second mill is started. A large amount of ammonia is injected at an arbitrary time such as stopping the dynamic pre-injection of ammonia on the basis of the coal supply start command of the mill.

【0035】このようにして、加算器14aでは、先行
値モル比信号(関数発生器11aの出力信号)、フィー
ドバックモル比信号、ファジィ制御器30によるアンモ
ニア注入量補正信号および動的先行値信号32を加算し
て、入口NOx量信号21と乗算器7bで乗算し、アン
モニア流量要求信号19とし、アンモニア流量計6の出
力信号との偏差を引算器8cで求め、調節計12bで信
号処理して、アンモニア流量調整弁20を開閉すること
により、脱硝装置へのアンモニア注入量を調節する。
Thus, in the adder 14a, the preceding value molar ratio signal (output signal of the function generator 11a), the feedback molar ratio signal, the ammonia injection amount correction signal by the fuzzy controller 30 and the dynamic preceding value signal 32 are added. Is added and multiplied by the inlet NOx amount signal 21 by the multiplier 7b to obtain the ammonia flow rate request signal 19, the deviation from the output signal of the ammonia flow meter 6 is obtained by the subtractor 8c, and the signal is processed by the controller 12b. By opening and closing the ammonia flow rate adjusting valve 20, the amount of ammonia injected into the denitration device is adjusted.

【0036】本制御装置では、アンモニアの注入に対す
る脱硝反応の大きな遅れを補償するために、動的先行値
信号を適用するが、この信号のみではアンモニアの過不
足が発生するので、負荷変化率および出口NOx濃度変
化率に基づくファジィ推論により、この過不足を解消す
るものである。即ち、アンモニアの動的先行注入を任意
の負荷で行い、入口NOx濃度のピーク値に対応して、
その後の微調整をファジィ制御により行うものである。
In the present control device, the dynamic lead value signal is applied in order to compensate for the large delay of the denitration reaction with respect to the injection of ammonia. However, since this signal alone causes excess and deficiency of ammonia, the load change rate and This excess and deficiency is solved by fuzzy inference based on the outlet NOx concentration change rate. That is, the dynamic pre-injection of ammonia is performed at an arbitrary load, and corresponding to the peak value of the inlet NOx concentration,
The subsequent fine adjustment is performed by fuzzy control.

【0037】従って、本発明によれば、石炭焚プラント
における負荷変動時の脱硝装置入口NOx値のピークに
対しても、出口NOx濃度を設定値の近傍に維持できる
とともにリークアンモニアを低減できる。
Therefore, according to the present invention, the outlet NOx concentration can be maintained in the vicinity of the set value and the leakage ammonia can be reduced even with respect to the peak of the NOx value at the inlet of the denitration device when the load changes in the coal burning plant.

【0038】図7を用いて、本発明による効果を具体的
に説明する。図3に示す従来制御方式では、負荷上昇
時、負荷変化開始と同時に、アンモニアの動的先行注入
を開始するので、入口NOx濃度の挙動から、このアン
モニアの大量投入により、出口NOx濃度は下限値を下
回ってしまい、この影響が、入口NOx濃度のピークを
過ぎてから脱硝性能の上昇となって現れ、再び出口NO
x濃度は下限値を下回ってしまう。ここで、従来の比例
積分調節計では、制御偏差が生じてから、アンモニア注
入量を増減するので、脱硝反応の大きな遅れに対応でき
ない。
The effect of the present invention will be specifically described with reference to FIG. In the conventional control method shown in FIG. 3, when the load rises, the dynamic pre-injection of ammonia is started at the same time as the start of the load change. Therefore, from the behavior of the inlet NOx concentration, the large amount of this ammonia injection causes the outlet NOx concentration to reach the lower limit , And this effect appears as an increase in the denitration performance after the peak of the NOx concentration at the inlet has passed, and the NOx concentration at the outlet again appears.
The x concentration is below the lower limit. Here, in the conventional proportional-plus-integral controller, since the ammonia injection amount is increased or decreased after the control deviation occurs, it is not possible to cope with a large delay of the denitration reaction.

