JPH08128928A - Gas concentration measuring equipment - Google Patents

Gas concentration measuring equipment

Info

Publication number
JPH08128928A
JPH08128928A JP6265766A JP26576694A JPH08128928A JP H08128928 A JPH08128928 A JP H08128928A JP 6265766 A JP6265766 A JP 6265766A JP 26576694 A JP26576694 A JP 26576694A JP H08128928 A JPH08128928 A JP H08128928A
Authority
JP
Japan
Prior art keywords
gas
concentration sensor
sensor
flow rate
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6265766A
Other languages
Japanese (ja)
Inventor
Akira Tanabe
亮 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP6265766A priority Critical patent/JPH08128928A/en
Publication of JPH08128928A publication Critical patent/JPH08128928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE: To provide gas concentration measuring equipment capable of measuring gas concentration at quick response and accurately calibrating a sensor with a small amount of calibrating gas. CONSTITUTION: When the concentration of combustion gas is measured, a control means 6 rotates a gas flow rate regulating plate 3 so as to be parallel in the lengthy direction of a sampling pipe 1a through a regulating plate driving means 4 to directly introduce a sampling gas into an oxygen concentration sensor 2. When the sensor is calibrated, the control means 6 rotates the gas flow rate regulating plate 3 so as to be vertical in the lengthy direction of the sampling pipe 1a through the regulating plate driving means 4 to shut off the sampling gas, drives a valve 5a through a valve driving circuit 5b and ejects the calibrating gas in the oxygen concentration sensor 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、煙道の燃焼ガス等のう
ち特定ガス、例えば酸素ガスや一酸化炭素ガスの濃度を
測定するためのガス濃度測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas concentration measuring device for measuring the concentration of a specific gas, such as oxygen gas or carbon monoxide gas, in a flue gas.

【0002】[0002]

【従来技術】工業プラント等において、燃焼ガス中の特
定ガス、例えば酸素ガスや一酸化炭素ガスの濃度を計測
することは、燃焼状態の監視等プラントの動作を監視す
る上で重要な要因となる。
2. Description of the Related Art In an industrial plant or the like, measuring the concentration of a specific gas such as oxygen gas or carbon monoxide gas in a combustion gas is an important factor in monitoring the operation of the plant such as monitoring the combustion state. .

【0003】かかる場合、試料ガスの動圧を利用してサ
ンプリングするプローブとガスセンサが一体に形成され
たガス濃度測定装置では、図7に示すように、煙道管2
0aにサンプリングパイプ21aを取り付け、ガス採取
口21bより煙道21bを流れる燃焼ガスをサンプリン
グガスとして取り込み、内部に配設したガス濃度センサ
22によってその濃度計測がなされる。そして、所定の
周期、例えば、プラントの起動前や1週間毎等に校正ガ
スチューブ23より、既知濃度の校正ガスをガス濃度セ
ンサ22に射出してガス濃度センサ22の経時的な出力
変化の校正がなされていた。
In such a case, in the gas concentration measuring device in which the probe and the gas sensor for sampling by utilizing the dynamic pressure of the sample gas are integrally formed, as shown in FIG.
The sampling pipe 21a is attached to 0a, the combustion gas flowing through the flue 21b is taken in as sampling gas from the gas sampling port 21b, and the concentration is measured by the gas concentration sensor 22 arranged inside. Then, a calibration gas having a known concentration is injected from the calibration gas tube 23 to the gas concentration sensor 22 at a predetermined cycle, for example, before starting the plant or every one week, and the output change of the gas concentration sensor 22 is calibrated with time. Was being done.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図7の
構成のガス濃度測定装置を用いて被測定ガスのガス濃度
を計測する場合、被測定ガスの動圧が高いほど応答速度
が高くなり、正確な濃度計測ができるのであるが、図7
のように煙道20bより採取した燃焼ガスを直接ガス濃
度センサ22に接触させる構成では、センサの校正に際
して、校正ガスを大量に射出しないとサンプリングガス
の影響を受けて正確な校正ができないという問題があっ
た。
However, when the gas concentration of the gas to be measured is measured using the gas concentration measuring device having the configuration shown in FIG. 7, the higher the dynamic pressure of the gas to be measured, the higher the response speed and the more accurate the measurement. It is possible to measure various concentrations, but Fig. 7
In the configuration in which the combustion gas collected from the flue 20b is brought into direct contact with the gas concentration sensor 22 as described above, the calibration gas cannot be accurately calibrated due to the influence of the sampling gas unless a large amount of the calibration gas is injected during the calibration of the sensor. was there.

