JP2002018234A - Method and apparatus for controlling amount of injection of ammonia into denitrification apparatus for treating exhaust combustion gas of pulverized coal - Google Patents

Method and apparatus for controlling amount of injection of ammonia into denitrification apparatus for treating exhaust combustion gas of pulverized coal

Info

Publication number
JP2002018234A
JP2002018234A JP2000205439A JP2000205439A JP2002018234A JP 2002018234 A JP2002018234 A JP 2002018234A JP 2000205439 A JP2000205439 A JP 2000205439A JP 2000205439 A JP2000205439 A JP 2000205439A JP 2002018234 A JP2002018234 A JP 2002018234A
Authority
JP
Japan
Prior art keywords
ammonia
signal
amount
nox concentration
mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000205439A
Other languages
Japanese (ja)
Inventor
Kenji Shigenaga
研自 重永
Koji Yamanaka
幸司 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000205439A priority Critical patent/JP2002018234A/en
Publication of JP2002018234A publication Critical patent/JP2002018234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)
  • Feedback Control In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for controlling the amount of injection of ammonia into a denitrification apparatus for treating exhaust combustion gas of pulverized coal by which the amount and time of injection of ammonia into the denitrificaion apparatus can be controlled in cope with the peak of NOx and the amount of injection of ammonia can be prevented from becoming in improper quantities. SOLUTION: In the method in which the total amount of NOx is obtained by output signals of an exhaust gas flowmeter 2 and an inlet NOx concentration meter 3, and a molar fraction signal 16 on ammonia is obtained based on the inlet NOx concentration meter 3 and an outlet NOx concentration setting instrument 4 and a molar fraction correction signal 18 is obtained by deviation of an output signal of an outlet NOx concentration meter 5 from that of the setting instrument 4 and, based on these signals, the amount of injection of ammonia into the denitrification apparatus is controlled, necessary ammonia flow rate signal 21 is corrected by a correction signal 45 on the amount of injection of ammonia calculated based on a signal 7 on the number of operating mills showing how many operating mills the mill to be started or stopped is and a signal 50 on time passage after the mill is started or stopped.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微粉炭燃焼排ガス
処理用脱硝装置へのアンモニア注入量制御方法および制
御装置に係り、特に負荷増減のため石炭粉砕ミルの起動
または停止時の脱硝装置入口NOx濃度・量の一時的上
昇に適切に対処し、脱硝装置出口NOx(窒素酸化物)
を低減するとともに、リークアンモニアを抑制するのに
好適な脱硝装置へのアンモニア注入量制御方法および制
御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a control device for controlling the amount of ammonia injected into a denitration system for treating pulverized coal combustion exhaust gas. Appropriately deal with temporary increase in concentration and amount, NOx (NOx)
The present invention relates to a method and a control device for controlling the amount of ammonia injected into a denitration apparatus suitable for reducing leakage ammonia and suppressing leak ammonia.

【0002】[0002]

【従来の技術】微粉炭燃焼バーナを備えたボイラの火炉
の概要を図4に示す。図において、26はボイラ、27
は火炉、28は微粉炭バーナ、29は石炭粉砕用ミルで
粉砕された微粉炭をバーナ28に送給する燃料管であ
り、30〜35はミルである。
2. Description of the Related Art FIG. 4 shows an outline of a boiler furnace equipped with a pulverized coal combustion burner. In the figure, 26 is a boiler, 27
Denotes a furnace, 28 denotes a pulverized coal burner, 29 denotes a fuel pipe for feeding pulverized coal pulverized by a coal pulverizing mill to the burner 28, and 30 to 35 denote mills.

【0003】図3は、図4のボイラからの燃焼排ガスを
導入し、排ガス中のNOxを除去する脱硝装置の概要図
である。図において、37は脱硝装置、38は排ガス中
の微粉を集塵する電気集塵器、39は排ガスの持ってい
る熱エネルギでバーナの燃焼用空気を予熱する空気予熱
器である。41は押込送風機であり、3は脱硝装置入口
排ガス中のNOx濃度を計測する入口NOx計、5は脱
硝装置出口排ガス中のNOx濃度を計測する出口NOx
計、24は脱硝装置入口排ガスに噴霧するアンモニアの
流量制御弁、43はアンモニア噴霧用ノズルである。
[0003] FIG. 3 is a schematic diagram of a denitration apparatus for introducing combustion exhaust gas from the boiler of FIG. 4 and removing NOx in the exhaust gas. In the figure, reference numeral 37 denotes a denitration device, 38 denotes an electric precipitator for collecting fine powder in exhaust gas, and 39 denotes an air preheater for preheating combustion air of a burner by thermal energy of the exhaust gas. 41 is a forced air blower, 3 is an inlet NOx meter for measuring the NOx concentration in the exhaust gas at the denitration device, and 5 is an outlet NOx for measuring the NOx concentration in the exhaust gas at the outlet of the denitration device.
Reference numeral 24 denotes a flow control valve for ammonia sprayed on the exhaust gas at the denitration apparatus, and reference numeral 43 denotes an ammonia spray nozzle.

【0004】従来の脱硝装置用アンモニア注入量制御装
置は、図2に示すように処理すべき排ガスの流量計2の
出力信号と、脱硝装置入口NOxの濃度計3の出力信号
を乗算器10aで乗算して、入口NOx量信号11とす
る。一方、脱硝装置入口NOx濃度計3の出力信号およ
び出口NOx濃度設定器4の出力信号より、引算器12
aおよび割算器13aから必要脱硝率信号14を演算
し、この信号を関数発生器15に入力して、NOx量に
対して必要なアンモニアモル比信号(先行値モル比信
号)16を演算する。
A conventional ammonia injection amount control device for a denitration apparatus uses a multiplier 10a to output an output signal of a flow meter 2 of an exhaust gas to be treated and an output signal of a concentration meter 3 of NOx at the denitration apparatus as shown in FIG. The result is multiplied to obtain an inlet NOx amount signal 11. On the other hand, a subtractor 12 is obtained from the output signal of the NOx concentration meter 3 at the inlet of the denitration device and the output signal of the NOx concentration setter 4 at the outlet.
a and a divider 13a to calculate a required denitration rate signal 14, and input this signal to a function generator 15 to calculate an ammonia molar ratio signal (preceding value molar ratio signal) 16 necessary for the NOx amount. .

【0005】一方、出口NOx濃度設定器4の出力信号
と出口NOx濃度計5の出力信号との間の偏差信号を引
算器12bで求め、調節計17aで信号処理してフィー
ドバックモル比信号18を演算する。加算器19aでは
必要モル比信号16とフィードバックモル比信号18を
加算して全モル比信号20とし、乗算器10bで入口N
Ox量信号11と乗算して必要アンモニア流量信号21
とする。次に、負荷要求信号6を微分器25および2階
微分器23で演算処理した信号を加算器19bに入力
し、加算器19bではこれらの信号と前述の必要アンモ
ニア流量信号21と加算して、アンモニア流量要求信号
22を演算する。このアンモニア流量要求信号22とア
ンモニア流量計1の出力信号の偏差を引算器12cで求
め、調節計17bで信号処理してアンモニア流量調整弁
24を開閉することにより、脱硝装置出口NOx濃度を
設定値近傍に維持していた。この制御方式は、基本的に
は入口NOx量に対する先行値、出口濃度設定値との偏
差によるフィードバック補正、および負荷要求信号に対
する動的先行値によりアンモニア注入量を決定する方式
である。なお、動的先行値はアンモニア注入量の変化に
対する脱硝反応の遅れ(通常十数分)を補償するために
設けられている。
On the other hand, a difference signal between the output signal of the outlet NOx concentration setting device 4 and the output signal of the outlet NOx concentration meter 5 is obtained by a subtractor 12b, processed by a controller 17a and processed by a feedback molar ratio signal 18 Is calculated. The adder 19a adds the required molar ratio signal 16 and the feedback molar ratio signal 18 to obtain a total molar ratio signal 20, and the multiplier 10b inputs the N signal.
Required ammonia flow signal 21 by multiplying by Ox amount signal 11
And Next, a signal obtained by subjecting the load request signal 6 to arithmetic processing by the differentiator 25 and the second-order differentiator 23 is input to the adder 19b, and the adder 19b adds these signals to the necessary ammonia flow signal 21 described above. An ammonia flow rate request signal 22 is calculated. The difference between the ammonia flow request signal 22 and the output signal of the ammonia flow meter 1 is obtained by the subtractor 12c, the signal is processed by the controller 17b, and the ammonia flow control valve 24 is opened and closed to set the NOx concentration at the outlet of the denitration apparatus. It was kept near the value. This control method basically determines the ammonia injection amount based on a preceding value for the inlet NOx amount, feedback correction based on a deviation from the outlet concentration set value, and a dynamic preceding value for the load request signal. The dynamic leading value is provided to compensate for a delay (usually more than ten minutes) in the denitration reaction due to a change in the amount of injected ammonia.

【0006】ところで、最近では、火力プラントの高速
負荷変化率運用に伴ない、脱硝負荷の変動が急激になっ
てきたにもかかわらず、脱硝装置出口NOx濃度の設定
値に対する出口NOx濃度の偏差の変化幅を小さく抑え
ることが要求されている。すなわち、出口NOx濃度の
制御性を向上させ、リークアンモニアを減少させること
が必要不可欠となっている。
[0006] Recently, despite the rapid change in the denitration load accompanying the high-speed load change rate operation of a thermal power plant, the deviation of the exit NOx concentration deviation from the set value of the denitration device exit NOx concentration has been increasing. It is required to keep the change width small. That is, it is indispensable to improve the controllability of the outlet NOx concentration and reduce the leak ammonia.

【0007】特に石炭焚きボイラにおいては、負荷変動
時にミルの起動または停止を行うが、この際ミル起動時
のミルウォーミング空気またはミル停止時のミル残炭パ
ージ用の空気を供給するために、ボイラ内の燃焼域では
一時的に空気過剰の状態が発生する。このため脱硝装置
入口排ガスNOx濃度にはピーク値が発生する。このピ
ーク値に対して、脱硝装置出口NOx濃度を設定値の近
傍に維持するために大量のアンモニアを注入すると、入
口NOx濃度のピークに対応した、出口NOx濃度のピ
ークを抑えることはできるが、入口NOx濃度がピーク
値を過ぎて急激に減少すると供給アンモニアが過剰とな
り、リークアンモニアが増えるとともに、脱硝率が上昇
して脱硝装置出口NOx濃度は必要以上に極端に低下し
てしまうという問題があった。
Particularly in a coal-fired boiler, the mill is started or stopped when the load fluctuates. At this time, in order to supply mill warming air when the mill is started or air for purging the mill residual coal when the mill is stopped, In the combustion zone in the boiler, a state of excessive air temporarily occurs. Therefore, a peak value is generated in the exhaust gas NOx concentration at the denitration device inlet. When a large amount of ammonia is injected to maintain the NOx concentration at the outlet of the denitration apparatus near the set value with respect to this peak value, the peak of the outlet NOx concentration corresponding to the peak of the inlet NOx concentration can be suppressed. If the inlet NOx concentration suddenly decreases after the peak value, the supplied ammonia becomes excessive, the leaked ammonia increases, and the denitration rate rises, causing a problem that the NOx concentration at the outlet of the denitration device drops extremely more than necessary. Was.

【0008】[0008]

【発明が解決しようとする課題】すなわち、従来の微粉
炭燃焼排ガス処理用脱硝装置においては、負荷変化時に
ミルの起動または停止を行う場合、起動時のミルのウォ
ーミング用空気またはミル停止時のミル内残炭パージ用
空気を供給するため、ボイラ火炉燃焼域では一時的に空
気過剰の状態が発生し、これにより脱硝装置入口排ガス
NOx濃度には一時的にピーク値が発生し、このピーク
値に対応して大量のアンモニアを注入すると、ピーク値
を過ぎてNOx濃度が急減したとき供給アンモニアが過
剰となり、脱硝装置出口NOx濃度は必要以上に低下す
るとともに、脱硝装置後流へのリークアンモニアが発生
するという問題があった。
That is, in the conventional denitration apparatus for treating pulverized coal combustion exhaust gas, when starting or stopping the mill at the time of load change, the warming air of the mill at the time of starting or at the time of stopping the mill is required. In order to supply air for purging residual coal in the mill, a state of excessive air temporarily occurs in the combustion area of the boiler furnace. As a result, a temporary peak value is generated in the exhaust gas NOx concentration at the inlet of the denitration apparatus. When a large amount of ammonia is injected in response to the above, the supply ammonia becomes excessive when the NOx concentration suddenly decreases after the peak value, and the NOx concentration at the outlet of the denitration device decreases more than necessary, and the leak ammonia to the downstream of the denitration device is reduced. There was a problem that occurred.

【0009】同時に、従来の微粉炭燃焼排ガス処理用脱
硝装置においては、負荷変化時のミルの起動または停止
を行うに際して、そのときのミルの稼働台数によって脱
硝装置入口の排ガスNOx濃度の変動状態が異なること
がわかった。すなわち、図5に示すように4台のミルが
稼働時に、負荷上昇を目的として5台目のミルを起動し
た場合の脱硝装置入口NOx濃度の一時的上昇カーブA
と、5台のミル稼働時に6台目のミルを起動した場合の
入口NOx濃度の一時的上昇カーブBは異なり、図5に
おいては6台目のミル起動時のほうがNOxのピーク値
が高くその継続時間も長い。また、6台目のミル停止時
の脱硝装置入口NOx濃度の上昇ピーク値Cは起動時に
比し高く、かつ継続時間は長い。
At the same time, in the conventional denitration apparatus for treating pulverized coal combustion exhaust gas, when starting or stopping the mill when the load changes, the state of fluctuation of the exhaust gas NOx concentration at the entrance of the denitration apparatus depends on the number of operating mills at that time. Turned out different. That is, as shown in FIG. 5, a temporary increase curve A of the NOx concentration at the denitration apparatus inlet when the fifth mill is started for the purpose of increasing the load while the four mills are operating.
The temporary increase curve B of the inlet NOx concentration when the sixth mill is started when the fifth mill is operating is different. In FIG. 5, the peak value of NOx is higher when the sixth mill is started, and The duration is long. Further, the rising peak value C of the NOx concentration at the denitration apparatus inlet when the sixth mill is stopped is higher than that at the time of starting, and the continuation time is longer.

【0010】5台目と6台目のミルの起動による脱硝装
置入口排ガスNOx濃度の一時的上昇形態の相違は、図
4に示すように、各ミルから微粉炭を供給する微粉炭バ
ーナのボイラ火炉内の配置位置がミルごとに相違してい
ることに起因するものと考えられる。ボイラ火炉内の燃
焼状態は一様ではなく火炉内位置によって異なり、負荷
の大小(ミルの稼働台数)によっても異なると考えられ
る。しかるに、従来技術においてはミルの起動、停止時
のアンモニア供給量補正は図5に示すように同一であ
り、したがって脱硝装置へのアンモニア補正が必ずしも
適正でないという問題があった。
The difference in the mode of temporary increase in the NOx concentration at the exhaust gas at the denitration apparatus due to the start of the fifth and sixth mills is shown in FIG. 4, as shown in FIG. This is considered to be due to the fact that the arrangement position in the furnace differs for each mill. It is considered that the combustion state in the boiler furnace is not uniform and differs depending on the position in the furnace, and also depending on the magnitude of the load (the number of operating mills). However, in the prior art, the ammonia supply amount correction at the time of starting and stopping the mill is the same as shown in FIG. 5, and therefore, there is a problem that the ammonia correction to the denitration device is not always appropriate.

【0011】本発明の課題は、微粉炭燃焼装置の高速負
荷変動時および微粉炭製造ミルの稼働台数の変化時にお
いても、脱硝装置入口排ガスのNOx量の変動に対して
アンモニア注入量を適切に制御し、脱硝装置出口NOx
濃度を設定値以下に維持するとともに、リークアンモニ
ア量を低減することができる微粉炭燃焼排ガス処理用脱
硝装置へのアンモニア注入量制御方法および制御装置を
提供することにある。
An object of the present invention is to appropriately adjust the amount of ammonia injected in response to a change in the NOx amount of exhaust gas at the inlet of a denitrification apparatus even when the load of a pulverized coal combustion apparatus changes at high speed and when the number of operating pulverized coal production mills changes. Control and NOx at NOx outlet
An object of the present invention is to provide a method and a control device for controlling the amount of ammonia injected into a denitration apparatus for treating pulverized coal combustion exhaust gas, which can maintain the concentration below a set value and reduce the amount of leaked ammonia.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
本願で特許請求される発明は以下のとおりである。 (1)微粉炭燃焼装置からの被処理ガス流量と脱硝装置
入口ガスNOx濃度に基づいて入口総NOx量を求め、
入口NOx濃度と出口NOx濃度設定値に基づいて排ガ
スに対するアンモニアの先行モル比信号を求め、出口N
Ox濃度の設定値と検出値の偏差に基づいてモル比補正
信号を求め、前記総NOx量、先行モル比信号、モル比
補正信号に基づいて脱硝装置へのアンモニア注入量を制
御する方法において、前記微粉炭燃焼装置の負荷指令信
号に基づき起動または停止する石炭ミルが何台目の稼働
ミルであるかの信号と、該ミルの起動または停止後の経
過時間に基づき前記アンモニア注入量を補正することを
特徴とする微粉炭燃焼排ガス処理用脱硝装置へのアンモ
ニア注入量制御方法。
Means for Solving the Problems The invention claimed in the present application to solve the above problems is as follows. (1) The total NOx amount at the inlet is obtained based on the flow rate of the gas to be treated from the pulverized coal combustion device and the NOx concentration at the inlet gas of the denitration device,
Based on the inlet NOx concentration and the outlet NOx concentration set value, a preceding molar ratio signal of ammonia to exhaust gas is obtained.
A method for obtaining a molar ratio correction signal based on a deviation between a set value and a detected value of the Ox concentration, and controlling the amount of ammonia injected into the denitration apparatus based on the total NOx amount, the preceding molar ratio signal, and the molar ratio correction signal, The ammonia injection amount is corrected based on a signal indicating the number of the operation mill to be started or stopped based on the load command signal of the pulverized coal combustion device and the elapsed time after the start or stop of the mill. A method for controlling the amount of ammonia injected into a denitration apparatus for treating pulverized coal combustion exhaust gas, the method comprising:

【0013】(2)微粉炭燃焼装置からの被処理ガス流
量と脱硝装置入口NOx濃度に基づいて総NOx量を求
め、入口NOx濃度と出口NOx濃度設定値に基づいて
排ガスに対するアンモニアの先行モル比信号を求め、出
口NOx濃度の設定値と検出値の偏差に基づいてモル比
補正信号を求め、前記先行モル比信号とモル比補正信号
に基づき全モル比信号を求め、前記総NOx量と全モル
比信号およびアンモニア注入量検出値に基づき脱硝装置
へのアンモニア注入量を制御する方法において、前記微
粉炭燃焼装置の負荷指令信号に基づき起動または停止す
る石炭ミルが何台目の稼働ミルであるかの信号と、該ミ
ルの起動または停止後の経過時間に基づいて前記アンモ
ニア注入量を補正することを特徴とする微粉炭燃焼排ガ
ス処理用脱硝装置へのアンモニア注入量制御方法。
(2) The total NOx amount is obtained based on the flow rate of the gas to be treated from the pulverized coal combustion device and the NOx concentration at the denitration device inlet, and the preceding molar ratio of ammonia to exhaust gas based on the inlet NOx concentration and the outlet NOx concentration set value. A signal is obtained, a molar ratio correction signal is obtained based on the deviation between the set value of the outlet NOx concentration and the detected value, a total molar ratio signal is obtained based on the preceding molar ratio signal and the molar ratio correction signal, and the total NOx amount and the total NOx amount are calculated. In the method for controlling the amount of ammonia injected into the denitration apparatus based on the molar ratio signal and the detected value of the amount of injected ammonia, the coal mill that starts or stops on the basis of the load command signal of the pulverized coal combustion apparatus is the number-th operating mill. A denitration apparatus for treating pulverized coal combustion exhaust gas, wherein the ammonia injection amount is corrected based on such a signal and the elapsed time after starting or stopping the mill. Ammonia injection rate control method.

【0014】(3)微粉炭燃焼装置から脱硝装置へ流入
する排ガスの総NOx量を算出する手段と、脱硝装置の
入口NOx濃度と出口NOx濃度設定値に基づいて排ガ
スに対するアンモニアの先行モル比信号を求める手段
と、出口NOx濃度の設定値と検出値の偏差によりアン
モニアのモル比補正信号を算出する手段と、前記総NO
x量と先行モル比信号とモル比補正信号に基づきアンモ
ニア要求信号を算出する手段と、このアンモニア要求信
号とアンモニア流量検出信号に基づきアンモニア流量調
整弁を制御する手段とを備えた脱硝装置へのアンモニア
注入量制御装置において、前記微粉炭燃焼装置の負荷指
令信号に基づき起動または停止するミルが何台目の稼働
ミルであるかの信号と、該ミルの起動または停止後の経
過時間に基づき前記アンモニア流量制御弁の制御量を補
正するファジイ制御手段を備えたことを特徴とする微粉
炭燃焼排ガス処理用脱硝装置へのアンモニア注入量制御
装置。
(3) Means for calculating the total NOx amount of the exhaust gas flowing from the pulverized coal combustion device to the denitration device, and a preceding molar ratio signal of ammonia with respect to the exhaust gas based on the set value of the NOx concentration at the inlet and the NOx concentration at the outlet of the denitration device Means for calculating a molar ratio correction signal for ammonia based on the difference between the set value of the outlet NOx concentration and the detected value; and
A means for calculating an ammonia request signal based on the x amount, the preceding mole ratio signal and the mole ratio correction signal, and means for controlling an ammonia flow control valve based on the ammonia request signal and the ammonia flow detection signal. In the ammonia injection amount control device, based on a signal indicating the number of the operating mill to be started or stopped based on the load command signal of the pulverized coal combustion device, and the elapsed time after starting or stopping the mill, An apparatus for controlling the amount of ammonia injected into a denitration apparatus for treating pulverized coal combustion exhaust gas, comprising a fuzzy control means for correcting a control amount of an ammonia flow control valve.

【0015】[0015]

【発明の実施の形態】微粉炭燃焼装置からの排ガス処理
用脱硝装置へのアンモニア注入量制御装置に係る本発明
の実施の形態例を図1に示す。処理すべき排ガスの流量
計2の出力信号と脱硝装置入口NOx濃度計3の出力信
号を乗算器10aで乗算して入口NOx量信号11とす
る。脱硝装置入口NOx濃度計3の出力信号および出口
NOx濃度設定器4の出力信号の差分を引算器12aで
求め、この値を入口NOx濃度計3の出力信号で割算器
13aで割算して必要脱硝率信号14を算出し、この信
号を関数発生器15に入力して、NOx量に対して必要
なアンモニアモル比信号(先行値モル比信号)16を演
算する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention relating to a control device for controlling the amount of ammonia injected from a pulverized coal combustion device into a denitration device for treating exhaust gas. The output signal of the flow meter 2 of the exhaust gas to be processed and the output signal of the NOx concentration meter 3 at the denitration device are multiplied by a multiplier 10a to obtain an inlet NOx amount signal 11. The difference between the output signal of the NOx concentration meter 3 at the denitration device and the output signal of the NOx concentration setting device 4 at the outlet is obtained by the subtractor 12a, and this value is divided by the output signal of the NOx concentration meter 3 by the divider 13a. The required denitration rate signal 14 is calculated by this, and this signal is input to the function generator 15 to calculate the ammonia molar ratio signal (preceding value molar ratio signal) 16 necessary for the NOx amount.

【0016】出口NOx濃度設定器4の出力信号と出口
NOx濃度計5の出力信号との偏差信号を引算器12b
で求め、調節計17aで信号処理してフィードバックモ
ル比信号18を演算する。加算器19aでは必要モル比
信号16とフィードバックモル比信号18を加算して全
モル比信号20とし、乗算器10bで入口NOx量信号
11と乗算して必要アンモニア流量信号21を得る。
The difference signal between the output signal of the outlet NOx concentration setting device 4 and the output signal of the outlet NOx concentration meter 5 is subtracted by a subtractor 12b.
The signal is processed by the controller 17a to calculate the feedback molar ratio signal 18. The adder 19a adds the required molar ratio signal 16 and the feedback molar ratio signal 18 to obtain a total molar ratio signal 20, and multiplies the inlet NOx amount signal 11 by a multiplier 10b to obtain a required ammonia flow signal 21.

【0017】ファジイ制御器44では負荷要求信号6、
ミル稼働台数信号7、重軽油バーナの点消火信号8、入
口NOx濃度計3の出力信号、出口NOx濃度計5の出
力信号、ミルの起動、停止指令信号後の経過時間信号5
0、節炭器出口ガスO2 濃度計9の出力信号を入力し、
以下の演算処理を行う。
In the fuzzy controller 44, the load request signal 6,
Mill operating number signal 7, heavy oil burner point fire extinguishing signal 8, output signal of inlet NOx concentration meter 3, output signal of outlet NOx concentration meter 5, elapsed time signal 5 after start / stop command signal of mill
0, input the output signal of the gas concentrator outlet gas O 2 concentration meter 9,
The following arithmetic processing is performed.

【0018】ファジイ制御器44におけるファジイルー
ル前件部の組合わせとしては、次の5種類とする。 (1)負荷変化率、節炭器出口ガスO2 濃度変化率 (2)脱硝装置入口NOx濃度変化率、脱硝装置入口N
Ox2階微分 (3)ミル稼働台数、ミル起動・停止指令信号後の経過
時間 (4)脱硝装置出口NOx濃度変化率、負荷変化完了後
経過時間 (5)重軽油バーナ点消火本数、重軽油バーナ点消火後
の経過時間。
The following five types of combinations of the fuzzy rule antecedent in the fuzzy controller 44 are used. (1) load change rate, economizer outlet gas O 2 concentration change rate (2) denitrification device inlet NOx concentration change rate, denitration unit inlet N
Ox second order differentiation (3) Number of operating mills, elapsed time after mill start / stop command signal (4) NOx concentration change rate at denitrification device, elapsed time after completion of load change (5) Number of fire extinguishing points at heavy oil burner point, heavy oil burner Elapsed time after point fire extinguishing.

【0019】ファジイ制御器44では以上のルールに基
づき処理を行い、ミルの稼働台数、したがって起動また
は停止ミルが何台目の稼働ミルであるかにより、またミ
ルの起動または停止指令信号後の経過時間によって調整
されるアンモニア流量補正信号45を出力する。
The fuzzy controller 44 performs processing based on the above rules, and determines the number of operating mills, that is, the number of the starting or stopping mill, and the progress after the start or stop command signal of the mill. A time-adjusted ammonia flow correction signal 45 is output.

【0020】この信号45は加算器19bにて必要アン
モニア流量信号21に加算され、アンモニア流量要求信
号22を算出する。この信号22は引算器12cに入力
され、アンモニア流量計1の出力信号との偏差を算出
し、この偏差信号は調節計17bに入力され、アンモニ
ア流量調整弁24を制御する。
This signal 45 is added to the required ammonia flow signal 21 by the adder 19b to calculate the ammonia flow request signal 22. The signal 22 is input to the subtractor 12c to calculate a deviation from the output signal of the ammonia flow meter 1, and the deviation signal is input to the controller 17b to control the ammonia flow control valve 24.

【0021】図6は、本実施例と従来技術によるアンモ
ニア注入量補正状況と脱硝装置出口NOx濃度を比較し
て示したものである。図において、本実施例ではミルの
起動・停止時の脱硝装置入口NOx濃度の変動に応じて
適正なアンモニア流量補正が行われるので、脱硝装置出
口NOx濃度が基準以下で、かつ基準値から大きくはず
れることがないことが分かる。
FIG. 6 shows a comparison of the ammonia injection amount correction state and the NOx concentration at the outlet of the denitration apparatus according to this embodiment and the prior art. In the figure, in this embodiment, since the ammonia flow rate is appropriately corrected in accordance with the fluctuation of the NOx concentration at the denitration device inlet at the start / stop of the mill, the NOx concentration at the denitration device outlet is below the reference value and largely deviates from the reference value. It turns out that there is nothing.

【0022】[0022]

【発明の効果】本発明によれば、微粉炭燃焼装置(ボイ
ラ)の高速負荷変動時およびミル稼働台数の変化時にお
いても、脱硝装置入口排ガスのNOx量の変動に対して
脱硝装置の反応の遅れを補償し、脱硝装置出口NOx濃
度を設定値の近傍に維持できるとともに、リークアンモ
ニアを低減してアンモニアの消費量を節約できる。
According to the present invention, even when the load of the pulverized coal combustion device (boiler) changes at high speed or the number of operating mills changes, the reaction of the denitration device with respect to the change in the NOx amount of the exhaust gas at the entrance of the denitration device can be improved. The delay can be compensated for, the NOx concentration at the denitration device outlet can be maintained near the set value, and the amount of ammonia consumed can be reduced by reducing leaked ammonia.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態になる脱硝装置のアンモニ
ア注入量制御装置の系統図。
FIG. 1 is a system diagram of an ammonia injection amount control device of a denitration device according to an embodiment of the present invention.

【図2】従来技術における脱硝装置のアンモニア注入量
制御装置の系統図。
FIG. 2 is a system diagram of an ammonia injection amount control device of a denitration device according to the related art.

【図3】微粉炭燃焼ボイラからの燃焼排ガスを処理する
脱硝装置の概要図。
FIG. 3 is a schematic diagram of a denitration apparatus for treating combustion exhaust gas from a pulverized coal combustion boiler.

【図4】微粉炭燃焼バーナを備えたボイラ火炉の概要
図。
FIG. 4 is a schematic view of a boiler furnace provided with a pulverized coal combustion burner.

【図5】従来技術におけるアンモニア注入量補正状況説
明図。
FIG. 5 is an explanatory diagram of a state of correction of an ammonia injection amount in the related art.

【図6】本発明と従来技術とにおける脱硝装置へのアン
モニア注入量補正状況と脱硝装置出口NOx濃度を比例
して示した図。
FIG. 6 is a diagram showing proportionally the correction state of the amount of ammonia injected into the denitration device and the NOx concentration at the denitration device outlet in the present invention and the prior art.

【符号の説明】[Explanation of symbols]

1…アンモニア流量計、2…処理ガス流量計、3…脱硝
装置入口NOx濃度計、4…脱硝装置出口NOx濃度設
定器、5…脱硝装置出口NOx濃度計、6…負荷要求信
号、7…ミル運転台数信号、8…重・軽油バーナ点火消
火信号、9…節炭器出口ガスO2 計、10…乗算器、1
1…入口NOx量信号、12…引算器、13…割算器、
14…必要脱硝率信号、15…関数発生器、16…アン
モニアモル比信号、17…調節計、18…フィードバッ
クモル比信号、19…加算器、20…全モル比信号、2
1…必要アンモニアモル比信号、22…アンモニア流量
要求信号、23…2階微分器、24…アンモニア流量調
整弁、25…微分器、26…ボイラ、27…火炉、28
…微粉炭バーナ、29…燃料管、30〜35…ミル、3
6…ガス流れ、37…脱硝装置、38…電気集塵器、3
9…空気予熱器、41…押込通風機、43…アンモニア
注入ノズル、44…ファジイ制御器、45…アンモニア
注入量補正信号、50…ミルの起動、停止指令信号後の
経過時間信号。
DESCRIPTION OF SYMBOLS 1 ... Ammonia flow meter, 2 ... Process gas flow meter, 3 ... NOx concentration meter at the denitration device outlet, 4 ... NOx concentration setting device at the denitration device outlet, 5 ... NOx concentration meter at the denitration device outlet, 6 ... Load request signal, 7 ... Mil the number of operating units signal, 8 ... heavy-diesel burner ignition extinguishing signal, 9 ... economizer exit gas O 2 meter, 10 ... multiplier, 1
1 ... NOx amount signal at inlet, 12 ... subtractor, 13 ... divider,
14 required denitration rate signal, 15 function generator, 16 ammonia molar ratio signal, 17 controller, 18 feedback molar ratio signal, 19 adder, 20 total molar ratio signal, 2
DESCRIPTION OF SYMBOLS 1 ... necessary ammonia molar ratio signal, 22 ... ammonia flow request signal, 23 ... second-order differentiator, 24 ... ammonia flow control valve, 25 ... differentiator, 26 ... boiler, 27 ... furnace, 28
... pulverized coal burner, 29 ... fuel pipe, 30-35 ... mill, 3
6: gas flow, 37: denitration device, 38: electric dust collector, 3
9: Air preheater, 41: Push-in ventilator, 43: Ammonia injection nozzle, 44: Fuzzy controller, 45: Ammonia injection amount correction signal, 50: Elapsed time signal after start / stop command signal of mill.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G05B 13/02 Fターム(参考) 3K070 DA02 DA14 DA22 DA30 DA60 4D002 AA12 AC01 BA06 DA07 GA02 GA03 GA04 GB01 GB02 GB06 HA02 HA10 5H004 GA07 GA16 GA34 GB04 HA04 HB02 HB04 JB07 JB08 KB33 KB39 KD02 KD25 MA02 MA19 MA60 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G05B 13/02 F term (Reference) 3K070 DA02 DA14 DA22 DA30 DA60 4D002 AA12 AC01 BA06 DA07 GA02 GA03 GA04 GB01 GB02 GB06 HA02 HA10 5H004 GA07 GA16 GA34 GB04 HA04 HB02 HB04 JB07 JB08 KB33 KB39 KD02 KD25 MA02 MA19 MA60

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 微粉炭燃焼装置からの被処理ガス流量と
脱硝装置入口ガスNOx濃度に基づいて入口総NOx量
を求め、入口NOx濃度と出口NOx濃度設定値に基づ
いて排ガスに対するアンモニアの先行モル比信号を求
め、出口NOx濃度の設定値と検出値の偏差に基づいて
モル比補正信号を求め、前記総NOx量、先行モル比信
号、モル比補正信号に基づいて脱硝装置へのアンモニア
注入量を制御する方法において、前記微粉炭燃焼装置の
負荷指令信号に基づき起動または停止する石炭ミルが何
台目の稼働ミルであるかの信号と、該ミルの起動または
停止後の経過時間に基づき前記アンモニア注入量を補正
することを特徴とする微粉炭燃焼排ガス処理用脱硝装置
へのアンモニア注入量制御方法。
1. An inlet total NOx amount is determined based on a flow rate of a gas to be treated from a pulverized coal combustion device and a NOx concentration at an inlet of a denitration device, and a preceding mole of ammonia with respect to exhaust gas is determined based on a set value of an inlet NOx concentration and an outlet NOx concentration. A ratio signal is obtained, a molar ratio correction signal is obtained based on a deviation between the set value of the outlet NOx concentration and the detected value, and the amount of ammonia injected into the denitration apparatus based on the total NOx amount, the preceding molar ratio signal, and the molar ratio correction signal. In the method of controlling the pulverized coal combustion device, based on the load command signal of the pulverized coal combustion device, the signal of the number of the operation mill is a coal mill to start or stop, and the elapsed time after the start or stop of the mill, A method of controlling the amount of ammonia injected into a denitration apparatus for treating pulverized coal combustion exhaust gas, the method comprising correcting the amount of ammonia injected.
【請求項2】 微粉炭燃焼装置からの被処理ガス流量と
脱硝装置入口NOx濃度に基づいて総NOx量を求め、
入口NOx濃度と出口NOx濃度設定値に基づいて排ガ
スに対するアンモニアの先行モル比信号を求め、出口N
Ox濃度の設定値と検出値の偏差に基づいてモル比補正
信号を求め、前記先行モル比信号とモル比補正信号に基
づき全モル比信号を求め、前記総NOx量と全モル比信
号およびアンモニア注入量検出値に基づき脱硝装置への
アンモニア注入量を制御する方法において、前記微粉炭
燃焼装置の負荷指令信号に基づき起動または停止する石
炭ミルが何台目の稼働ミルであるかの信号と、該ミルの
起動または停止後の経過時間に基づいて前記アンモニア
注入量を補正することを特徴とする微粉炭燃焼排ガス処
理用脱硝装置へのアンモニア注入量制御方法。
2. A total NOx amount is determined based on a flow rate of a gas to be treated from a pulverized coal combustion device and a NOx concentration at a denitration device inlet.
Based on the inlet NOx concentration and the outlet NOx concentration set value, a preceding molar ratio signal of ammonia to exhaust gas is obtained.
A mole ratio correction signal is obtained based on the deviation between the set value of the Ox concentration and the detected value, a total mole ratio signal is obtained based on the preceding mole ratio signal and the mole ratio correction signal, and the total NOx amount, the total mole ratio signal, and ammonia are obtained. In the method of controlling the ammonia injection amount to the denitration device based on the injection amount detection value, a signal of the number of the operation mill is a coal mill to start or stop based on a load command signal of the pulverized coal combustion device, A method for controlling an amount of ammonia injected into a denitration apparatus for treating pulverized coal combustion exhaust gas, wherein the amount of ammonia injected is corrected based on an elapsed time after starting or stopping the mill.
【請求項3】 微粉炭燃焼装置から脱硝装置へ流入する
排ガスの総NOx量を算出する手段と、脱硝装置の入口
NOx濃度と出口NOx濃度設定値に基づいて排ガスに
対するアンモニアの先行モル比信号を求める手段と、出
口NOx濃度の設定値と検出値の偏差によりアンモニア
のモル比補正信号を算出する手段と、前記総NOx量と
先行モル比信号とモル比補正信号に基づきアンモニア要
求信号を算出する手段と、このアンモニア要求信号とア
ンモニア流量検出信号に基づきアンモニア流量調整弁を
制御する手段とを備えた脱硝装置へのアンモニア注入量
制御装置において、前記微粉炭燃焼装置の負荷指令信号
に基づき起動または停止するミルが何台目の稼働ミルで
あるかの信号と、該ミルの起動または停止後の経過時間
に基づき前記アンモニア流量制御弁の制御量を補正する
ファジイ制御手段を備えたことを特徴とする微粉炭燃焼
排ガス処理用脱硝装置へのアンモニア注入量制御装置。
3. A means for calculating a total NOx amount of exhaust gas flowing from a pulverized coal combustion device to a denitration device, and a preceding molar ratio signal of ammonia to exhaust gas based on a set value of an inlet NOx concentration and an outlet NOx concentration of the denitration device. Means for calculating, a means for calculating a molar ratio correction signal for ammonia based on a deviation between a set value of the outlet NOx concentration and a detected value, and a ammonia request signal based on the total NOx amount, the preceding molar ratio signal, and the molar ratio correction signal. A means for controlling the amount of ammonia injected into the denitration apparatus, comprising means for controlling the ammonia flow rate control valve based on the ammonia request signal and the ammonia flow rate detection signal. Based on a signal indicating the number of the operating mill to be stopped and the elapsed time since the start or stop of the mill, the amm. An ammonia injection amount control device for a pulverized coal combustion exhaust gas treatment denitration device, comprising fuzzy control means for correcting a control amount of a near flow control valve.
JP2000205439A 2000-07-06 2000-07-06 Method and apparatus for controlling amount of injection of ammonia into denitrification apparatus for treating exhaust combustion gas of pulverized coal Pending JP2002018234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000205439A JP2002018234A (en) 2000-07-06 2000-07-06 Method and apparatus for controlling amount of injection of ammonia into denitrification apparatus for treating exhaust combustion gas of pulverized coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000205439A JP2002018234A (en) 2000-07-06 2000-07-06 Method and apparatus for controlling amount of injection of ammonia into denitrification apparatus for treating exhaust combustion gas of pulverized coal

Publications (1)

Publication Number Publication Date
JP2002018234A true JP2002018234A (en) 2002-01-22

Family

ID=18702525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000205439A Pending JP2002018234A (en) 2000-07-06 2000-07-06 Method and apparatus for controlling amount of injection of ammonia into denitrification apparatus for treating exhaust combustion gas of pulverized coal

Country Status (1)

Country Link
JP (1) JP2002018234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106799123A (en) * 2017-02-22 2017-06-06 上海龙净环保科技工程有限公司 The control method and its control device of a kind of denitrification apparatus ammonia spraying amount
CN109453664A (en) * 2018-12-25 2019-03-12 国电科学技术研究院有限公司 One kind is based on big data analysis coal fired power plant spray ammonia control method and denitrating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106799123A (en) * 2017-02-22 2017-06-06 上海龙净环保科技工程有限公司 The control method and its control device of a kind of denitrification apparatus ammonia spraying amount
CN106799123B (en) * 2017-02-22 2019-10-11 上海龙净环保科技工程有限公司 A kind of control method and its control device of denitrification apparatus ammonia spraying amount
CN109453664A (en) * 2018-12-25 2019-03-12 国电科学技术研究院有限公司 One kind is based on big data analysis coal fired power plant spray ammonia control method and denitrating system

Similar Documents

Publication Publication Date Title
EP0604236B1 (en) Nitrogen oxide removal control apparatus
CN109092035A (en) A kind of device and its working method for adjusting denitration spray ammonia flow adding feedforward based on cascade PID
JP2002018234A (en) Method and apparatus for controlling amount of injection of ammonia into denitrification apparatus for treating exhaust combustion gas of pulverized coal
JPH0633743A (en) Denitration control device
CZ85498A3 (en) Regulation method of inlet amount of treated medium for reducing content of nitrogen oxide in combustion products of combustion processes and control apparatus for making the same
JP3653599B2 (en) Apparatus and method for controlling ammonia injection amount of flue gas denitration equipment
JP3902737B2 (en) Ammonia injection control method for denitration catalyst device of waste treatment facility
JP3409929B2 (en) Reducing agent injection amount control device and injection amount control method for denitration device
JPH08200601A (en) Fluidized bed power plant, controller thereof and controlling method therefor
JPH07328389A (en) Ammonia injection amount control method and apparatus of denitration apparatus
JP3568614B2 (en) Method and apparatus for controlling the amount of ammonia injected into a denitration apparatus for treating coal combustion exhaust gas
JP3544716B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
JP2693106B2 (en) DeNOx control device
JPH0762525B2 (en) Boiler combustion control device
JPS6344924A (en) Denitration treatment of exhaust gas
JP3263184B2 (en) DeNOx control device
JP3354776B2 (en) Operation method of incinerator complex plant equipment
JPH08261410A (en) Method and apparatus for reducing nitrogen oxide of pulverized coal burning boiler
JPH1181919A (en) White smoke of exhaust gas preventing method in binary cycle gas turbine device
JPH08338263A (en) Denitration control device
JPH0418656Y2 (en)
JPH05149108A (en) Drum level control device for compound cycle power generation plant
JPH09287416A (en) Operation control method for recycle power generating system
JP4062034B2 (en) Boiler steam temperature control method and apparatus
JPH10332104A (en) Method of controlling coal quantity of feed to mill of coal fired boiler