【0039】本発明では、負荷変化時の任意の時点、例
えばミル投入後の給炭開始指令に基づいてアンモニアの
注入タイミングを決定できるので、負荷変化直後の脱硝
性能の上昇による出口NOx濃度の低下は抑えられると
ともに、ファジィ制御器30により先行的にアンモニア
が注入され、出口NOx濃度は、設定値の近傍に維持さ
れ、上限および下限値の間に保たれる。従って、アンモ
ニアの注入量が適正なものとなり、リークアンモニアを
低減できる。
In the present invention, the injection timing of ammonia can be determined at any time when the load changes, for example, based on the coal feeding start command after the mill is charged. Therefore, the NOx concentration at the outlet decreases due to the increase in the denitration performance immediately after the load changes. Ammonia is injected in advance by the fuzzy controller 30, and the outlet NOx concentration is maintained near the set value and is maintained between the upper limit and the lower limit. Therefore, the injection amount of ammonia becomes appropriate, and the leak ammonia can be reduced.

【0040】なお、請求項1における第1の補正手段
は、ファジイ制御器30等によって構成される。また、
請求項2における第2の補正手段は、乗算器7c、微分
器17、係数器31、動的先行信号演算器34等によっ
て構成される。また、請求項3における第3の補正手段
は、引算器8b、調節計12a等によって構成される。
また、請求項4における演算手段は、乗算器7a、引算
器8a、割算器9、加算器14等によって構成される。
The first correction means in claim 1 is composed of the fuzzy controller 30 and the like. Also,
The second correcting means in claim 2 is composed of a multiplier 7c, a differentiator 17, a coefficient unit 31, a dynamic preceding signal calculator 34, and the like. The third correction means in claim 3 is composed of a subtractor 8b, a controller 12a, and the like.
The calculating means in claim 4 includes a multiplier 7a, a subtractor 8a, a divider 9, an adder 14 and the like.

【0041】[0041]

【発明の効果】本発明によれば、石炭焚プラントにおけ
る負荷変動時のNOx濃度のピーク値発生に対して、負
荷変化率に対応した動的先行制御により、脱硝反応の遅
れを補償し、負荷変化率および出口NOx濃度変化率に
基づくファジィ制御により、動的先行制御によるアンモ
ニアの過不足分を補償できるので、高速負荷変動時にお
いても、脱硝装置出口NOx濃度を設定値の近傍に維持
できるという効果がある。
According to the present invention, with respect to the generation of the peak value of NOx concentration when the load changes in the coal-fired plant, the delay of the denitration reaction is compensated by the dynamic advanced control corresponding to the load change rate, and the load is reduced. The fuzzy control based on the change rate and the outlet NOx concentration change rate can compensate the excess / deficiency of ammonia by the dynamic preceding control, so that the NOx concentration at the outlet of the denitration device can be maintained near the set value even when the load changes at high speed. effective.

【0042】また、リークアンモニアが低減できるた
め、経済的運転が可能になる効果がある。
Further, since the amount of leaked ammonia can be reduced, there is an effect that economical operation becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になる脱硝装置のアンモニア注入量制御
装置の一実施例を示す制御系統図である。
FIG. 1 is a control system diagram showing an embodiment of an ammonia injection amount control device of a denitration device according to the present invention.

【図2】従来のアンモニア注入量制御装置を示す制御系
統図である。
FIG. 2 is a control system diagram showing a conventional ammonia injection amount control device.

【図3】従来技術になるアンモニア注入量制御装置の問
題点を示す説明図である。
FIG. 3 is an explanatory diagram showing a problem of a conventional ammonia injection amount control device.

【図4】メンバシップ関数の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of a membership function.

【図5】制御ルールの一例を示す説明図である。FIG. 5 is an explanatory diagram showing an example of control rules.

【図6】ファジィ推論の原理を示す説明図である。FIG. 6 is an explanatory diagram showing the principle of fuzzy inference.

【図7】本発明による効果を具体的に示す説明図であ
る。
FIG. 7 is an explanatory diagram specifically showing the effect of the present invention.

