JPH08128940A - Viscosity measuring method for electroviscous fluid - Google Patents

Viscosity measuring method for electroviscous fluid

Info

Publication number
JPH08128940A
JPH08128940A JP26671994A JP26671994A JPH08128940A JP H08128940 A JPH08128940 A JP H08128940A JP 26671994 A JP26671994 A JP 26671994A JP 26671994 A JP26671994 A JP 26671994A JP H08128940 A JPH08128940 A JP H08128940A
Authority
JP
Japan
Prior art keywords
pair
electrorheological fluid
thin
sample
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26671994A
Other languages
Japanese (ja)
Inventor
Takashi Uekusa
隆 植草
Shozo Watanabe
省三 渡辺
Shosuke Ishiwatari
章介 石渡
Mitsuro Hayashi
充郎 林
Ikuo Nomura
郁夫 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinugawa Rubber Industrial Co Ltd
Taiheiyo Cement Corp
Original Assignee
Kinugawa Rubber Industrial Co Ltd
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinugawa Rubber Industrial Co Ltd, Chichibu Onoda Cement Corp filed Critical Kinugawa Rubber Industrial Co Ltd
Priority to JP26671994A priority Critical patent/JPH08128940A/en
Publication of JPH08128940A publication Critical patent/JPH08128940A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE: To enhance reliability in viscosity measuring results of an electroviscous fluid. CONSTITUTION: A pair of electrodes 15 is faced and arranged in a sample container 12 filled with an electroviscous fluid used as a sample, and a pair of thin sensitive members 5 made of ceramic is put in the sample to make resonance vibration. Electricity is carried to the electrodes 15, driving current of the sensitive members 5 is continuously varied, and the amplitude of the sensitive members 5 is measured. The viscosity of the sample is measured from the relation of the driving current value and the amplitude value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気粘性流体の粘性性
状を測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the viscous properties of an electrorheological fluid.

【0002】[0002]

【従来の技術とその課題】液体の粘性性状を測定する方
法として二重円筒型の回転式粘度計が広く使用されてい
る。この回転式粘度計を用いた方法では、電極である一
方の円筒を液体中で回転させて、その時の回転トルクと
回転数から剪断応力とひずみ速度を算出し、両者の関係
から流動特性曲線を求めて液体の粘性性状ひいては流動
物性を解析するようにしている。
2. Description of the Related Art A double cylinder type rotary viscometer is widely used as a method for measuring the viscosity of a liquid. In the method using this rotary viscometer, one cylinder that is an electrode is rotated in a liquid, the shear stress and the strain rate are calculated from the rotation torque and the rotation speed at that time, and the flow characteristic curve is calculated from the relationship between them. In order to obtain the viscosity of the liquid, the physical properties of the fluid are analyzed.

【0003】しかしながら、電気粘性流体の粘度を測定
しようとする時、ほとんどの電気粘性流体が絶縁性の油
と微粒子との懸濁液であるために、回転式粘度計では乱
流が生じるほか、比重の大きい微粒子が遠心力のために
外側に片寄って微粒子の分散が均一でなくなり、さら
に、電極である円筒の一方向への移動(回転)を伴う測
定法であることから、円筒と試料液体との接触面に滑り
が生じ、いずれの場合にも測定精度の向上が望めない。
また、二重円筒のうちのいずれか一方が偏心すると電極
間の距離が一定でなくなり、電気粘性流体全体に均一な
電荷が加わらなくなって正しい測定を行うことができな
い。さらに、回転式粘度計の特殊性として、トルクを検
出するトーションワイヤやトルクメータの誤差が測定精
度に直接影響するという欠点がある。
However, when attempting to measure the viscosity of an electrorheological fluid, most of the electrorheological fluid is a suspension of insulating oil and fine particles, so that a turbulent flow is generated in the rotary viscometer. Due to the centrifugal force, the particles with a large specific gravity are biased to the outside and the dispersion of the particles is not uniform. In addition, the measurement method involves moving (rotating) the cylinder, which is the electrode, in one direction. Sliding occurs on the contact surface with, and in any case, improvement in measurement accuracy cannot be expected.
Further, if any one of the double cylinders is eccentric, the distance between the electrodes is not constant, and a uniform charge is not applied to the entire electrorheological fluid, so that correct measurement cannot be performed. Further, as a peculiarity of the rotary viscometer, there is a drawback that an error of a torsion wire detecting a torque or an error of a torque meter directly affects the measurement accuracy.

【0004】また、電気粘性流体の特性のひとつに降伏
応力がある。この降伏応力は、図12に示したように、
剪断速度が0(1/S)の時、つまり流体が静止状態か
ら動的な流動状態に変化する時に生ずる応力のことで、
回転式粘度計を用いての降伏応力の測定は、所定の範囲
の剪断速度でのデータから外挿法により降伏応力を求め
なければならず、正しい測定ができない。
Further, a yield stress is one of the characteristics of the electrorheological fluid. This yield stress is, as shown in FIG.
The stress that occurs when the shear rate is 0 (1 / S), that is, when the fluid changes from a static state to a dynamic flow state,
In the measurement of the yield stress using a rotary viscometer, the yield stress must be obtained by extrapolation from the data in the shear rate within a predetermined range, and the correct measurement cannot be performed.

【0005】一方、粘度計による試料の物性解析方法と
して特公平4−70579号公報に記載されているもの
があり、この方法では、先端に感応板を取り付けた一対
の板ばねを測定試料中に挿入して電磁振動により逆位相
で共振振動させ、電磁駆動部への駆動電流を無段階に連
続的に変化させたときの感応板の振幅値を測定し、その
駆動電流値と応答振幅値との関係から試料の物性を解析
するようにしている。
On the other hand, there is a method for analyzing the physical properties of a sample by a viscometer, which is described in Japanese Patent Publication No. 4-70579, and in this method, a pair of leaf springs having a sensitive plate attached to the tip thereof is placed in the measurement sample. Inserted and resonated by electromagnetic vibration in opposite phase, and measured the amplitude value of the sensitive plate when the drive current to the electromagnetic drive was continuously changed continuously, and measured the drive current value and the response amplitude value. The physical properties of the sample are analyzed from the relationship of.

【0006】しかしながら、試料が電気粘性流体である
場合にはこの流体内に臨ませた電極にて通電する必要が
あることから、感応板が導体であるとこの感応板付近の
絶縁強度が下がるばかりでなく、感応板にまで通電され
てしまう可能性があり、正しい測定ができなくなる。
However, when the sample is an electrorheological fluid, it is necessary to energize the electrodes facing the fluid. Therefore, if the sensitive plate is a conductor, the insulation strength in the vicinity of this sensitive plate is lowered. Not only that, the sensitive plate may be energized, which prevents accurate measurement.

【0007】本発明は以上のような課題に着目してなさ
れたもので、電気粘性流体の粘性性状を正確に測定で
き、その測定結果の信頼性の向上を図った方法を提供す
ることを目的としている。
The present invention has been made in view of the above problems, and an object thereof is to provide a method capable of accurately measuring the viscous property of an electrorheological fluid and improving the reliability of the measurement result. I am trying.

【0008】[0008]

【課題を解決するための手段およびその作用】本発明
は、対向配置した一対の電極の間隙内を電気粘性流体で
満たし、その電気粘性流体のなかに電気絶縁性を有する
一対の薄肉感応部材を浸漬させるとともに、この一対の
薄肉感応部材を電磁駆動部による電磁振動により逆位相
で共振振動させて、前記一対の電極に通電しながら電磁
駆動部の駆動電流を連続的に変化させたときの前記薄肉
感応部材の振幅を連続的に測定し、これら駆動電流値と
応答振幅値との関係から電気粘性流体の粘性性状を測定
することを特徴としている。
According to the present invention, a gap between a pair of electrodes arranged to face each other is filled with an electrorheological fluid, and a pair of thin-walled responsive members having electrical insulation are provided in the electrorheological fluid. While being immersed, the pair of thin-walled sensitive members are resonantly vibrated in an opposite phase by electromagnetic vibration of the electromagnetic drive unit, and the drive current of the electromagnetic drive unit is continuously changed while energizing the pair of electrodes. The feature is that the amplitude of the thin sensitive member is continuously measured, and the viscous property of the electrorheological fluid is measured from the relationship between the driving current value and the response amplitude value.

【0009】[0009]

【実施例】図2は本発明の一実施例を示す図で、本測定
方法に用いられる粘度測定装置の構造を示している。
EXAMPLE FIG. 2 is a diagram showing an example of the present invention and shows the structure of a viscosity measuring apparatus used in the present measuring method.

【0010】図2に示すように、粘度測定装置のスライ
ダ1には一対の板ばね2がボルト3にて固定されてお
り、この板ばね2の下端に支持部材4が連結されてい
る。さらに、支持部材4の下端には先端が円形の薄肉感
応部材5がボルト6にて連結されており、この薄肉感応
部材5は電気絶縁性を有するセラミックにて薄板状に形
成されている。そして、前記一対の支持部材4の間には
電磁駆動部7が設けられており、この電磁駆動部7の加
振力により支持部材4を介して一対の薄肉感応部材5が
その共振振動数のもとで互いに逆位相で左右方向に正弦
振動される。つまり、一対の薄肉感応部材5はその表裏
両面が加振方向と平行となるように取り付けられてい
る。
As shown in FIG. 2, a pair of leaf springs 2 are fixed to the slider 1 of the viscosity measuring device with bolts 3, and a support member 4 is connected to the lower end of the leaf springs 2. Further, a thin-walled sensitive member 5 having a circular tip is connected to the lower end of the support member 4 by a bolt 6, and the thin-walled sensitive member 5 is formed of a ceramic having an electrical insulating property in a thin plate shape. An electromagnetic drive unit 7 is provided between the pair of support members 4, and the pair of thin-walled sensitive members 5 have their resonance frequencies of the resonance frequency via the support member 4 by the exciting force of the electromagnetic drive unit 7. Originally, they are sine-oscillated in the left and right directions in opposite phases. That is, the pair of thin-walled sensitive members 5 are attached such that both front and back surfaces thereof are parallel to the vibration direction.

【0011】また、前記スライダ1には変位センサ8が
取り付けられており、後述するようにこの変位センサ8
によって支持部材4ひいては薄肉感応部材5の振幅が検
出されるようになっている。
Further, a displacement sensor 8 is attached to the slider 1, and the displacement sensor 8 will be described later.
The amplitude of the support member 4 and thus the thin-walled sensitive member 5 is detected.

【0012】なお、前記スライダ1は図示しない本体フ
レームに昇降可能に支持されている。
The slider 1 is supported by a body frame (not shown) so as to be able to move up and down.

【0013】また、スライダ1の下端には、後述するよ
うに試料容器12に対する薄肉感応部材5の浸漬深さを
規制するレベル針9が設けられているほか、図3に示す
ように試料温度を検出する温度センサ10が取り付けら
れている。
At the lower end of the slider 1, a level needle 9 for regulating the immersion depth of the thin sensitive member 5 in the sample container 12 is provided as will be described later, and as shown in FIG. A temperature sensor 10 for detecting is attached.

【0014】前記スライダ1の下方のテーブル11上に
は試料容器12が設けられていて、この試料容器12は
図4〜6に示すようにハンドル13を回転操作すること
により位置決め金具14との間で押圧固定される。前記
試料容器12は、図7〜9に示すように、底部および四
周側壁部がアクリル板にて形成されている一方、その容
器内空間の中央部に所定間隔を保つように例えばステン
レス製の一対の電極15を挿入し、それ以外の空間をテ
フロン等のふっ素樹脂で形成されたサポートブロック1
6,17で埋めた構造となっている。そして、一方のサ
ポートブロック16には半円状の開口孔18が形成され
ていて、この開口孔18と一対の電極15,15同士の
対向間隙G内のみが試料である電気粘性流体によって満
たされて、後述するようにその対向間隙G内の試料のな
かに薄肉感応部材5が浸漬されるとともに、温度センサ
10が開口孔18内の試料のなかに浸漬されることにな
る。
A sample container 12 is provided on the table 11 below the slider 1, and the sample container 12 is connected to the positioning metal fitting 14 by rotating a handle 13 as shown in FIGS. It is pressed and fixed with. As shown in FIGS. 7 to 9, the sample container 12 has a bottom portion and four side wall portions formed of an acrylic plate, while a pair of stainless steel plates are formed so as to maintain a predetermined space in the center of the inner space of the container. Support block 1 in which the electrode 15 is inserted and the other space is made of fluororesin such as Teflon
It has a structure filled with 6,17. A semicircular opening hole 18 is formed in one of the support blocks 16, and only the inside gap G between the opening hole 18 and the pair of electrodes 15, 15 is filled with the electrorheological fluid as the sample. Then, as described later, the thin sensitive member 5 is dipped in the sample in the facing gap G, and the temperature sensor 10 is dipped in the sample in the opening hole 18.

【0015】ここで、本実施例では、前記一対の電極1
5,15の対向間隙Gが1mmになるように電極15の
位置がふっ素樹脂製のスペーサ19で規制されている。
また、前記電極15の端子部15aは図10に示すよう
に電源20に接続される。
Here, in this embodiment, the pair of electrodes 1
The position of the electrode 15 is regulated by a spacer 19 made of fluororesin so that the facing gap G between the electrodes 5 and 15 is 1 mm.
The terminal portion 15a of the electrode 15 is connected to the power source 20 as shown in FIG.

【0016】以上の構造において、図2のほか図4〜6
に示すように、所定の試料を採取した試料容器12をテ
ーブル11の上に載せた上、ハンドル13を回転操作し
て試料容器12を位置決め金具14とハンドル13との
間で押圧固定する。
In the above structure, in addition to FIG. 2, FIGS.
As shown in, the sample container 12 in which a predetermined sample is sampled is placed on the table 11, and the handle 13 is rotated to fix the sample container 12 between the positioning fitting 14 and the handle 13.

【0017】続いて、スライダ1をゆっくりと下降さ
せ、図1に示すようにレベル針9の先端が試料容器12
内の試料液面に接する位置で停止させる。これにより、
一対の薄肉感応部材5が電極15,15同士の対向間隙
G内の試料中に浸漬されるとともに、温度センサ10が
開口孔18内の試料のなかに浸漬されることになる。
Then, the slider 1 is slowly lowered, and the tip of the level needle 9 is moved to the sample container 12 as shown in FIG.
Stop at the position in contact with the sample liquid surface inside. This allows
The pair of thin-walled sensitive members 5 is immersed in the sample in the facing gap G between the electrodes 15 and 15, and the temperature sensor 10 is immersed in the sample in the opening hole 18.

【0018】この状態で、図10に示すように、電源2
0から一対の電極15に所定の電圧を印加する一方、発
振器21は駆動制御部22からの指示により振動系全体
が固有振動数で振動する共振周波数の信号を増幅器23
に送り、増幅器23はその入力信号を増幅し、この増幅
後の交流電流を電磁駆動部7に入力する。これにより、
板ばね2を介して一対の薄肉感応部材5が左右方向に共
振振動する。この時の駆動電流は電流計24にて測定さ
れる。
In this state, as shown in FIG.
While a predetermined voltage is applied to the pair of electrodes 15 from 0, the oscillator 21 receives the signal of the resonance frequency at which the entire vibration system vibrates at the natural frequency according to the instruction from the drive control unit 22.
Then, the amplifier 23 amplifies the input signal and inputs the amplified alternating current to the electromagnetic drive unit 7. This allows
The pair of thin sensitive members 5 resonate in the left-right direction via the leaf springs 2. The drive current at this time is measured by the ammeter 24.

【0019】ここで、一対の電極15,15同士の間の
対向間隙が1mmとなるように予め設定されていること
から、その対向間隙Gの中央部に一対の薄肉感応部材5
が位置して電極15に接触しないように試料容器12と
薄肉感応部材5との相対位置関係が予め設定されてい
る。また、前記薄肉感応部材5はセラミックで形成され
ているために、試料である電気粘性流体に電荷をかけた
場合にもその薄肉感応部材5近傍の絶縁強度が下がるこ
ともなければ薄肉感応部材5自体に電流が流れることも
ない。
Here, since the facing gap between the pair of electrodes 15 and 15 is preset to be 1 mm, the pair of thin-walled sensitive members 5 are provided at the center of the facing gap G.
The relative positional relationship between the sample container 12 and the thin sensitive member 5 is set in advance so as not to come into contact with the electrode 15. Further, since the thin-walled sensitive member 5 is made of ceramic, the thin-walled sensitive member 5 does not decrease in insulation strength in the vicinity of the thin-walled sensitive member 5 even when an electric viscous fluid as a sample is charged. No electric current flows through itself.

【0020】一方、振動する板ばね2の振幅が電圧変化
として変位センサ8により検出され、その電圧信号は増
幅器25にて増幅され、増幅後の振幅値が電圧計26に
て測定される。同時に試料容器12内の試料温度が温度
センサ10により検出されて温度表示部28に表示され
る。
On the other hand, the amplitude of the vibrating leaf spring 2 is detected by the displacement sensor 8 as a voltage change, the voltage signal is amplified by the amplifier 25, and the amplified amplitude value is measured by the voltmeter 26. At the same time, the sample temperature in the sample container 12 is detected by the temperature sensor 10 and displayed on the temperature display unit 28.

【0021】そして、前記変位センサ8により検出され
た振幅値がその変位センサ8の起電力変化としてパーソ
ナルコンピュータ等にて構成された解析処理装置27に
入力され、同時に前記電流計24にて測定された駆動電
流値、および温度センサ10による温度出力もそれぞれ
解析処理装置27に入力される。
Then, the amplitude value detected by the displacement sensor 8 is input as an electromotive force change of the displacement sensor 8 to an analysis processing device 27 constituted by a personal computer or the like, and simultaneously measured by the ammeter 24. The drive current value and the temperature output from the temperature sensor 10 are also input to the analysis processing device 27.

【0022】本発明は、上記のように試料である電気粘
性流体のなかに入れた薄肉感応部材5を振動させる一方
で、その加振力を変化させるとともに、必要に応じて電
極15を介して電気粘性流体に加えられる電荷を変化さ
せながら、振幅値と駆動電流を測定し、その両者の関係
から試料である電気粘性流体の物性を解析するもので、
その具体例を図11に示す。
According to the present invention, as described above, while vibrating the thin-walled sensitive member 5 contained in the electrorheological fluid which is the sample, the vibrating force thereof is changed and, if necessary, the electrode 15 is interposed. While changing the charge applied to the electrorheological fluid, the amplitude value and the driving current are measured, and the physical properties of the electrorheological fluid, which is the sample, are analyzed from the relationship between the two.
A specific example is shown in FIG.

【0023】図11は、図7〜9に示した試料容器12
に、シリコーンオイル(SH20010CS,東レ・ダ
ウコーニング・シリコーン(株)社製)に、水分を吸着
させたセルロース(アビセル,旭化成工業(株)社製)
を分散させてなる粒子濃度35wt%の電気粘性流体を
満たし、電気粘性流体に加えられる電荷を0kV/m
m、2kV/mm、4kV/mmと変化させた場合の降
伏応力の変化を図1に示した振動式粘度測定法のもとで
測定したものである。また、比較例として、上記と同様
の電気粘性流体の降伏応力変化を従来の回転式粘度測定
法により測定した結果を図12に示す。
FIG. 11 shows the sample container 12 shown in FIGS.
In addition, a silicone oil (SH20010CS, manufactured by Toray Dow Corning Silicone Co., Ltd.) in which water is adsorbed (Avicel, manufactured by Asahi Kasei Corporation)
Is filled with an electrorheological fluid having a particle concentration of 35 wt% and the electric charge applied to the electrorheological fluid is 0 kV / m.
The change of the yield stress when changing m, 2 kV / mm and 4 kV / mm was measured under the vibration type viscosity measuring method shown in FIG. In addition, as a comparative example, FIG. 12 shows the result of measuring the yield stress change of the same electrorheological fluid as described above by the conventional rotational viscosity measurement method.

【0024】ここで、先に述べたように電磁駆動部7の
駆動電流Iを連続的に変化させることによりその電磁駆
動部7が薄肉感応部材5に及ぼす加振力が変化し、この
加振力と試料である電気粘性流体の剪断応力τとの間に
相関関係があるので、(1)式からその剪断応力τを算
出する。
Here, as described above, by continuously changing the drive current I of the electromagnetic drive unit 7, the exciting force exerted by the electromagnetic drive unit 7 on the thin sensitive member 5 is changed, and this exciting force is changed. Since there is a correlation between the force and the shear stress τ of the electrorheological fluid which is the sample, the shear stress τ is calculated from the equation (1).

【0025】また、前記電磁駆動部7の駆動振動数を3
0Hz(一定)に設定しているので、電気粘性流体の粘
度に応じて薄肉感応部材5の振幅が変化し、例えば粘度
が高ければ振幅が小さくなり、粘度が低ければ振幅が大
きくなる。そこで、上記の応答振幅値を変位センサ8に
より起電力Eとして検出し、式(2),(3)に基づい
て粘度ηを算出する。
The drive frequency of the electromagnetic drive unit 7 is set to 3
Since it is set to 0 Hz (constant), the amplitude of the thin sensitive member 5 changes according to the viscosity of the electrorheological fluid. For example, if the viscosity is high, the amplitude becomes small, and if the viscosity is low, the amplitude becomes large. Therefore, the above response amplitude value is detected as the electromotive force E by the displacement sensor 8 and the viscosity η is calculated based on the equations (2) and (3).

【0026】そして、上記の剪断応力τおよび粘度ηを
もとに式(4)から剪断速度DSを算出する。
Then, the shear rate D S is calculated from the equation (4) based on the above shear stress τ and viscosity η.

【0027】なお、上記の各計算は図10に示した解析
処理装置27によって処理された上で、図11のように
グラフ化されて記録される。
Each of the above calculations is processed by the analysis processing device 27 shown in FIG. 10, and then graphed and recorded as shown in FIG.

【0028】 τ(Pa)=1588×I(A)‥‥‥‥‥(1) R=I(A)/E(mV)‥‥‥‥‥(2) logη(mPA・S)=a・logR2+b・logR+C‥‥‥(3) DS(S-1)=τ(Pa)/η(Pa・S)‥‥‥‥‥(4) ただし、 τ:剪断応力 I:電磁駆動部の駆動電流(A) η:見掛け粘度(Pa・S) R:駆動電流I(A)と振幅(変位センサの起電力E
(mV)との比 E:振幅に応じた変位センサの起電力(mV) DS:剪断速度(S-1) a:定数(=−0.136018512) b:定数(=0.572142761) c:定数(6.701903606) である。
Τ (Pa) = 1588 × I (A) ‥‥‥‥‥‥‥ (1) R = I (A) / E (mV) ‥‥‥‥ (2) log η (mPA · S) = a ・logR 2 + b · logR + C (3) D S (S −1 ) = τ (Pa) / η (Pa · S) ‥‥‥ (4) where τ: Shear stress I: Electromagnetic drive part Driving current (A) η: Apparent viscosity (Pa · S) R: Driving current I (A) and amplitude (electromotive force E of displacement sensor)
Ratio with (mV) E: Electromotive force (mV) of displacement sensor according to amplitude D S : Shear rate (S -1 ) a: Constant (= -0.1360180512) b: Constant (= 0.572142761) c : It is a constant (6.701903606).

【0029】図11から明らかなように、駆動電流を無
段階に変化させて、その駆動電流値を徐々に大きくした
場合と徐々に小さくした場合とでは曲線が相互に異な
り、ヒステリシス曲線を描いていることがわかる(特に
2kV/mm印加時)。したがって、この特性を示す電
気粘性流体はビンガム流体でありながらチクソトロピー
的な性状をもつものであることがわかる。また、図11
から明らかなように、その特性曲線に降伏応力が明確に
表われて該降伏応力を直接的に求めることができる。
As is apparent from FIG. 11, the curves are different when the drive current is changed steplessly and the drive current value is gradually increased and gradually decreased, and a hysteresis curve is drawn. It is understood that there is (especially when applying 2 kV / mm). Therefore, it is understood that the electrorheological fluid exhibiting this characteristic is a Bingham fluid but has a thixotropic property. In addition, FIG.
As is clear from the above, the yield stress can be directly obtained by clearly showing the yield stress in the characteristic curve.

【0030】これに対して、図12に示した回転式粘度
測定法のもとでの測定結果では、試料である電気粘性流
体の性状を的確に特定できないばかりでなく、降伏応力
を求めるには図12に示すように補助的に直線を引いて
その傾向を調べるいわゆる外挿法によらなければなら
ず、最終的に求められる降伏応力の値が線の引き方によ
ってその都度異なり、正確な降伏応力の値を求めること
は難しい。
On the other hand, according to the measurement results obtained by the rotational viscosity measurement method shown in FIG. 12, not only the property of the electrorheological fluid as the sample cannot be accurately specified, but also the yield stress can be obtained. As shown in FIG. 12, it is necessary to use a so-called extrapolation method for auxiliaryly drawing a straight line to check the tendency, and the value of the yield stress finally obtained varies depending on how the line is drawn, and the accurate yield is obtained. It is difficult to obtain the stress value.

【0031】[0031]

【発明の効果】以上のように本発明によれば、対向配置
した一対の電極の間隙内を電気粘性流体で満たし、その
電気粘性流体のなかに電気絶縁性を有する一対の薄肉感
応部材を浸漬させるとともに、この一対の薄肉感応部材
を電磁駆動部による電磁振動により逆位相で共振振動さ
せて、前記一対の電極に通電しながら電磁駆動部の駆動
電流を連続的に変化させたときの前記薄肉感応部材の振
幅を連続的に測定し、これら駆動電流値と応答振幅値と
の関係から電気粘性流体の粘性性状を測定するようにし
たことにより、従来の回転式粘度計による解析法のよう
に試料である電気粘性流体の挙動が検出精度に影響する
ことがないばかりでなく、薄肉感応部材に通電されてし
まうおそれがないため、電気粘性流体の粘性性状を正確
に測定できるようになって、その測定結果の信頼性が大
幅に向上する。
As described above, according to the present invention, the gap between a pair of electrodes arranged to face each other is filled with an electrorheological fluid, and a pair of thin-walled sensitive members having electrical insulation are immersed in the electrorheological fluid. At the same time, the pair of thin-walled sensitive members are resonantly oscillated in an opposite phase by electromagnetic vibration of the electromagnetic drive unit, and the thin-walled when the drive current of the electromagnetic drive unit is continuously changed while energizing the pair of electrodes. By continuously measuring the amplitude of the sensitive member and measuring the viscous property of the electrorheological fluid from the relationship between the drive current value and the response amplitude value, it is possible to use the conventional rotational viscometer as an analysis method. Not only does the behavior of the electrorheological fluid, which is the sample, not affect the detection accuracy, but there is no risk of electricity being applied to the thin sensitive member, so the viscous properties of the electrorheological fluid can be accurately measured. Now, the reliability of the measurement result is greatly improved.

【0032】また、本発明によれば加振力と応答振幅値
との関係すなわち剪断応力と剪断速度との関係から電気
粘性流体の降伏応力を直接求めることができるから、従
来の外挿法による測定と比べてその降伏応力の測定結果
の信頼性も併せて向上する。
Further, according to the present invention, since the yield stress of the electrorheological fluid can be directly obtained from the relationship between the exciting force and the response amplitude value, that is, the relationship between the shear stress and the shear rate, the conventional extrapolation method is used. The reliability of the measurement result of the yield stress is also improved as compared with the measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の測定方法に用いられる粘度測定装置の
構成説明図。
FIG. 1 is a structural explanatory view of a viscosity measuring device used in a measuring method of the present invention.

【図2】図1の装置において薄肉感応部材を試料容器に
浸漬させる前の構成説明図。
FIG. 2 is a structural explanatory view of the apparatus of FIG. 1 before the thin sensitive member is immersed in a sample container.

【図3】図2の要部拡大側面図。FIG. 3 is an enlarged side view of a main part of FIG.

【図4】図1に示すテーブルの平面図。FIG. 4 is a plan view of the table shown in FIG.

【図5】図4の正面図。5 is a front view of FIG.

【図6】図5の右側面図。6 is a right side view of FIG.

【図7】図1に示す試料容器の拡大正面図。FIG. 7 is an enlarged front view of the sample container shown in FIG.

【図8】図7の平面図。FIG. 8 is a plan view of FIG.

【図9】図7の右側面図。9 is a right side view of FIG. 7.

【図10】図1に示す粘度測定装置の信号処理系のブロ
ック回路図。
10 is a block circuit diagram of a signal processing system of the viscosity measuring device shown in FIG.

【図11】本発明による測定結果の一例を示す特性図。FIG. 11 is a characteristic diagram showing an example of measurement results according to the present invention.

【図12】従来の方法による測定結果の特性図。FIG. 12 is a characteristic diagram of measurement results by a conventional method.

【符号の説明】[Explanation of symbols]

5…薄肉感応部材 7…電磁駆動部 8…変位センサ 12…試料容器 15…電極 27…解析処理装置 5 ... Thin sensitive member 7 ... Electromagnetic drive unit 8 ... Displacement sensor 12 ... Sample container 15 ... Electrode 27 ... Analysis processing device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石渡 章介 埼玉県熊谷市月見町2−1−1 秩父セメ ント株式会社内 (72)発明者 林 充郎 埼玉県熊谷市月見町2−1−1 秩父セメ ント株式会社内 (72)発明者 野村 郁夫 東京都文京区本郷1−28−10 本郷TKビ ル 秩父セメント株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shosuke Ishiwata 2-1-1 Tsukimi-cho, Kumagaya-shi, Saitama Chichibu Cement Corporation (72) Inventor Mitsuo Hayashi 2-1- Tsukimi-cho, Kumagaya-shi, Saitama 1 Chichibu Cement Co., Ltd. (72) Inventor Ikuo Nomura 1-28-10 Hongo Hongo, Bunkyo-ku, Tokyo Hongo TK Building Chichibu Cement Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 対向配置した一対の電極の間隙内を電気
粘性流体で満たし、その電気粘性流体のなかに電気絶縁
性を有する一対の薄肉感応部材を浸漬させるとともに、
この一対の薄肉感応部材を電磁駆動部による電磁振動に
より逆位相で共振振動させて、前記一対の電極に通電し
ながら電磁駆動部の駆動電流を連続的に変化させたとき
の前記薄肉感応部材の振幅を連続的に測定し、これら駆
動電流値と応答振幅値との関係から電気粘性流体の粘性
性状を測定することを特徴とする電気粘性流体の粘性性
状測定方法。
1. A gap between a pair of electrodes facing each other is filled with an electrorheological fluid, and a pair of thin-walled responsive members having electrical insulation are immersed in the electrorheological fluid.
The pair of thin-walled sensitive members are resonated and vibrated in opposite phases by electromagnetic vibration by the electromagnetic drive unit, and the drive current of the electromagnetically driven unit is continuously changed while energizing the pair of electrodes. A method for measuring the viscosity of an electrorheological fluid, characterized in that the amplitude is continuously measured and the viscosity of the electrorheological fluid is measured from the relationship between the driving current value and the response amplitude value.
JP26671994A 1994-10-31 1994-10-31 Viscosity measuring method for electroviscous fluid Withdrawn JPH08128940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26671994A JPH08128940A (en) 1994-10-31 1994-10-31 Viscosity measuring method for electroviscous fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26671994A JPH08128940A (en) 1994-10-31 1994-10-31 Viscosity measuring method for electroviscous fluid

Publications (1)

Publication Number Publication Date
JPH08128940A true JPH08128940A (en) 1996-05-21

Family

ID=17434737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26671994A Withdrawn JPH08128940A (en) 1994-10-31 1994-10-31 Viscosity measuring method for electroviscous fluid

Country Status (1)

Country Link
JP (1) JPH08128940A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325279A (en) * 2003-04-25 2004-11-18 A & D Co Ltd Viscometer
JP2011058885A (en) * 2009-09-08 2011-03-24 Japan Atomic Energy Agency Fluidity measurement apparatus and fluidity measurement method
CN103403523A (en) * 2011-12-30 2013-11-20 西安东风机电有限公司 Method for measuring viscosity of flowing fluid based on bending vibration structure
WO2014049698A1 (en) * 2012-09-26 2014-04-03 株式会社 エー・アンド・デイ Method and device for measuring fluid body physical properties
JP2015190829A (en) * 2014-03-28 2015-11-02 株式会社エー・アンド・デイ Method, program, and device for determining yield value of fluid
JP2020522680A (en) * 2017-04-27 2020-07-30 ハイドラモーション リミテッド Measuring the properties of an oscillated yield stress fluid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325279A (en) * 2003-04-25 2004-11-18 A & D Co Ltd Viscometer
JP2011058885A (en) * 2009-09-08 2011-03-24 Japan Atomic Energy Agency Fluidity measurement apparatus and fluidity measurement method
CN103403523A (en) * 2011-12-30 2013-11-20 西安东风机电有限公司 Method for measuring viscosity of flowing fluid based on bending vibration structure
CN103403523B (en) * 2011-12-30 2015-04-01 西安东风机电有限公司 Method for measuring viscosity of flowing fluid based on bending vibration structure
WO2014049698A1 (en) * 2012-09-26 2014-04-03 株式会社 エー・アンド・デイ Method and device for measuring fluid body physical properties
JP2015190829A (en) * 2014-03-28 2015-11-02 株式会社エー・アンド・デイ Method, program, and device for determining yield value of fluid
JP2020522680A (en) * 2017-04-27 2020-07-30 ハイドラモーション リミテッド Measuring the properties of an oscillated yield stress fluid

Similar Documents

Publication Publication Date Title
KR920003532B1 (en) Vibration type rheometer apparatus
US6499336B1 (en) Rotational rheometer
Newbury et al. Linear electromechanical model of ionic polymer transducers-Part II: Experimental validation
US4679427A (en) Apparatus for measuring viscosity
US4602501A (en) Rheometer
EP0611448B1 (en) A device for determining viscoelastic properties of liquids and method for use
US6484566B1 (en) Electrorheological and magnetorheological fluid scanning rheometer
Reppert et al. Frequency-dependent streaming potentials
KR970000633B1 (en) Determination of particle size and electric charge
US4602989A (en) Method and apparatus for determining the zeta potential of colloidal particles
JPWO2014049698A1 (en) Method and apparatus for measuring physical properties of fluid
Tanner et al. On the orthogonal superposition of simple shearing and small-strain oscillatory motions
JPH08128940A (en) Viscosity measuring method for electroviscous fluid
JPS6275331A (en) Method and device for measuring or monitoring density or viscoelasticity of liquid or slurry, emulsion or dispersion
O'Brien et al. Determining charge and size with the acoustosizer
Graham et al. Effects of demixing on suspension rheometry
KR20030072802A (en) Dynamometer for Performance Evaluation of the Linear Motor
RU2727263C1 (en) Vibration viscometer for thixotropic liquids
Kulichikhin et al. Measurement of Viscoelastic Characteristics of Interfacial Layers on Liquid Surfaces Using New Experimental Equipment
JP7477171B2 (en) Resonance shear measuring device and method of using same, and viscometer and method of using same
Eggers et al. Oscillating plate viscometer in the Hz to kHz range
Hool et al. Measurement of thin liquid film drainage using a novel high-speed impedance analyzer
Liang et al. Coupling of Induction with Damping Behavior for Viscosity Sensing via Design of Magnetized Oscillator
Reichel et al. A novel oscillating shear viscosity sensor for complex liquids
Kobayashi et al. Vibrating-plate viscometer using a triangular bimorph transducer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115