JPH0813101A - Iron-nickel alloy for electronic parts, excellent in hot workability - Google Patents

Iron-nickel alloy for electronic parts, excellent in hot workability

Info

Publication number
JPH0813101A
JPH0813101A JP14606194A JP14606194A JPH0813101A JP H0813101 A JPH0813101 A JP H0813101A JP 14606194 A JP14606194 A JP 14606194A JP 14606194 A JP14606194 A JP 14606194A JP H0813101 A JPH0813101 A JP H0813101A
Authority
JP
Japan
Prior art keywords
alloy
less
present
amount
electronic parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14606194A
Other languages
Japanese (ja)
Inventor
Tadashi Inoue
正 井上
Kiyoshi Tsuru
清 鶴
Shinichi Okimoto
伸一 沖本
Hiroshi Wakasa
浩 若狭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP14606194A priority Critical patent/JPH0813101A/en
Publication of JPH0813101A publication Critical patent/JPH0813101A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce an Fe-Ni alloy for electronic parts, excellent in hot workability. CONSTITUTION:This alloy is an Fe-Ni alloy for electronic parts, excellent in hot workability, in which 30-52% Ni is contained and the amounts of S, O, and Sn as inevitable impurities are limited to <=0.007%, <=0.006%, and <=0.1%, respectively, and to which 0.0001-0.006% Ca is added in the range satisfying Ca/(S+O+0.1XSn)=0.1 to 6, or, this alloy is an Fe-Ni-Co alloy for electronic parts, excellent in hot workability, in which 26-38% Ni and 1-20% Co are contained and the amounts of S, O, and Sn as inevitable impurities are limited to <=0.007%, <=0.006%, and <=0.1%, respectively, and to which 0.0001-0.006% Ca is added in the range satisfying Ca/(S+O+0.1X Sn)=0.1 to 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱間加工性に優れたカ
ラー受像管用シャドウマスク、ICリードフレーム、P
B級、PD級のパーマロイ等の電子部品用Fe−Ni系
合金に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a shadow mask for a color picture tube excellent in hot workability, an IC lead frame, a P
The present invention relates to Fe-Ni alloys for electronic parts such as B-grade and PD-grade permalloy.

【0002】[0002]

【従来技術】Niを26〜52wt%含むFe−Ni系
合金およびFe−Ni−Co系合金は、室温から300
℃にわたる温度域で低い熱膨張係数または、優れた軟磁
気特性を有し、カラー受像管用シャドウマスク、ICリ
ードフレーム、PB級、PD級のパーマロイ等の電子部
品用の材料として、広く用いられている。
2. Description of the Related Art Fe-Ni-based alloys and Fe-Ni-Co-based alloys containing 26 to 52 wt% of Ni have room temperature to 300%.
It has a low coefficient of thermal expansion in the temperature range over ℃ or has excellent soft magnetic characteristics, and is widely used as a material for electronic parts such as shadow masks for color picture tubes, IC lead frames, PB grade and PD grade permalloys. There is.

【0003】しかしながら、これらのFe−Ni系合金
やFe−Ni−Co系合金は、本質的に熱間延性能が悪
く、湾曲型連続鋳造機により連続鋳造スラブを鋳造する
場合には、スラブの曲げ戻し時にスラブの表面割れ、コ
ーナー割れが多発しやすい合金である。この表面疵はそ
のまま放置すると、最終製品において重大な欠陥となる
ので、疵取りを行なう必要がある。このため歩留りは著
しく低下し、製造に要する時間も長く、それだけコスト
高になることを余儀なくされていた。
However, these Fe-Ni-based alloys and Fe-Ni-Co-based alloys are inherently poor in hot rolling performance, and when a continuous casting slab is cast by a curved continuous casting machine, the This alloy is prone to surface cracks and corner cracks during bending back. If this surface flaw is left as it is, it will become a serious defect in the final product, so it is necessary to remove the flaw. Therefore, the yield is remarkably reduced, the time required for manufacturing is long, and the cost is inevitably increased accordingly.

【0004】一般に熱間加工時の表面疵は、以下のよう
にして形成されると考えられる。即ち湾曲型連続鋳造機
で連続鋳造スラブを鋳造する場合、スラブは歪速度2×
10 -3-1程度の低速変形曲げ、曲げ戻しを伴う。この
際のスラブのエッジや表層近傍は、中心に比べ温度降下
しており、その温度は700℃以下になる。このような
高温変形条件での延性が劣ると表面疵が発生する。
Generally, surface defects during hot working are as follows.
It is thought to be formed by. That is, curved continuous casting machine
When casting a continuous cast slab with, the slab has a strain rate of 2 ×
10 -3S-1Slow deformation with some bending and bending back. this
At the edge of the slab and near the surface layer, the temperature drops compared to the center.
The temperature becomes 700 ° C. or lower. like this
If the ductility is poor under high temperature deformation conditions, surface defects will occur.