【符号の説明】[Explanation of symbols]

1 処理ガス流量計 2 入口NOx濃度計 3 出口NOx濃度設定器 4 出口NOx濃度計 5 負荷要求信号 6 アンモニア流量計 7 乗算器 8 引算器 9 割算器 10 必要脱硝率信号 11 関数発生器 12 調節計 13 必要モル比信号 14 加算器 15 フィードバックモル比信号 16 全モル比信号 17 微分器 18 2階微分器 19 アンモニア流量要求信号 20 アンモニア流量調整弁 21 入口NOx量信号 22 必要アンモニア流量信号 30 ファジィ制御器 31 係数器 32 動的先行値信号 33 アンモニア注入量補正信号 34 動的先行値信号 1 Processed gas flow meter 2 Inlet NOx concentration meter 3 Outlet NOx concentration setter 4 Outlet NOx concentration meter 5 Load request signal 6 Ammonia flow meter 7 Multiplier 8 Subtractor 9 Divider 10 Necessary denitration rate signal 11 Function generator 12 Controller 13 Necessary molar ratio signal 14 Adder 15 Feedback molar ratio signal 16 Total molar ratio signal 17 Differentiator 18 Second stage differentiator 19 Ammonia flow rate request signal 20 Ammonia flow rate adjusting valve 21 Inlet NOx amount signal 22 Necessary ammonia flow rate signal 30 Fuzzy Controller 31 Coefficient device 32 Dynamic leading value signal 33 Ammonia injection amount correction signal 34 Dynamic leading value signal

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 燃焼装置から発生する排ガスに還元剤を
注入し、乾式接触還元法によって前記排ガス中の窒素酸
化物を還元する脱硝装置の還元剤注入量制御装置におい
て、 前記燃焼装置の負荷要求変化率と、前記脱硝装置出口の
窒素酸化物濃度変化率の両方の変化率に基づいて前記還
元剤の注入量を補正する第1の補正手段を設けたことを
特徴とする脱硝装置の還元剤注入量制御装置。
1. A reducing agent injection amount control device for a denitration device that injects a reducing agent into exhaust gas generated from a combustion device and reduces nitrogen oxides in the exhaust gas by a dry catalytic reduction method, wherein a load demand of the combustion device is provided. A reducing agent for a denitrification apparatus, comprising first correction means for correcting the injection amount of the reducing agent based on both the rate of change and the rate of change of the nitrogen oxide concentration at the outlet of the denitrification apparatus. Injection volume control device.
【請求項2】 請求項1記載において、前記第1の補正
手段の他に、前記燃焼装置の負荷要求変化率に基づいて
前記還元剤の注入量を補正する第2の補正手段が設けら
れていることを特徴とする脱硝装置の還元剤注入量制御
装置。
2. The second correction means for correcting the injection amount of the reducing agent based on the load demand change rate of the combustion device in addition to the first correction means according to claim 1. A reducing agent injection amount control device for a denitration device, which is characterized in that
【請求項3】 請求項1または2記載において、前記第
1の補正手段の他に、前記脱硝装置出口の窒素酸化物濃
度と脱硝装置出口の窒素酸化物濃度設定値との偏差に基
づいて前記還元剤の注入量を補正する第3の補正手段が
設けられていることを特徴とする脱硝装置の還元剤注入
量制御装置。
3. The method according to claim 1 or 2, wherein, in addition to the first correction means, the difference between the nitrogen oxide concentration at the outlet of the denitration apparatus and the nitrogen oxide concentration set value at the outlet of the denitration apparatus is used. A reducing agent injection amount control device for a denitration device, characterized in that a third correcting means for correcting the reducing agent injection amount is provided.
【請求項4】 請求項1ないし3記載のいずれかにおい
て、前記第1の補正手段の他に、前記脱硝装置入口の窒
素酸化物量と脱硝装置出口の窒素酸化物濃度設定値とに
基づいて必要還元剤を演算する演算手段が設けられてい
ることを特徴とする脱硝装置の還元剤注入量制御装置。
4. The method according to claim 1, which is required based on the amount of nitrogen oxides at the inlet of the denitration device and the nitrogen oxide concentration set value at the outlet of the denitration device, in addition to the first correction means. A reducing agent injection amount control device for a denitration device, which is provided with a calculating means for calculating a reducing agent.
【請求項5】 請求項1ないし4記載のいずれかにおい
て、前記第1の補正手段がファジ推論を用いた演算部で
構成されていることを特徴とする脱硝装置の還元剤注入
量制御装置。
5. The reducing agent injection amount control device for a denitration device according to claim 1, wherein the first correction means is composed of a calculation unit using fuzzy inference.
【請求項6】 燃焼装置から発生する排ガスに還元剤を
注入し、乾式接触還元法によって前記排ガス中の窒素酸
化物を還元する脱硝装置の還元剤注入量制御方法におい
て、 前記燃焼装置の負荷要求変化率と、前記脱硝装置出口の
窒素酸化物濃度変化率の両方の変化率に基づいて前記還
元剤の注入量を補正する第1の補正手段によって還元剤
注入量の補正値を演算して、 その補正値に基づいて還元剤の注入量を調整することを
特徴とする脱硝装置の還元剤注入量制御方法。
6. A method for controlling the injection amount of a reducing agent in a denitration device, which comprises injecting a reducing agent into exhaust gas generated from a combustion apparatus and reducing nitrogen oxides in the exhaust gas by a dry catalytic reduction method, the load demand of the combustion apparatus. A correction value of the reducing agent injection amount is calculated by the first correction means for correcting the injection amount of the reducing agent based on the change rates of both the change rate and the nitrogen oxide concentration change rate at the outlet of the denitration device, A reducing agent injection amount control method for a denitration device, which comprises adjusting the reducing agent injection amount based on the correction value.
JP27773494A 1994-11-11 1994-11-11 Reducing agent injection amount control device and injection amount control method for denitration device Expired - Fee Related JP3409929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27773494A JP3409929B2 (en) 1994-11-11 1994-11-11 Reducing agent injection amount control device and injection amount control method for denitration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27773494A JP3409929B2 (en) 1994-11-11 1994-11-11 Reducing agent injection amount control device and injection amount control method for denitration device