【0005】そこで、本発明はかかる課題を解消するた
め、早い応答速度でガス濃度の計測ができ、しかも、少
量の校正ガスで正確なセンサの校正ができるガス濃度測
定装置を提供することを目的とする。
Therefore, in order to solve such a problem, the present invention aims to provide a gas concentration measuring device capable of measuring a gas concentration at a fast response speed and capable of accurately calibrating a sensor with a small amount of calibration gas. And

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、被測定ガスを取り込み、サンプリングパ
イプ内に配設したガス濃度センサにより取り込んだ被測
定ガスの濃度を計測するガス濃度測定装置において、前
記ガス濃度センサに校正ガスを射出する校正ガス射出手
段と、前記ガス濃度センサ近傍に配設され、前記ガス濃
度センサに到達する被測定ガスの流量を調整する流量調
整手段と、を備えたことを特徴とする。
In order to achieve the above object, the present invention relates to a gas concentration for taking in a gas to be measured and measuring the concentration of the gas to be measured taken in by a gas concentration sensor arranged in a sampling pipe. In the measuring device, a calibration gas injection means for injecting a calibration gas to the gas concentration sensor, and a flow rate adjusting means disposed near the gas concentration sensor for adjusting the flow rate of the measured gas reaching the gas concentration sensor, It is characterized by having.

【0007】[0007]

【作用】本発明の作用を図1に基づいて説明すると、燃
焼ガスの濃度計測時には、制御手段6は、調整板駆動手
段4を介してガス流量調整板3をサンプリングパイプ1
aの長手方向と平行になるよう回転させ、サンプリング
ガスを酸素濃度センサ2に直接接触させる。一方、セン
サ校正に際して、制御手段6は、調整板駆動手段4を介
してガス流量調整板3をサンプリングパイプ1aの長手
方向と垂直になるよう回転させ、サンプリングガスを遮
蔽し、バルブ駆動回路5bを介してバルブ5aを駆動
し、校正ガスを酸素濃度センサ2に射出する。
The operation of the present invention will be described with reference to FIG. 1. When measuring the concentration of the combustion gas, the control means 6 causes the gas flow rate adjusting plate 3 to move through the adjusting plate driving means 4 to the sampling pipe 1.
It is rotated so as to be parallel to the longitudinal direction of a and the sampling gas is brought into direct contact with the oxygen concentration sensor 2. On the other hand, at the time of sensor calibration, the control means 6 rotates the gas flow rate adjusting plate 3 through the adjusting plate driving means 4 so as to be perpendicular to the longitudinal direction of the sampling pipe 1a, shields the sampling gas, and controls the valve driving circuit 5b. The valve 5a is driven via the valve to inject the calibration gas into the oxygen concentration sensor 2.

【0008】[0008]

【実施例】以下、本発明の一実施例を図1〜図5に基づ
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0009】図1は本発明にかかるガス濃度測定装置の
概略図であり、1aは円筒状のサンプリングパイプで、
取付フランジ1dを介して煙道管10に固設され、煙道
11内の燃焼ガスをガス採取口1cよりサンプリングガ
スとして内部に取り込み、ガス排出口1dから排出す
る。そして、取り込まれたサンプリングガスがサンプリ
ングパイプ1a内で停滞しないように、その内部は、ガ
イドプレート1bによって、ガス採取口1c側とガス排
出口1d側に仕切されている。
FIG. 1 is a schematic view of a gas concentration measuring apparatus according to the present invention, wherein 1a is a cylindrical sampling pipe,
The combustion gas in the flue 11 is fixed to the flue pipe 10 via the mounting flange 1d, taken in as sampling gas from the gas sampling port 1c, and discharged from the gas exhaust port 1d. The inside of the sampling pipe 1a is partitioned by the guide plate 1b into the gas sampling port 1c side and the gas discharge port 1d side so that the sampling gas taken in does not become stagnant in the sampling pipe 1a.

【0010】なお、サンプリングパイプ1aは、煙道管
10から外部へ通常より突出した状態で配設されてお
り、これによりガス流量調整板3の取り付けを可能かつ
容易にしている。
The sampling pipe 1a is arranged so as to project from the flue pipe 10 to the outside as compared with the normal state, whereby the gas flow rate adjusting plate 3 can be attached easily.

【0011】2はガス濃度センサの一つであるジルコニ
ア式の酸素濃度センサで、燃焼ガス中の酸素濃度を検出
する。この酸素濃度センサ2は、図2に示されるように
ジルコニア2aを境界壁として、一方が被測定ガスであ
るサンプリングガス側に、また他方が空気取込口2bか
ら取り込まれた空気に接するよう構成されており、空気
と被測定ガスとの酸素濃度差に応じて起電力を発生する
ジルコニア2aの特性を利用して、被測定ガスの酸素濃
度に応じた信号を出力する。
Reference numeral 2 is a zirconia type oxygen concentration sensor which is one of the gas concentration sensors and detects the oxygen concentration in the combustion gas. As shown in FIG. 2, this oxygen concentration sensor 2 is configured such that one side is in contact with the sampling gas side, which is the gas to be measured, and the other side is in contact with the air taken in from the air intake port 2b, with the zirconia 2a as a boundary wall. By utilizing the characteristic of the zirconia 2a that generates an electromotive force according to the difference in oxygen concentration between the air and the measurement gas, a signal corresponding to the oxygen concentration of the measurement gas is output.

【0012】3は円板状に形成されたガス流量調整板
で、サンプリングパイプ1aに気密に配設され、モータ
等の調整板駆動手段4によって回転するよう構成されて
いる。そして、その板面が紙面に平行であるときサンプ
リングガスは酸素濃度センサ2に直接動圧を及ぼし、そ
の板面が紙面に垂直であるときには、サンプリングガス
が遮蔽され、酸素濃度センサ2に直接動圧を及ぼすこと
はない。
Reference numeral 3 denotes a disc-shaped gas flow rate adjusting plate, which is arranged in an airtight manner in the sampling pipe 1a and is rotated by an adjusting plate driving means 4 such as a motor. When the plate surface is parallel to the paper surface, the sampling gas exerts a dynamic pressure directly on the oxygen concentration sensor 2, and when the plate surface is perpendicular to the paper surface, the sampling gas is shielded and directly moves to the oxygen concentration sensor 2. It does not exert pressure.

【0013】図3は、このガス流量調整板3をサンプリ
ングパイプ1aに気密に配設する場合を示し、まず、ガ
ス流量調整板3の板面部3aをサンプリングパイプ1a
に形成した挿入口1eから挿入し、ガス流量調整板3の
回転軸3bを貫通孔3fを通して貫通させた取付ボルト
3cの大径ねじ部3dを挿入口1eに形成したネジ溝に
螺接する。次にOリング3hを両側に有する気密パイプ
3gを取付ボルト3cの貫通孔3fと回転軸3bの間に
挟み込んで挿入した後、締付ナット3iの小径ネジ部3
kを取付ボルト3cの小径ネジ部3eに螺接させる。こ
れにより、サンプリングパイプ1a内はその外側からO
リング3hによって気密に保たれる。
FIG. 3 shows a case where the gas flow rate adjusting plate 3 is airtightly arranged in the sampling pipe 1a. First, the plate surface portion 3a of the gas flow rate adjusting plate 3 is sampled in the sampling pipe 1a.
The large-diameter threaded portion 3d of the mounting bolt 3c, which is inserted through the insertion port 1e formed in the above, and penetrates the rotary shaft 3b of the gas flow rate adjusting plate 3 through the through hole 3f, is screwed into the thread groove formed in the insertion port 1e. Next, an airtight pipe 3g having O-rings 3h on both sides is inserted between the through hole 3f of the mounting bolt 3c and the rotating shaft 3b, and then the small diameter screw portion 3 of the tightening nut 3i is inserted.
k is screwed onto the small-diameter screw portion 3e of the mounting bolt 3c. As a result, the inside of the sampling pipe 1a is O
It is kept airtight by the ring 3h.

【0014】図1において、5aはバルブで、バルブ駆
動手段5bにより駆動され、オープン時に校正ガスボン
ベ5e内の校正ガスをガスチューブ5cを介してガス吐
出口5dより酸素濃度センサ2に射出する。
In FIG. 1, reference numeral 5a denotes a valve, which is driven by valve driving means 5b, and when the valve is opened, the calibration gas in the calibration gas cylinder 5e is injected from the gas discharge port 5d to the oxygen concentration sensor 2 through the gas tube 5c.

【0015】6は制御手段で、調整板駆動手段4を介し
てガス流量調整板3の回転制御を行い、また、バルブ駆
動手段5bを介してバルブ5aの駆動制御を行う。7は
演算手段で、酸素濃度センサ2からの検出信号に基づ
き、実際のサンプリングガスの濃度の算出及び酸素濃度
センサ2の校正を行う。
Reference numeral 6 is a control means for controlling the rotation of the gas flow rate adjusting plate 3 via the adjusting plate drive means 4 and for controlling the drive of the valve 5a via the valve drive means 5b. Reference numeral 7 denotes an arithmetic means for calculating the actual concentration of the sampling gas and calibrating the oxygen concentration sensor 2 based on the detection signal from the oxygen concentration sensor 2.

【0016】次に、本発明の作用を制御手段6の動作を
示した図4のフローチャートに基づいて説明する。演算
手段7より校正指示を待ち、校正指示があると(S
1)、調整板駆動手段4を介してガス流量調整板3を9
0゜回転させるとともに(S2)、バルブ駆動手段5b
を介してバルブ5aをオープンし、校正ガスを酸素濃度
センサ2に射出させる(S3)。
Next, the operation of the present invention will be described based on the flowchart of FIG. 4 showing the operation of the control means 6. Wait for a calibration instruction from the computing means 7, and if there is a calibration instruction (S
1), the gas flow rate adjusting plate 3 is set to 9 via the adjusting plate driving means 4.
While rotating 0 ° (S2), valve driving means 5b
The valve 5a is opened via the and the calibration gas is injected into the oxygen concentration sensor 2 (S3).

【0017】図5は、この状態を示したもので、サンプ
リングガスはガス流量調整板3によって遮蔽されるた
め、酸素濃度センサ2に直接動圧がかからないが、校正
ガスはサンプリングガスに遮られることなく酸素濃度セ
ンサ2の付近を満たす。このため、校正ガスをそれほど
大量に射出しなくても、酸素濃度センサ2によって校正
ガスの濃度を正確に検出でき、正確なセンサ校正が可能
となる。
FIG. 5 shows this state. Since the sampling gas is shielded by the gas flow rate adjusting plate 3, the oxygen concentration sensor 2 is not directly subjected to dynamic pressure, but the calibration gas is shielded by the sampling gas. Instead, it fills the vicinity of the oxygen concentration sensor 2. Therefore, the concentration of the calibration gas can be accurately detected by the oxygen concentration sensor 2 without injecting a large amount of the calibration gas, and accurate sensor calibration can be performed.

【0018】ガス流量調整板3及びバルブ5aの駆動制
御が終了すると、演算手段7にその旨指示する(S
4)。
When the drive control of the gas flow rate adjusting plate 3 and the valve 5a is completed, the calculation means 7 is instructed to that effect (S).
4).

【0019】ここで、演算手段7が行う酸素濃度センサ
2の校正動作を説明する。酸素濃度センサ2の検出信号
から酸素濃度を求めるための校正曲線は、図6に示され
るように、通常、予め既知濃度、例えば9パーセント濃
度と1パーセント濃度の酸素ガスについての検出値N1
、N2 を求め、これらを直線近似したもの等が使用さ
れる。そして、この校正曲線を基に、校正ガスボンベ
に、例えば9パーセント濃度の酸素ガスを充填してお
き、校正時に、その検出値がN2'であったとすると、図
6に示されるように、校正曲線を平行移動することによ
り校正が完了する。なお、上述した実施例では、1つの
既知濃度の校正ガスによりセンサの校正を行う例を示し
たが、複数の校正ガスボンベを用いて、2以上の既知濃
度の校正ガスを順次酸素濃度センサ2に射出するように
すれば、複数の検出値を得ることができるため、より正
確な校正曲線を得ることができる。
Here, the calibration operation of the oxygen concentration sensor 2 performed by the calculation means 7 will be described. As shown in FIG. 6, the calibration curve for obtaining the oxygen concentration from the detection signal of the oxygen concentration sensor 2 is usually a detection value N1 for oxygen gas having a known concentration, for example, 9% concentration and 1% concentration in advance.
, N2, and linear approximation of these is used. Then, based on this calibration curve, the calibration gas cylinder is filled with oxygen gas having a concentration of, for example, 9 percent, and when the detected value is N2 'at the time of calibration, as shown in FIG. Calibration is completed by translating. In addition, in the above-described embodiment, an example in which the sensor is calibrated with one calibration gas having a known concentration has been described. However, a plurality of calibration gas cylinders are used to sequentially apply two or more calibration gases having known concentrations to the oxygen concentration sensor 2. By injecting, a plurality of detection values can be obtained, so that a more accurate calibration curve can be obtained.

【0020】校正動作が終了すると、演算手段7は、そ
の旨制御手段6に通知し、制御手段6はこの通知を待っ
て(S5)、上記S2,S3の動作とは逆に、バルブ駆
動手段5bを介してバルブ5aをクローズし(S6)、
調整板駆動手段4を介してガス流量調整板3をさらに9
0゜回転させる。(S7)。
When the calibration operation is completed, the calculation means 7 notifies the control means 6 of that fact, and the control means 6 waits for this notification (S5). Contrary to the operations of S2 and S3, the valve drive means is activated. The valve 5a is closed through 5b (S6),
The gas flow rate adjusting plate 3 is further connected via the adjusting plate driving means 4.
Rotate 0 °. (S7).

【0021】図5bは、この状態を示し、サンプリング
ガスはガス流量調整板3に遮られることがなくなり、酸
素濃度センサ2に直接動圧を及ぼすため、早い応答速度
での酸素濃度の測定が可能となる。
FIG. 5b shows this state, in which the sampling gas is not blocked by the gas flow rate adjusting plate 3 and exerts a dynamic pressure directly on the oxygen concentration sensor 2, so that the oxygen concentration can be measured at a high response speed. Becomes

【0022】なお、上述した実施例では、ガス流量調整
板3を酸素濃度センサ2の校正のために用いたが、酸素
濃度センサ2の洗浄のために用いることもできる。すな
わち、酸素濃度センサ2には煙道11内を流れる燃焼ガ
スが直接接触するため、排煙等のダストが非常に付着し
やすいが、これらが大量に付着するとセンサの検出精度
に多大な悪影響を与える。このため、定期的に酸素濃度
センサ2の洗浄行う必要が生じるが、本発明を用いれ
ば、洗浄時にまず、ガス流量調整板3を適宜移動させる
ことによってガス流をコントロールできるため、より効
率的にセンサの洗浄をなしうる。例えば、ガス流量調整
板3を図5aの状態から校正ガスを酸素濃度センサ2に
射出し、所定時間経過後、徐々に図5bの状態に移行さ
せれば、まず図5aの状態では、射出された校正ガスは
酸素濃度センサ2に直接衝突すると共にガス流量調整板
3aで跳ね返って酸素濃度センサ2全体に衝突するた
め、酸素濃度センサ2に付着したダスト等は効率よく洗
浄される。そして、所定時間後、ガス流量調整板3を図
5bの状態に徐々に回転させれば、酸素濃度センサ2か
ら洗い落とされたダストは、サンプリングガスと共に排
出口1dより排出される。 このように、ガス流量調整
板を酸素濃度センサ2の近傍に配設すると、酸素濃度セ
ンサ2の校正をより正確に行うことができ、しかも酸素
濃度センサ2を効率よく洗浄できる。
Although the gas flow rate adjusting plate 3 is used for calibrating the oxygen concentration sensor 2 in the above-described embodiment, it may be used for cleaning the oxygen concentration sensor 2. That is, since the combustion gas flowing in the flue 11 is in direct contact with the oxygen concentration sensor 2, dust such as flue gas is very likely to adhere, but if a large amount of these adheres, the detection accuracy of the sensor is greatly adversely affected. give. Therefore, it is necessary to regularly clean the oxygen concentration sensor 2. However, according to the present invention, the gas flow can be controlled by appropriately moving the gas flow rate adjusting plate 3 at the time of cleaning. The sensor can be cleaned. For example, if the calibration gas is injected from the state of FIG. 5a to the oxygen concentration sensor 2 from the state of FIG. 5a, and the state is gradually shifted to the state of FIG. Since the calibration gas directly collides with the oxygen concentration sensor 2 and bounces off the gas flow rate adjusting plate 3a and collides with the entire oxygen concentration sensor 2, dust and the like adhering to the oxygen concentration sensor 2 are efficiently cleaned. Then, after a predetermined time, the gas flow rate adjusting plate 3 is gradually rotated to the state of FIG. 5b, and the dust washed off from the oxygen concentration sensor 2 is discharged from the discharge port 1d together with the sampling gas. By disposing the gas flow rate adjusting plate in the vicinity of the oxygen concentration sensor 2 as described above, the oxygen concentration sensor 2 can be calibrated more accurately, and the oxygen concentration sensor 2 can be efficiently cleaned.

【0023】また、上述した実施例では、ガス流量調整
板3及びバルブ5aの制御を演算手段7の動作と連動さ
せて制御手段6により行うように構成したが、本発明
は、これに限るものではなく、校正時には、手動でバル
ブ5a及びガス流量調整板3を動かすようにしてもよ
い。
Further, in the above-mentioned embodiment, the control of the gas flow rate adjusting plate 3 and the valve 5a is configured to be performed by the control means 6 in conjunction with the operation of the computing means 7, but the present invention is not limited to this. Instead, the valve 5a and the gas flow rate adjusting plate 3 may be manually moved at the time of calibration.

【0024】さらに、上述した実施例では、ジルコニア
式の酸素濃度センサ2を示したが、一酸化炭素濃度セン
サ等、ガスに直接接触させることによりそのガス濃度を
検出するタイプのセンサであれば何でもよい。
Further, in the above-mentioned embodiment, the zirconia type oxygen concentration sensor 2 is shown, but any type of sensor such as a carbon monoxide concentration sensor which detects the gas concentration by directly contacting with the gas can be used. Good.

【0025】[0025]

【発明の効果】本発明によれば、ガス濃度センサ近傍に
配設され、前記濃度センサに到達する被測定ガスの流量
を調整する流量調整手段を設けたため、ガス濃度計測時
は直接燃焼ガスをガス濃度センサに接触させ、ガス濃度
センサの校正時には燃焼ガスを遮蔽できる。このため、
速い応答でのガス濃度の計測ができ、しかも、センサの
校正に際して、少量の校正ガスで正確にガス濃度センサ
の校正を行うことが可能となる。また、適宜流量調整板
を動かせば、ガス濃度センサの洗浄も校正ガスを射出す
るだけで効率よく行うことができる。
According to the present invention, since the flow rate adjusting means for adjusting the flow rate of the gas to be measured reaching the concentration sensor is provided in the vicinity of the gas concentration sensor, the combustion gas is directly supplied when the gas concentration is measured. The combustion gas can be shielded by contacting the gas concentration sensor and calibrating the gas concentration sensor. For this reason,
It is possible to measure the gas concentration with a fast response, and moreover, when calibrating the sensor, it is possible to accurately calibrate the gas concentration sensor with a small amount of calibration gas. Further, if the flow rate adjusting plate is moved appropriately, the gas concentration sensor can be cleaned efficiently by only injecting the calibration gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかるガス濃度測定装置の一実施例で
ある。
FIG. 1 is an embodiment of a gas concentration measuring device according to the present invention.

【図2】ジルコニア式の酸素濃度センサの概略図であ
る。
FIG. 2 is a schematic diagram of a zirconia-type oxygen concentration sensor.

【図3】本発明にかかるガス流量調整板をサンプリング
パイプに気密に取り付ける場合を示す図である。
FIG. 3 is a view showing a case where a gas flow rate adjusting plate according to the present invention is airtightly attached to a sampling pipe.

【図4】本発明の動作を示すフローチャートである。FIG. 4 is a flowchart showing the operation of the present invention.

【図5】本発明にかかるガス流量調整板を動作させた場
合を示す図である。
FIG. 5 is a diagram showing a case where the gas flow rate adjusting plate according to the present invention is operated.

【図6】ガス濃度センサの校正曲線を示す図である。FIG. 6 is a diagram showing a calibration curve of a gas concentration sensor.

【図7】従来のガス濃度測定装置の概略図である。FIG. 7 is a schematic view of a conventional gas concentration measuring device.

【符号の説明】[Explanation of symbols]

1a・・・・・サンプリングパイプ 2・・・・・・酸素濃度センサ 3・・・・・・ガス流量調整板 5a・・・・・バルブ 5d・・・・・ガス吐出口 1a ... Sampling pipe 2 ... Oxygen concentration sensor 3 ... Gas flow rate adjusting plate 5a ... Valve 5d ... Gas discharge port

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定ガスを取り込み、サンプリングパ
イプ内に配設したガス濃度センサにより取り込んだ被測
定ガスの濃度を計測するガス濃度測定装置において、 前記ガス濃度センサに校正ガスを射出する校正ガス射出
手段と、 前記ガス濃度センサ近傍に配設され、前記ガス濃度セン
サに到達する被測定ガスの流量を調整する流量調整手段
と、 を備えたことを特徴とするガス濃度測定装置。
1. A gas concentration measuring device for taking in a gas to be measured and measuring the concentration of the gas to be measured taken in by a gas concentration sensor arranged in a sampling pipe, wherein a calibration gas is injected into the gas concentration sensor. A gas concentration measuring device comprising: an injection unit; and a flow rate adjusting unit that is disposed in the vicinity of the gas concentration sensor and adjusts the flow rate of the gas to be measured that reaches the gas concentration sensor.
JP6265766A 1994-10-28 1994-10-28 Gas concentration measuring equipment Pending JPH08128928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6265766A JPH08128928A (en) 1994-10-28 1994-10-28 Gas concentration measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6265766A JPH08128928A (en) 1994-10-28 1994-10-28 Gas concentration measuring equipment

Publications (1)

Publication Number Publication Date
JPH08128928A true JPH08128928A (en) 1996-05-21

Family

ID=17421732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6265766A Pending JPH08128928A (en) 1994-10-28 1994-10-28 Gas concentration measuring equipment

Country Status (1)

Country Link
JP (1) JPH08128928A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015189975A1 (en) * 2014-06-13 2015-12-17 日本オイルポンプ株式会社 Oxygen concentration sensor
JP2016090484A (en) * 2014-11-07 2016-05-23 日本碍子株式会社 Evaluation device and evaluation method
JP2020187129A (en) * 2014-02-19 2020-11-19 マリンクロット ホスピタル プロダクツ アイピー リミテッド Method for compensating long term sensitivity drift of electrochemical gas sensors exposed to nitric oxide
CN113970542A (en) * 2020-07-23 2022-01-25 富士电机株式会社 Gas detection device and method for rotating equipment, and stator coil deterioration monitoring system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187129A (en) * 2014-02-19 2020-11-19 マリンクロット ホスピタル プロダクツ アイピー リミテッド Method for compensating long term sensitivity drift of electrochemical gas sensors exposed to nitric oxide
JP2022070932A (en) * 2014-02-19 2022-05-13 マリンクロット ホスピタル プロダクツ アイピー リミテッド Methods for compensating long term sensitivity drift of electrochemical gas sensors exposed to nitric oxide
JP2022095850A (en) * 2014-02-19 2022-06-28 マリンクロット ホスピタル プロダクツ アイピー リミテッド Methods for compensating long term sensitivity drift of electrochemical gas sensors exposed to nitric oxide
JP2022101594A (en) * 2014-02-19 2022-07-06 マリンクロット ホスピタル プロダクツ アイピー リミテッド Methods for compensating long term sensitivity drift of electrochemical gas sensors exposed to nitric oxide
WO2015189975A1 (en) * 2014-06-13 2015-12-17 日本オイルポンプ株式会社 Oxygen concentration sensor
JP2016090484A (en) * 2014-11-07 2016-05-23 日本碍子株式会社 Evaluation device and evaluation method
CN113970542A (en) * 2020-07-23 2022-01-25 富士电机株式会社 Gas detection device and method for rotating equipment, and stator coil deterioration monitoring system

Similar Documents

Publication Publication Date Title
CN109313100B (en) Valve pressure resistance inspection device, inspection method thereof, and hydrogen gas detection unit
JP4518593B2 (en) Method and apparatus for an internally calibrated oxygen sensor
GB2422658A (en) A method of flushing gas into an out of a sealable enclosure
JPH08128928A (en) Gas concentration measuring equipment
JP5734109B2 (en) Measuring apparatus and measuring method
CN107677630A (en) A kind of Tail gas measuring remote sensing instrument calibration method and calibrating installation
KR19980080105A (en) Method and apparatus for measuring pollutants in semiconductor processing chamber
JP2002310910A (en) Gas concentration measuring instrument
JPH10197461A (en) Method and device for calibrating fluorescent x-ray analyzer
JPH0816659B2 (en) Calibration method of gas concentration measuring instrument and apparatus used for the implementation
JPH1048135A (en) Infrared gas analyzer
JPH0733866Y2 (en) Gas leak measuring device
CN215678452U (en) Mechanical arm device for detecting portable three-cup wind direction and anemometer
JP2007015719A (en) Cap tightening apparatus
JPH10253486A (en) Device and method for detecting leak from airtight housing
JP2961680B2 (en) Gas chromatograph
JPS61274259A (en) Analyzer for trace of carbon in sample
JP2005010007A (en) Infrared gas analyzer
CN113687105A (en) Mechanical arm device for detecting portable three-cup wind direction and anemometer
JP2002066945A (en) Drift correcting method of angular velocity sensor in torque wrench employing screw tightening angle method
JPH0949797A (en) Infrared gas analyzer
JP3002936B2 (en) Inspection method and inspection device for filter element
JPH087171B2 (en) Gas analyzer calibration method and gas concentration measuring device
JPH0635161Y2 (en) Cell for contact lens / gas permeation measurement
KR100489302B1 (en) Diamond film gas sensor and method of measuring the amount of gas thereby