【0005】従来の高Fe−Ni合金とその製造方法と
しては、特開昭62−40343に開示されたものがあ
る。この製造方法は、Ni:30.0〜52.0wt
%、Si:0.40wt%以下、Mn:0.10〜0.
80wt%、C:0.05wt%以下、Al:0.00
6〜0.02wt%、P:0.010wt%以下、S:
0.002wt%以下、O:0.005wt%以下を含
有し、且つS+P/10≦0.0020wt%の条件を
満たし、残部FeからなるFe−Ni合金を製造するに
当たり、分塊圧延及び熱間圧延における加熱温度を10
60〜1250℃とし、仕上げ温度を800℃以上とす
るものである。
As a conventional high Fe-Ni alloy and its manufacturing method, there is one disclosed in JP-A-62-40343. This manufacturing method uses Ni: 30.0 to 52.0 wt.
%, Si: 0.40 wt% or less, Mn: 0.10 to 0.
80 wt%, C: 0.05 wt% or less, Al: 0.00
6 to 0.02 wt%, P: 0.010 wt% or less, S:
In producing an Fe-Ni alloy containing 0.002 wt% or less, O: 0.005 wt% or less, and satisfying the condition of S + P / 10 ≦ 0.0020 wt% and the balance Fe, slab rolling and hot rolling Heating temperature in rolling is 10
The temperature is 60 to 1250 ° C, and the finishing temperature is 800 ° C or higher.

【0006】[0006]

【発明が解決しようとする問題点】しかしながら、上述
した従来の合金を用いた場合でも、前記した連続鋳造時
の低歪速度変形下での曲げ、曲げ戻し時のスラブ表面割
れを抑制することはできないという問題点がある。
However, even when the above-mentioned conventional alloy is used, it is not possible to suppress the slab surface cracking at the time of bending and under bending at low strain rate deformation during continuous casting as described above. There is a problem that you cannot do it.

【0007】本発明は製造加工変形工程即ち連続鋳造に
おいて疵発生が極めて少なく、スラブの疵取り工程を大
幅に短縮でき、スラブの歩留りも向上し、製造コスト低
減に寄与するNi:26〜52wt%の電子・電磁用材
料、たとえばインバー材である36Ni合金、リードフ
レーム用42Ni合金、パーマロイ等のFe−Ni系合
金およびFe−Ni−Co系合金を提供することを目的
としたものである。
The present invention has very few defects in the manufacturing process deformation step, that is, continuous casting, can significantly shorten the slab defect removal process, improve the slab yield, and contribute to the manufacturing cost reduction Ni: 26 to 52 wt% The present invention aims to provide an electronic / electromagnetic material, such as a 36Ni alloy that is an Invar material, a 42Ni alloy for a lead frame, an Fe-Ni-based alloy such as permalloy, and an Fe-Ni-Co-based alloy.

【0008】[0008]

【問題点を解決するための手段】本発明に係る熱間加工
性に優れた電子部品用Fe−Ni系合金は、Niを30
〜52wt%含有し、かつ不可避的不純物としてのS、
O、SnをそれぞれS:0.007wt%以下、O:
0.006wt%以下、Sn:0.1wt%以下と規制
し、かつCaが0.0001〜0.006wt%、かつ
Ca/(S+O+0.1×Sn)=0.1〜6の範囲内
となるよう、添加されたものである。
The Fe-Ni-based alloy for electronic parts having excellent hot workability according to the present invention has a Ni content of 30%.
.About.52 wt%, and S as an unavoidable impurity,
O and Sn are each S: 0.007 wt% or less, O:
It is regulated to 0.006 wt% or less and Sn: 0.1 wt% or less, and Ca is in the range of 0.0001 to 0.006 wt% and Ca / (S + O + 0.1 × Sn) = 0.1 to 6 So, it was added.

【0009】また、Niを26〜38wt%、Co:1
〜20wt%を含有し、かつ不可避不純物としてのS、
O、SnをそれぞれS:0.007wt%以下、O:
0.006wt%以下、Sn:0.1wt%以下と規制
し、かつCaが0.0001〜0.006wt%、かつ
Ca/(S+O+0.1×Sn)=0.1〜6の範囲内
となるよう添加されたものである。
Further, Ni is 26 to 38 wt%, Co: 1.
~ 20wt%, and S as an unavoidable impurity,
O and Sn are each S: 0.007 wt% or less, O:
It is regulated to 0.006 wt% or less and Sn: 0.1 wt% or less, and Ca is in the range of 0.0001 to 0.006 wt% and Ca / (S + O + 0.1 × Sn) = 0.1 to 6 It was added as described above.

【0010】[0010]

【作用】従来技術で述べた如くFe−Ni系合金の連続
鋳造時の疵発生に対しては、とくに700℃以上の延性
が極めて重要であることが理解される。熱間延性能を精
度良く調べる方法は、高温引張試験での試験片の絞り値
を用いるものであるが、一般に絞り値と疵発生傾向は一
致することが良く知られており、難加工材の連続鋳造の
際のスラブ疵は、絞り値が50%未満の時に多発する傾
向を示す。
As described in the prior art, it is understood that the ductility of 700 ° C. or higher is extremely important for the occurrence of flaws during continuous casting of Fe-Ni alloys. A method of accurately examining hot rolling performance is to use the drawing value of a test piece in a high temperature tensile test, but it is generally well known that the drawing value and the tendency of flaw occurrence are well known, and Slab defects during continuous casting tend to occur frequently when the drawing value is less than 50%.

【0011】本発明者らは多くのFe−Ni系およびF
e−Ni−Co系合金について高温引張試験を実施し、
疵発生傾向を検討した。粒界強度が低下し、粒界破壊が
支配的となるような場合、絞り値が50%未満と低延性
を示し、疵発生につながることが明らかになった。
We have found that many Fe--Ni systems and F
A high temperature tensile test was performed on the e-Ni-Co alloy,
The defect occurrence tendency was examined. In the case where the grain boundary strength is lowered and the grain boundary fracture is dominant, it is clear that the reduction value is less than 50% and the ductility is low, leading to the occurrence of defects.

【0012】Fe−Ni系合金の低歪速度変形下での熱
間延性低下は、本合金中に不可避的不純物として存在す
るS或いはO、Snの、粒界への偏析若しくは硫化物、
酸化物又はスズの化合物の粒界への析出に支配されてい
る。ここではSは最も悪影響を及ぼし、O、SnはSの
悪影響を助長する効果を有する。普通鋼の場合に比べ
て、Fe−Ni系合金の低歪速度変形下の熱間延性が、
不純物の影響を特に著しく受けることは、本発明の対象
とするFe−Ni系合金で不純物元素の偏析傾向が著し
く、かつ低歪速度変形時の動的析出が起こるためと考え
られる。
The decrease in hot ductility of Fe-Ni alloys under low strain rate deformation is caused by segregation of S, O, or Sn existing as unavoidable impurities in the alloy into grain boundaries or sulfides,
It is governed by the precipitation of oxide or tin compounds at the grain boundaries. Here, S has the most adverse effect, and O and Sn have the effect of promoting the adverse effect of S. The hot ductility of Fe-Ni alloys under low strain rate deformation is
It is considered that the influence of the impurities is particularly remarkable because the Fe-Ni alloy targeted by the present invention has a significant segregation tendency of the impurity elements and the dynamic precipitation occurs at the low strain rate deformation.

【0013】上記したような、熱間延性低下を抑制する
ためには、Sn、O、S量の特定値以下への低減と、こ
れらの不純物元素の総量に応じたCaの適量添加が必須
となる。
In order to suppress the decrease in hot ductility as described above, it is essential to reduce the amounts of Sn, O and S to below a specific value and to add an appropriate amount of Ca according to the total amount of these impurity elements. Become.

【0014】Snは、本合金の溶製時の鉄源としてのス
クラップから不可避的に混入する不純物元素であり、低
融点の化合物をオーステナイト粒界に形成し、粒界強度
を低下させるため、熱間延性に対しては、極めて有害な
元素である。Sn量が0.1wt%を超えると、後述す
るO、S量の低減、Caの微量添加を行なっても、本発
明で意図する700℃以上の延性を改善することができ
ない。よって、Sn量の上限は0.1wt%と定めた。
下限は特に定めないが、溶製上の経済性から0.000
1wt%以上である。
Sn is an impurity element that is inevitably mixed from scrap as an iron source during the melting of the present alloy. It forms a compound with a low melting point at the austenite grain boundaries and lowers the grain boundary strength. It is an extremely harmful element for ductility. If the Sn content exceeds 0.1 wt%, the ductility of 700 ° C. or higher intended in the present invention cannot be improved even if the O and S contents are reduced and Ca is added in a trace amount described later. Therefore, the upper limit of the Sn amount is set to 0.1 wt%.
The lower limit is not specified, but it is 0.000 from the economical aspect of melting.
It is 1 wt% or more.

【0015】Oは、不純物元素として本合金中に存在す
るが、その含有量が、0.006wt%を超えると、本
合金中で酸化物が多くなり、特に、本発明で特徴とする
Caの微量添加を行なう場合、低融点の酸化物が多く形
成されることになり、熱間延性を低下させる。O量が
0.006wt%以下で、Sn、S量の規制とCaの適
量添加のもとに、本発明で意図する優れた熱間延性が得
られる。以上より、O量は、0.006wt%以下と定
めた。なお、下限は特に定めないが、溶製上の経済性か
ら0.0002wt%以上である。
O exists as an impurity element in the present alloy, but if the content thereof exceeds 0.006 wt%, the amount of oxides in the present alloy increases, and in particular, in the case of Ca, which is a feature of the present invention, When a small amount is added, a large amount of low melting point oxide is formed, which deteriorates hot ductility. When the O content is 0.006 wt% or less, excellent hot ductility intended in the present invention can be obtained under the control of Sn and S content and the addition of an appropriate amount of Ca. From the above, the O amount was determined to be 0.006 wt% or less. The lower limit is not particularly specified, but is 0.0002 wt% or more from the economical aspect of melting.

【0016】Sは、本合金の700℃以上での熱間延性
を低下させる有害な元素である。特に、本合金を低歪速
度にて700℃で変形する際に、顕著に生じる粒界破壊
に強く関与している。S量が0.007wt%を超える
と、上記した粒界破壊に基づくスラブの表面割れが多発
するため、S量は0.007wt%以下に定めた。下限
は特に定めないが、溶製上の経済性から、0.0001
wt%以上である。
S is a harmful element that reduces the hot ductility of the present alloy at 700 ° C. or higher. In particular, when the present alloy is deformed at a low strain rate at 700 ° C., it is strongly involved in the grain boundary breakage that remarkably occurs. When the amount of S exceeds 0.007 wt%, surface cracks of the slab frequently occur due to the above-mentioned grain boundary fracture, so the amount of S was set to 0.007 wt% or less. The lower limit is not specified, but it is 0.0001 from the economical aspect of melting.
wt% or more.

【0017】本発明で意図する優れた熱間延性は、上記
したSn、O、S量の規制のみでは達成されない。
The excellent hot ductility intended in the present invention cannot be achieved only by controlling the Sn, O, and S amounts described above.

【0018】図1は、Fe−Ni系合金の温度と絞り値
の関係を示すグラフである。図1の実線で示すグラフ
は、本発明合金のうち後述する実施例の表1の発明例に
おける材料No. 2に対応するものであり、Sn:0.0
03wt%、O:0.0011wt%、S:0.000
6wt%、Ca:0.0002wt%、Ca/(S+O
+0.1×Sn)=0.1である。また、点線で示すグ
ラフは、比較合金であり、Sn:0.028wt%、
O:0.0032wt%、S:0.0024wt%でC
aが無添加のものである(実施例の表1の材料No. 1
3)。この場合、温度が加工する(冷却される)に伴っ
て、絞り値は1100℃付近から急激に低下し、100
0℃近傍で40%を切る低い値になっている。その後の
温度低下によって一旦回復するが、800℃付近から再
び劣化しはじめ、700℃付近で30%程度になってい
る。これに対して、本発明の成分合金は、700℃以上
で常に高延性を示し、低歪速度変形下での熱間延性の飛
躍的な改善が見られた。なお、上記した、比較合金の7
00℃引張りでの破面は、粒界破面を呈しており、かつ
この粒界破面では、前記したSn、S、Oが濃化してい
た。このことは、これらの不純物元素により粒界が脆化
し、粒界破壊したことを示していると推察される。
FIG. 1 is a graph showing the relationship between the temperature and the aperture value of the Fe-Ni alloy. The graph shown by the solid line in FIG. 1 corresponds to the material No. 2 in the invention example of Table 1 of the examples described later among the alloys of the present invention, and Sn: 0.0
03 wt%, O: 0.0011 wt%, S: 0.000
6 wt%, Ca: 0.0002 wt%, Ca / (S + O
+ 0.1 × Sn) = 0.1. Also, the graph indicated by the dotted line is a comparative alloy, Sn: 0.028 wt%,
O: 0.0032 wt%, S: 0.0024 wt% and C
a is additive-free (material No. 1 in Table 1 of the example)
3). In this case, as the temperature is processed (cooled), the aperture value drops sharply from around 1100 ° C.
It is a low value of less than 40% near 0 ° C. Although it recovers once by the temperature decrease thereafter, it starts to deteriorate again at around 800 ° C and reaches about 30% at around 700 ° C. On the other hand, the component alloy of the present invention always exhibits high ductility at 700 ° C. or higher, and a dramatic improvement in hot ductility under low strain rate deformation was observed. In addition, 7 of the comparative alloy described above
The fracture surface at a tension of 00 ° C. exhibited a grain boundary fracture surface, and the above-mentioned Sn, S, and O were concentrated in this grain boundary fracture surface. This is presumed to indicate that the grain boundary was embrittled by these impurity elements and the grain boundary was destroyed.

【0019】このことより、連続鋳造時での表面疵発生
を低減させるためには、本発明の成分範囲を満たすこと
が必要であると判断した。なお、連続鋳造時の曲げ、曲
げ戻しを行なう温度域としては、700℃以上1300
℃以下とすることにより、上記した連続鋳造スラブの表
面疵発生を抑制することが可能となった。特に、本発明
材は、700℃付近での延性に加え、1000℃付近の
延性も高いため、連続鋳造時の連続鋳造スラブに曲げ加
工が施される1000℃付近の熱間延性も高く、連続鋳
造時の曲げ加工時または造塊−分塊圧延時にスラブに表
面疵が発生することが抑制される。
From the above, it was judged that it is necessary to satisfy the component range of the present invention in order to reduce the occurrence of surface defects during continuous casting. The temperature range for bending and unbending during continuous casting is 700 ° C. or higher and 1300
By setting the temperature to be equal to or lower than 0 ° C, it becomes possible to suppress the occurrence of surface flaws in the above-mentioned continuous cast slab. In particular, the material of the present invention has high ductility at around 1000 ° C. in addition to ductility at around 700 ° C., and therefore has high hot ductility at around 1000 ° C. where continuous casting slab is bent during continuous casting, Generation of surface flaws on the slab during bending during casting or during ingot-bulk rolling is suppressed.

【0020】次に、Sn、S、Oの各量が単独で本発明
範囲内にあって、Ca量を変化させたFe−Ni系合金
を用いて熱間引張試験を行ない、700〜1300℃に
おける絞り値の最低値を調べ、Sn、S、OとCa添加
量との関係を調べた結果、絞り値はCa/(S+O+
0.1×Sn)というパラメータで整理できることを見
い出した。その結果を図2のグラフに示す。この図より
Ca/(S+O+0.1×Sn)が0.1〜6の範囲内
で絞り値が50%以上の高延性を示し、この範囲の前後
では、絞り値は低い値を示すことが分かった。また、C
a量としては、単独で0.0001wt%以上、0.0
06wt%以下の範囲内とすることにより、上記した高
延性が得られることも分かった。
Next, a hot tensile test was conducted using Fe--Ni based alloys in which the respective amounts of Sn, S, and O were independently within the range of the present invention, and the Ca amount was changed, to 700 to 1300 ° C. As a result of investigating the minimum value of the aperture value in the above, and examining the relationship between Sn, S, O and the Ca addition amount, the aperture value is Ca / (S + O +
We found that it can be arranged with the parameter of 0.1 × Sn). The results are shown in the graph of FIG. It is clear from this figure that the Ca / (S + O + 0.1 × Sn) has a high ductility of 50% or more in the range of 0.1 to 6, and the aperture value shows a low value before and after this range. It was Also, C
As the amount of a, 0.0001 wt% or more alone, 0.0
It was also found that the above high ductility can be obtained by setting the content within the range of 06 wt% or less.

【0021】このように、本発明で対象とするFe−N
i系合金の高い熱間延性能は、Sn、S、O量が単独で
それぞれ、0.1wt%以下、0.007wt%以下、
0.006wt%以下にあり、かつCa量が0.000
1〜0.006wt%以下でかつCa/(S+O+0.
1×Sn)が0.1〜6の範囲内となるようCa添加さ
れた時に得られることが判明した。
Thus, the Fe--N, which is the object of the present invention,
The high hot rolling performance of the i-based alloy is that Sn, S, and O contents are 0.1 wt% or less and 0.007 wt% or less, respectively.
Is less than 0.006 wt% and the amount of Ca is 0.000
1 to 0.006 wt% or less and Ca / (S + O + 0.
It was found that when 1 × Sn) was added to Ca so as to fall within the range of 0.1 to 6, it was obtained.

【0022】以上がSn、S、O、Ca、Ca/(S+
O+0.1×Sn)の各量を本発明範囲内に規定した理
由である。
The above is Sn, S, O, Ca, Ca / (S +
This is the reason why each amount of O + 0.1 × Sn) is defined within the range of the present invention.

【0023】本発明の対象とするFe−Ni系合金、F
e−Ni−Co系合金は特にインバー合金、リードフレ
ーム用42合金、PDパーマロイ等熱膨張特性や磁気特
性を主体とする物理的性質が要求される合金である。
Fe—Ni alloy, F, which is the subject of the present invention
The e-Ni-Co-based alloy is an alloy such as Invar alloy, 42 alloy for lead frame, PD permalloy, and the like which is required to have physical properties such as thermal expansion characteristics and magnetic characteristics.

【0024】Niは、本合金の基本成分であり、熱膨張
係数を変化させる元素であって、カラー受像管シャドウ
マスク用(以下単にシャドウマスク用という)として
は、色ずれの発生を防止するために要求される30〜1
00℃の温度域における平均熱膨張係数の上限は30×
10-6℃である。この平均熱膨張係数の条件を満たすN
i量はFe−Ni合金にあっては30〜38wt%の範
囲内である。従って、カラー受像管用シャドウマスク用
としては、Ni量を30〜38wt%の範囲内に限定す
べきである。なお、このようなNi量の範囲内でも、平
均熱膨張係数を低下させうる好ましいNi量は35〜3
7wt%であり、更には、この平均熱膨張係数をより低
下させうる更に好ましいNi量は35.5〜36.5w
t%である。
Ni is a basic component of the present alloy and is an element that changes the coefficient of thermal expansion. For a color picture tube shadow mask (hereinafter simply referred to as a shadow mask), Ni is used to prevent color misregistration. 30 to 1 required for
The upper limit of the average thermal expansion coefficient in the temperature range of 00 ° C is 30 ×
It is 10 -6 ° C. N satisfying the condition of this average thermal expansion coefficient
The i amount is in the range of 30 to 38 wt% in the Fe-Ni alloy. Therefore, for a shadow mask for a color picture tube, the amount of Ni should be limited to the range of 30 to 38 wt%. Even within such a range of Ni content, the preferable Ni content that can reduce the average thermal expansion coefficient is 35 to 3
It is 7 wt%, and further preferable amount of Ni that can further lower the average thermal expansion coefficient is 35.5 to 36.5 w.
t%.

【0025】なお、Coを1.0wt%未満の範囲内で
含有する場合でも上記した平均熱膨張係数の上限を満足
するNi量は30〜38wt%である。このような場合
でも、平均熱膨張係数を低下させる好ましいNi量は3
5〜37wt%である。また、1〜8wt%のCoを含
有するFe−Ni−Co系合金の場合、上記した平均熱
膨張係数の条件を満たすNi量範囲は26〜38wt%
であり、また、Ni量を30〜33wt%、Co量を3
〜8wt%にすることにより、平均熱膨張係数は更に低
く優れたものとなる。
Even when Co is contained within the range of less than 1.0 wt%, the amount of Ni satisfying the upper limit of the average thermal expansion coefficient is 30 to 38 wt%. Even in such a case, the preferable amount of Ni that lowers the average coefficient of thermal expansion is 3
It is 5 to 37 wt%. Further, in the case of a Fe-Ni-Co based alloy containing 1 to 8 wt% of Co, the Ni content range satisfying the above-mentioned average thermal expansion coefficient is 26 to 38 wt%.
In addition, the amount of Ni is 30 to 33 wt% and the amount of Co is 3
By setting the content to ˜8 wt%, the average coefficient of thermal expansion becomes even lower and excellent.

【0026】また、ICリードフレーム用としては、半
導体素子、ガラスおよびセラミックス等との熱膨張の整
合性を保つためには、Ni量を38wt%超、52wt
%以下とすることが必要である。なお、このようなNi
量の範囲内でも、リードフレームとともに用いられる半
導体素子、ガラスおよびセラミックス等の熱膨張係数に
応じてNi量が適切に選択される。
For IC lead frames, the Ni content is more than 38 wt% and 52 wt% to maintain the thermal expansion matching with semiconductor elements, glass, ceramics and the like.
It is necessary to be less than or equal to%. In addition, such Ni
Even within the range of the amount, the amount of Ni is appropriately selected according to the thermal expansion coefficient of the semiconductor element, glass, ceramics, etc. used with the lead frame.

【0027】なお、Coを1.0wt%未満の範囲内で
含有する場合でも、ICリードフレーム用としての熱膨
張の整合性を保つためのNi量は38wt%超え、52
wt%以下である。また、ICリードフレーム用材料と
してはFe−Ni−Co系合金も本発明の対象としてい
るが、この場合、Co:5〜20wt%、Ni:26〜
33wt%の範囲内であれば、ICリードフレーム用と
しての熱膨張の整合性を保つことが可能である。
Even when Co is contained within the range of less than 1.0 wt%, the Ni content for maintaining the consistency of thermal expansion for the IC lead frame exceeds 38 wt%, 52
It is less than wt%. Although Fe-Ni-Co based alloys are also the subject of the present invention as a material for IC lead frames, in this case, Co: 5-20 wt%, Ni: 26-
Within the range of 33 wt%, it is possible to maintain the consistency of thermal expansion for the IC lead frame.

【0028】[0028]

【実施例】Fe−Ni系合金のうち代表的なインバー合
金(Fe−36Ni合金)、42アロイ(Fe−42w
t%Ni合金)、パーマロイ(Fe−45wt%Ni合
金)、コバール(Fe−30wt%Ni−17wt%C
o合金)などの各合金での発明材および比較材を電気炉
にて溶解し、炉外精錬にて、表1に示す材料を準備し、
これらの材料の高温引張試験を実施した。
EXAMPLES Invar alloys (Fe-36Ni alloys) and 42 alloys (Fe-42w) which are typical of Fe-Ni alloys
t% Ni alloy), permalloy (Fe-45wt% Ni alloy), Kovar (Fe-30wt% Ni-17wt% C)
Inventive material and comparative material in each alloy such as o alloy) are melted in an electric furnace, and the materials shown in Table 1 are prepared by external refining,
High temperature tensile testing of these materials was performed.

【0029】[0029]

【表1】 [Table 1]

【0030】試験は700〜1300℃の温度域で歪速
度1×10-3-1のもとで行ない、絞り値を調べて熱間
延性能を評価した。また、これらの材料を湾曲型連続鋳
造機により鋳造し、曲げ、曲げ戻しを700℃以上、1
300℃以下の温度範囲にて行ない、得られた連続鋳造
スラブの疵発生状況を調べた。疵発生傾向の判定は、ス
ラブのエッヂ断面で調べた。その定量化はスラブ断面の
単位面積において、2mm以上の深さに達するワレの表
面での長さの合計を採用した。
The test was conducted at a strain rate of 1 × 10 -3 S -1 in the temperature range of 700 to 1300 ° C., and the drawing value was examined to evaluate the hot rolling performance. In addition, these materials are cast by a curved continuous casting machine and bent and unbent at 700 ° C. or higher, 1
The continuous cast slab obtained was examined in the temperature range of 300 ° C. or lower for defects. The judgment of the defect generation tendency was conducted by examining the edge section of the slab. For the quantification, the total length on the surface of the crack reaching a depth of 2 mm or more was adopted in the unit area of the slab cross section.

【0031】各Fe−Ni系合金のうち材料No. 1〜N
o. 9は、本発明材であり、Sn、S、O、Caの単独
量およびCa/(S+O+0.1×Sn)が本発明範囲
内にあり、700〜1300℃での絞り値は50%以上
と後述する比較例に比べて高く、表面疵発生は比較例に
比べて著しく少ない。
Material Nos. 1 to N of each Fe-Ni alloy
o. 9 is the material of the present invention, the sole amount of Sn, S, O and Ca and Ca / (S + O + 0.1 × Sn) are within the scope of the present invention, and the aperture value at 700 to 1300 ° C. is 50%. The above is higher than that of the comparative example described later, and the occurrence of surface defects is significantly less than that of the comparative example.

【0032】これに対して、材料No. 10〜No. 15
は、それぞれSnの単独量が本発明規定上限を超えるも
の、Sの単独量が本発明規定上限を超えるもの、Oの単
独量が本発明規定上限を超えるもの、Caの単独量およ
びCa/(S+O+0.1×Sn)が本発明規定下限未
満のもの、Caの単独量が本発明規定上限超のもの、C
a/(S+O+0.1×Sn)が本発明規定上限超のも
のであり、いずれも700〜1300℃での絞り値は5
0%未満と本発明例に比べて低く、表面疵発生も本発明
例に比べて著しく多くなっている。
On the other hand, materials No. 10 to No. 15
Are those in which the sole amount of Sn exceeds the upper limit of the present invention, the sole amount of S exceeds the upper limit of the present invention, the sole amount of O exceeds the upper limit of the present invention, the sole amount of Ca and Ca / ( S + O + 0.1 × Sn) is less than the lower limit specified in the present invention, and the amount of Ca alone exceeds the upper limit specified in the present invention, C
a / (S + O + 0.1 × Sn) exceeds the upper limit specified in the present invention, and the aperture value at 700 to 1300 ° C. is 5 in each case.
It is less than 0%, which is lower than that of the examples of the present invention, and the occurrence of surface flaws is significantly increased as compared with the examples of the present invention.

【0033】このように、本発明合金において、Sn、
S、O、Ca、Ca/(S+O+0.1×Sn)の各量
を制御することが、700〜1300℃での熱間延性を
向上させるために必須であり、このようにすることで、
CCスラブの表面疵の発生を抑制できることが可能とな
ることが理解される。
Thus, in the alloy of the present invention, Sn,
It is essential to control each amount of S, O, Ca, and Ca / (S + O + 0.1 × Sn) in order to improve hot ductility at 700 to 1300 ° C., and by doing so,
It is understood that it becomes possible to suppress the occurrence of surface flaws on the CC slab.

【0034】また、このような本発明合金では、100
0℃付近での熱間延性も高いため、造塊−分塊圧延時の
表面疵発生も極めて少なく、製造性も優れていることが
確認された。
Further, in such an alloy of the present invention, 100
It was confirmed that since the hot ductility near 0 ° C. is also high, the occurrence of surface defects during the ingot-bulk rolling is extremely small and the manufacturability is excellent.

【0035】[0035]

【発明の効果】本発明によって、Fe−Ni系合金又は
Fe−Ni−Co系合金を連続鋳造法または造塊−分塊
圧延法で製造する場合、表面疵発生頻度が極めて少な
く、疵取り工程を大幅に短縮でき、スラブの歩留りも向
上し、製造コストの大幅な低減が可能となり、その経済
性、生産性からみた工業的価値は極めて大きい。
According to the present invention, when an Fe-Ni-based alloy or an Fe-Ni-Co-based alloy is produced by a continuous casting method or an ingot-bulk rolling method, the occurrence of surface flaws is extremely low, and the flaw removal step is performed. Can be significantly shortened, the yield of slabs can be improved, the manufacturing cost can be greatly reduced, and its industrial value in terms of economic efficiency and productivity is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】Fe−Ni系合金の温度と絞り値の関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between the temperature and the aperture value of a Fe—Ni alloy.

【図2】Ca/(S+O+0.1×Sn)の値と絞り値
の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the value of Ca / (S + O + 0.1 × Sn) and the aperture value.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 若狭 浩 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Wakasa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Niを30〜52%含有し、
かつ不可避的不純物としてのS、O、Snをそれぞれ
S:0.007%以下、O:0.006%以下、Sn:
0.1%以下と規制し、かつCaが0.0001〜0.
006%、かつCa/(S+O+0.1×Sn)=0.
1〜6の範囲内となるよう、添加されたことを特徴とす
る熱間加工性に優れた電子部品用Fe−Ni系合金。
1. Ni-containing 30 to 52% by weight,
In addition, S, O, and Sn as unavoidable impurities are S: 0.007% or less, O: 0.006% or less, and Sn:
It is regulated to 0.1% or less, and Ca is 0.0001 to 0.
006% and Ca / (S + O + 0.1 × Sn) = 0.
An Fe-Ni-based alloy for electronic parts having excellent hot workability, which is added so as to fall within the range of 1 to 6.
【請求項2】 重量%で、Niを26〜38%、Co:
1〜20%を含有し、かつ不可避不純物としてのS、
O、SnをそれぞれS:0.007%以下、O:0.0
06%以下、Sn:0.1%以下と規制し、かつCaが
0.0001〜0.006%、かつCa/(S+O+
0.1×Sn)=0.1〜6の範囲内となるよう添加さ
れたことを特徴とする熱間加工性に優れた電子部品用F
e−Ni−Co系合金。
2. Ni-26-38%, Co:
1 to 20% and S as an unavoidable impurity,
O and Sn are respectively S: 0.007% or less, O: 0.0
06% or less, Sn: 0.1% or less, Ca is 0.0001 to 0.006%, and Ca / (S + O +
F for electronic parts having excellent hot workability, characterized by being added so as to be within a range of 0.1 × Sn) = 0.1-6
e-Ni-Co alloy.
JP14606194A 1994-06-28 1994-06-28 Iron-nickel alloy for electronic parts, excellent in hot workability Pending JPH0813101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14606194A JPH0813101A (en) 1994-06-28 1994-06-28 Iron-nickel alloy for electronic parts, excellent in hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14606194A JPH0813101A (en) 1994-06-28 1994-06-28 Iron-nickel alloy for electronic parts, excellent in hot workability

Publications (1)

Publication Number Publication Date
JPH0813101A true JPH0813101A (en) 1996-01-16

Family

ID=15399200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14606194A Pending JPH0813101A (en) 1994-06-28 1994-06-28 Iron-nickel alloy for electronic parts, excellent in hot workability

Country Status (1)

Country Link
JP (1) JPH0813101A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226515B2 (en) 2000-09-29 2007-06-05 Hippon Yakin Kogyo Co., Ltd. Fe—Ni based permalloy and method of producing the same and cast slab
JP2008070230A (en) * 2006-09-14 2008-03-27 Hitachi Ltd Physical quantity sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226515B2 (en) 2000-09-29 2007-06-05 Hippon Yakin Kogyo Co., Ltd. Fe—Ni based permalloy and method of producing the same and cast slab
US7419634B2 (en) 2000-09-29 2008-09-02 Nippon Yakin Kogyo Co., Ltd. Fe-Ni based permalloy and method of producing the same and cast slab
US7435307B2 (en) 2000-09-29 2008-10-14 Nippon Yakin Kogyo Co., Ltd Fe-Ni based permalloy and method of producing the same and cast slab
JP2008070230A (en) * 2006-09-14 2008-03-27 Hitachi Ltd Physical quantity sensor

Similar Documents

Publication Publication Date Title
JP2536685B2 (en) Fe-Ni alloy for lead frame material having excellent Ag plating property and method for producing the same
JPH0813101A (en) Iron-nickel alloy for electronic parts, excellent in hot workability
JP2962139B2 (en) Copper alloy with excellent plating properties and conductivity and thin plate or strip made of this copper alloy
JPH0472037A (en) High strength and low thermal expansion alloy and its manufacture
JP2871414B2 (en) Alloy thin plate for shadow mask excellent in press formability and method for producing the same
JP3141697B2 (en) Method for producing alloy band of Fe-Ni alloy for shadow mask and IC lead frame excellent in prevention of edge cracking
KR100388285B1 (en) LOW-EXPANSION Fe-Ni ALLOY FOR SEMI-TENSION MASK, SEMI-TENSION MASK OF THE ALLOY, AND COLOR PICTURE TUBE USING THE MASK
JP2939118B2 (en) Fe-Ni alloy for electronic and electromagnetic applications
JP3360033B2 (en) Fe-Ni alloy for shadow mask and method for producing the same
US5958331A (en) Fe-Ni based alloy sheet having superior surface characteristic and superior etchability
JPS6240343A (en) Fe-ni alloy and its manufacture
JP3871150B2 (en) Method for producing Fe-Ni alloy thin plate for electronic member
JPH0813096A (en) High strength thermal expansion alloy thin sheet for electron excellent in etching property and surface treatability and production thereof
JPS59100215A (en) Manufacture of material for lead frame
JP3303639B2 (en) Method for producing copper-based lead material for semiconductor
JP2864964B2 (en) Fe-Ni-based alloy cold rolled sheet excellent in plating property and solderability and method for producing the same
JP2854313B2 (en) Method for producing low phosphorus rolled steel sheet for processing
JP3538850B2 (en) Fe-Ni alloy thin plate and Fe-Ni-Co alloy thin plate for shadow mask excellent in press formability and method for producing the same
JP3224186B2 (en) Method for producing high-strength low-thermal-expansion Fe-Ni-based alloy material excellent in punchability
JP2001049395A (en) Iron-nickel-cobalt alloy excellent in etching characteristic and low thermal expansion characteristic, and shadow mask excellent in smoothness of inside peripheral shape of etch pit
JP3619403B2 (en) Hot working method of S-added Fe-Ni alloy
JP3363607B2 (en) Shadow mask material with reduced streaking and method of manufacturing the same
JP2001262278A (en) HIGH-STRENGTH AND LOW-EXPANSION Fe-Ni ALLOY, SHADOW MASK, AND LEAD FRAME
JP3383549B2 (en) Method for producing Fe-Ni alloy thin plate
JP3367147B2 (en) Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for shadow mask having excellent press formability and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040706