Publications (2)

Publication Number Publication Date
JPH08131766A true JPH08131766A (en) 1996-05-28
JP3409929B2 JP3409929B2 (en) 2003-05-26

Family

ID=17587589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27773494A Expired - Fee Related JP3409929B2 (en) 1994-11-11 1994-11-11 Reducing agent injection amount control device and injection amount control method for denitration device

Country Status (1)

Country Link
JP (1) JP3409929B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025967A (en) * 2006-07-25 2008-02-07 Chugoku Electric Power Co Inc:The Air pollution control system and air pollution control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025967A (en) * 2006-07-25 2008-02-07 Chugoku Electric Power Co Inc:The Air pollution control system and air pollution control method

Also Published As

Publication number Publication date
JP3409929B2 (en) 2003-05-26

Similar Documents

Publication Publication Date Title
JP2554836B2 (en) Denitration control device
JP3409929B2 (en) Reducing agent injection amount control device and injection amount control method for denitration device
JP4792696B2 (en) Denitration control method, denitration control device and program thereof
JPH08168639A (en) Method and device for controlling injection amount of ammonia into denitrification device with denitration catalyst
JP3653599B2 (en) Apparatus and method for controlling ammonia injection amount of flue gas denitration equipment
JP2001198438A (en) Ammonia injection amount control method for denitration apparatus
JPH07328389A (en) Ammonia injection amount control method and apparatus of denitration apparatus
JP3568614B2 (en) Method and apparatus for controlling the amount of ammonia injected into a denitration apparatus for treating coal combustion exhaust gas
JPH11333251A (en) Method and device for regulating amount of ammonia to be injected of denitration apparatus
JP3410555B2 (en) Ammonia injection amount control device for denitration equipment
JP3537100B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
JPH0771619B2 (en) Exhaust gas denitration control device
EP0337515A2 (en) Method and apparatus for controlling the injection amount of ammonia for denitration of exhaust gas
JP2004154693A (en) Method and apparatus for treating exhaust gas
JP2002018234A (en) Method and apparatus for controlling amount of injection of ammonia into denitrification apparatus for treating exhaust combustion gas of pulverized coal
JP3546319B2 (en) Apparatus and method for controlling flue gas denitration
JPH08338263A (en) Denitration control device
JP2001104755A (en) Method and apparatus for controlling ammonia injection amount to denitration apparatus
JP2001129354A (en) Denitration apparatus, combustion apparatus and method of operating the same
JPH10165770A (en) Ammonia injection and nitrogen oxide removal controlling apparatus
JPH0337965B2 (en)
JP3263184B2 (en) DeNOx control device
JP3243643B2 (en) Exhaust gas denitration method and apparatus
JP2772233B2 (en) DeNOx control device
JP2523477B2 (en) Boiler control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees