JPH08127775A - Penetrating water glass suspension chemical - Google Patents

Penetrating water glass suspension chemical

Info

Publication number
JPH08127775A
JPH08127775A JP29036994A JP29036994A JPH08127775A JP H08127775 A JPH08127775 A JP H08127775A JP 29036994 A JP29036994 A JP 29036994A JP 29036994 A JP29036994 A JP 29036994A JP H08127775 A JPH08127775 A JP H08127775A
Authority
JP
Japan
Prior art keywords
concentration
slaked lime
suspension
blast furnace
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29036994A
Other languages
Japanese (ja)
Inventor
Yoichi Ishikawa
陽一 石川
Yasushi Obata
泰 小幡
Shigeyoshi Tomita
茂芳 富田
Kazuo Shimoda
一雄 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOUSOU SANGYO KK
DC Co Ltd
Shimoda Gijutsu Kenkyusho KK
Original Assignee
TOUSOU SANGYO KK
Shimoda Gijutsu Kenkyusho KK
Daiichi Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOUSOU SANGYO KK, Shimoda Gijutsu Kenkyusho KK, Daiichi Cement Co Ltd filed Critical TOUSOU SANGYO KK
Priority to JP29036994A priority Critical patent/JPH08127775A/en
Publication of JPH08127775A publication Critical patent/JPH08127775A/en
Pending legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PURPOSE: To obtain a general-purpose water glass suspension chemical which has improved penetrating properties, which can be made to have any desired gel time from an extremely short to a long time regardless of its homogel strength by merely varying the concentration of slaked lime, and which can be made to have any desired homogel strength in a wide range regardless of its gel time by merely varying the concentration of fine particles of blast furnace slag. CONSTITUTION: A penetrating aqueous water glass hardener suspension for use in chemical grouting is prepared so that the suspension has a concentration of slaked lime (a) of about 2% to 35%, a concentration of fine blast furnace slag particles (b) of about 1% to 40%, and a concentration of the sum of (a) and (b) of about 40% or lower. By controlling these concentrations, the suspension can be made to have any gel time ranging from about 3sec to about 45min regardless of its homogel strength, and can also be made to have any homogel strength at a material age of 7 days ranging from about 1 to 40kgf/cm<2> regardless of its gel time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水ガラス系の薬液注入
工法に用いる水ガラス系懸濁型浸透性薬液に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water glass suspension type penetrating chemical liquid used in a water glass chemical liquid injection method.

【0002】[0002]

【従来の技術】従来から、水ガラス系の薬液注入工法に
おいては、対象となる地盤の性質により、最適なゲルタ
イムやホモゲル強度(薬液のみの固結強度)などを選定
して使用されているが、ゲルタイムが長い水ガラス系の
懸濁型浸透性薬液や水ガラス系の懸濁型浸透性高強度薬
液は提供されていない。
2. Description of the Related Art Conventionally, in the water glass type chemical injection method, the optimum gel time and homogel strength (consolidation strength of only the chemical) are selected and used depending on the properties of the target ground. No water glass suspension type penetrating chemical solution or water glass type suspension penetrating high-strength chemical solution having a long gel time is provided.

【0003】溶液型薬液に比較してホモゲル強度が大き
いことが要求される水ガラス系の懸濁型薬液において
は、水硬性成分としてセメントまたは高炉スラグ粉末が
使用され、浸透性を向上させるためには、微粒子セメン
トまたは微細な高炉スラグ粉末が使用されている。
Cement or blast furnace slag powder is used as a hydraulic component in a water glass type suspension type chemical liquid, which is required to have a high homogel strength as compared with a solution type chemical liquid, in order to improve permeability. Uses fine grain cement or fine blast furnace slag powder.

【0004】高炉スラグ粉末の水硬性は潜在的なもので
あるので、潜在水硬性を顕在化させるために、刺激剤と
して消石灰を併用する方法が一般にとられている。
Since the hydraulic property of blast furnace slag powder is latent, a method of using slaked lime as a stimulant is generally adopted in order to reveal the latent hydraulic property.

【0005】水ガラス系の溶液型薬液はホモゲル強度は
小さいが、従来から瞬結性と緩結性の2種類の薬液が提
供されており、一般的に次のような工法が取られること
が多い。緩結性薬液のみを注入すると、ゲルタイムが長
いために、緩結性薬液は散逸経路を通じてどこまでも流
逸してしまうので、まず、瞬結性薬液を先に注入して、
後から注入する緩結性薬液の散逸経路を瞬間的に塞いで
から、緩結性薬液を注入して地盤に浸透させる。この工
法を複相注入という。
Although a water-glass type solution type chemical has a low homogel strength, two types of chemicals having a quick-setting property and a slow-setting property have been conventionally provided, and the following method is generally adopted. Many. If you inject only the slow-moving drug solution, the slow-moving drug solution will flow out through the dissipation route to the end because the gel time is long.
The dissipative route of the slow-moving drug solution to be injected later is momentarily blocked, and then the slow-moving drug solution is injected to penetrate into the ground. This method is called multi-phase injection.

【0006】しかし、懸濁型薬液は、溶液型薬液よりホ
モゲル強度が大きいが、瞬結性の浸透薬液のみしか提供
されていないため、複相注入する場合は、ホモゲル強度
の大きい瞬結性の懸濁型浸透性薬液とホモゲル強度の小
さい溶液型薬液を併用するしか方法がなく、地盤全体を
高強度に改良することができなかった。このようなニー
ズがあるにもかかわらず、水ガラス系のゲルタイムの長
い懸濁型浸透性薬液は開発されていなかった。また、瞬
結性の懸濁型浸透性薬液は提供されているものの、ゲル
タイムが5秒以下に分類される超瞬結性の水ガラス系の
懸濁型浸透性薬液は提供されていないのが現状である。
[0006] However, the suspension-type liquid medicine has a higher homogel strength than the solution-type liquid medicine, but since only the instantaneous penetrating liquid medicine is provided, in the case of multi-phase injection, the homogel strength is large and the instantaneous gel-forming strength is high. Only the suspension type penetrating drug solution and the solution type drug solution with low homogel strength could be used together, and the whole ground could not be improved to high strength. Despite these needs, a suspension type penetrating drug solution of water glass type having a long gel time has not been developed. In addition, although a quick-setting suspension type penetrating drug solution is provided, a super-flashing water-glass suspension type penetrating drug solution having a gel time of 5 seconds or less is not provided. The current situation.

【0007】また、袋入り硬化剤を使用して懸濁型硬化
剤水溶液を配合する場合に限って説明すると、現在市販
されている懸濁型薬液は、何れも特定の硬化剤袋(複数
の種類の硬化剤を複数袋使用する場合もある)を使用し
て、単一のゲルタイムおよび単一のホモゲル強度を得る
ものである。
[0007] Explaining only when a suspension-type curing agent aqueous solution is blended using a curing agent in a bag, all suspension-type chemical liquids currently on the market have a specific curing agent bag (a plurality of curing agent bags). Multiple bags of different types of curing agents may be used) to obtain a single gel time and a single homogel strength.

【0008】[0008]

【発明が解決しようとする課題】そこで、水ガラス系の
懸濁型浸透性薬液において、超瞬結性薬液から緩結性薬
液までの各種のゲルタイムを任意に設定可能とすること
が開発の第1の課題であり、また、前記超瞬結性薬液か
ら緩結性薬液までのいずれのゲルタイムにおいても高強
度を実現できることが第2の課題である。さらに、前記
第一の課題及び第二の課題を満足した水ガラス系の懸濁
型薬液のいずれにおいても、浸透性を向上させることが
第3の課題である。さらに、少なくとも1種類以上の袋
入り硬化剤の袋の数を適宜組み合わせて配合することに
よって、任意で数多くのゲルタイムと任意で数多くのホ
モゲル強度を得ることが第4の課題である。
Therefore, in a water glass suspension type penetrating chemical solution, it is the first development to make it possible to arbitrarily set various gel times from a super instantaneous setting chemical solution to a slow setting chemical solution. It is the first problem, and the second problem is that it is possible to realize high strength in any gel time from the super-instantaneous drug solution to the slow-moving drug solution. Further, the third problem is to improve the permeability of any of the water glass suspension type chemicals which satisfy the first and second problems. Furthermore, the fourth subject is to obtain arbitrarily many gel times and arbitrarily many homogel strengths by properly combining and blending the number of bags of at least one kind of bag-containing curing agent.

【0009】本発明の目的は、上記の各課題を解決した
水ガラス系懸濁型浸透性薬液を提供することである。
An object of the present invention is to provide a water glass suspension type penetrating chemical solution which solves the above problems.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めの本発明は、水ガラス系の薬液注入工法に用いる懸濁
型硬化剤水溶液を配合する場合において、懸濁型硬化剤
水溶液中の消石灰濃度を約2%から約35%の範囲内
で、高炉スラグ微粉末濃度を約1%から約40%の範囲
内で、しかも、懸濁型硬化剤水溶液中の消石灰濃度と高
炉スラグ微粉末濃度の合計濃度を約40%以下に設定す
ることによって、ホモゲル強度とは独立して、約3秒か
ら約45分の範囲内で任意のゲルタイムを設定可能と
し、かつ、ゲルタイムとは独立して、材齢7日のホモゲ
ル強度を約1kgf/cmから約40kgf/cm
の範囲内で任意に設定可能としたものである。
Means for Solving the Problems The present invention for attaining the above-mentioned object is to provide a suspension-type curing agent aqueous solution in the case of blending a suspension-type curing agent aqueous solution used in a water glass chemical injection method. The slaked lime concentration is in the range of about 2% to about 35%, the blast furnace slag fine powder concentration is in the range of about 1% to about 40%, and the slaked lime concentration in the suspension type hardener aqueous solution and the blast furnace slag fine powder are By setting the total concentration to about 40% or less, it is possible to set an arbitrary gel time within the range of about 3 seconds to about 45 minutes independently of the homogel strength, and independently of the gel time. , The homogel strength of 7 days old from about 1 kgf / cm 2 to about 40 kgf / cm 2
It can be set arbitrarily within the range.

【0011】また、水ガラス系の薬液注入工法に用いる
懸濁型硬化剤水溶液を配合する場合において、懸濁型硬
化剤水溶液中の消石灰濃度を約2%から約35%の範囲
内で、高炉スラグ微粉末濃度を約1%から約40%の範
囲内で、しかも、懸濁型硬化剤水溶液中の消石灰濃度と
高炉スラグ微粉末濃度の合計濃度を約40%以下に設定
することによって、ホモゲル強度とは独立して、約3秒
から約45分の範囲内で任意のゲルタイムを設定可能と
し、かつ、ゲルタイムとは独立して、材齢7日のホモゲ
ル強度を約1kgf/cmから約40kgf/cm
の範囲内で任意に設定可能とし、内容物が0%から10
0%の範囲内で消石灰を置換した高炉スラグ微粉末であ
って、置換率および/または正味重量が異なる少なくと
も1種類以上の袋入り硬化剤の袋の数を適宜組み合わせ
て配合するものである。
Further, in the case of blending the suspension type curing agent aqueous solution used in the water glass type chemical solution injecting method, the slaked lime concentration in the suspension type curing agent aqueous solution is set within the range of about 2% to about 35%. By setting the concentration of the slag fine powder within the range of about 1% to about 40% and by setting the total concentration of the slaked lime concentration and the blast furnace slag fine powder concentration in the aqueous suspension-type curing agent to about 40% or less, the homogel Independent of the strength, it is possible to set any gel time within the range of about 3 seconds to about 45 minutes, and independently of the gel time, the homogel strength of 7 days old is about 1 kgf / cm 2 to about. 40 kgf / cm 2
Can be set arbitrarily within the range of 0% to 10%
It is a blast furnace slag fine powder in which slaked lime is replaced within a range of 0%, and is blended by appropriately combining the number of bags of at least one kind of a bag hardening agent having different substitution rates and / or net weights.

【0012】さらに、水ガラス系の薬液注入工法に用い
る懸濁型硬化剤水溶液中に含まれている消石灰量に対し
て粉体換算で約1%から約3%の範囲内で、粉体または
液体の分散剤を添加した懸濁型硬化剤水溶液を、あるい
は、袋入りの硬化剤中に含まれている消石灰量に対し
て、約1%から約3%の範囲内で、粉体分散剤を予め添
加してある袋入りの硬化剤を用いて配合した水ガラス系
の薬液注入工法に用いる懸濁型硬化剤水溶液を、強制撹
拌して、懸濁型硬化剤水溶液中の消石灰を平均粒径1μ
m程度の微細な含水コロイドゲルに変化させることによ
って浸透性を向上させ、このような改質を行った懸濁型
硬化剤水溶液を地盤に注入する直前に水ガラス水溶液と
混合し、これを強制撹拌して、微細な含水コロイドゲル
を超微細な含水コロイドゲルに変化させることによっ
て、浸透性を向上させることを特徴とするものである。
Further, the amount of slaked lime contained in the aqueous suspension type curing agent solution used in the water glass chemical injection method is in the range of about 1% to about 3% in terms of powder, and powder or A suspension type hardener aqueous solution to which a liquid dispersant is added, or a powder dispersant within a range of about 1% to about 3% with respect to the amount of slaked lime contained in the bag of hardener. The suspension-type curing agent aqueous solution used in the water glass-based chemical injection method that was formulated by using a bag-type curing agent that had been added in advance is forcibly stirred to average the slaked lime in the suspension-type curing agent aqueous solution. Diameter 1μ
Improving the permeability by changing to a fine hydrous colloidal gel of about m, and mixing the modified suspension type curing agent aqueous solution with the water glass aqueous solution immediately before injecting it into the ground, and forcing this It is characterized in that the fine hydrous colloidal gel is changed into an ultrafine hydrous colloidal gel by stirring to improve the permeability.

【0013】[0013]

【作用】上記本発明により、消石灰の濃度を変えるだけ
で、ホモゲル強度とは独立して、ゲルタイムが3秒程度
の超瞬結性薬液から、ゲルタイムが45分程度の緩結性
薬液までの各種のゲルタイムを任意に設定することがで
き、高炉スラグ微粉末濃度を変えるだけで、ゲルタイム
とは独立して、材齢7日のホモゲル強度を約1kgf/
cmから約40kgf/cmの範囲内で任意に設定
できる汎用性が大きく、かつ、浸透性を向上した水ガラ
ス系懸濁型浸透性薬液が提供され、地盤全体を高強度に
改良する。
According to the present invention, by changing the concentration of slaked lime, a variety of liquids ranging from a super instantaneous binding solution having a gel time of about 3 seconds to a slow binding solution having a gel time of about 45 minutes, independently of the homogel strength. Gel time can be set arbitrarily, and by changing the concentration of blast furnace slag fine powder, the homogel strength at 7 days of age is about 1 kgf /
A water glass suspension type penetrating chemical liquid having a large versatility and an improved penetrability, which can be arbitrarily set within a range of from cm 2 to about 40 kgf / cm 2 , is provided to improve the entire ground with high strength.

【0014】また、置換率および/または正味量が異な
る少なくとも1種類以上の袋入り硬化剤の袋の数を適宜
組み合わせて配合することによって、任意で数多くのゲ
ルタイムと任意で数多くのホモゲル強度を得ることがで
きる。
Further, by appropriately combining and blending the numbers of the bags of at least one kind of the bag-containing curing agent having different substitution rates and / or net amounts, various gel times and arbitrarily many homogel strengths are obtained. be able to.

【0015】[0015]

【本発明の背景および経緯】水ガラス系の薬液注入工法
に用いる懸濁型浸透性薬液を開発するにあたり、水硬性
成分として微細な高炉スラグ粉末(以下高炉スラグ微粉
末と言う)を採用し、刺激剤として消石灰を併用する系
において、消石灰と水ガラスとの反応速度をコントロー
ルすることにより、ゲルタイムを任意に設定することが
でき、かつ、高炉スラグ微粉末の水和硬化を正常に進行
させることによって高強度を発現させ、しかも、浸透性
に優れている懸濁型薬液を開発するための手段について
鋭意研究した結果、以下のような各種の手段を見いだし
たことによって、本発明を完成するに至った。
BACKGROUND AND BACKGROUND OF THE INVENTION In developing a suspension type penetrating chemical liquid used in a water glass chemical injection method, fine blast furnace slag powder (hereinafter referred to as blast furnace slag fine powder) is adopted as a hydraulic component, In a system that uses slaked lime as a stimulant in combination, the gel time can be set arbitrarily by controlling the reaction rate between slaked lime and water glass, and hydration hardening of blast furnace slag fine powder can be normally advanced. In order to complete the present invention, the following various means have been found as a result of earnest research on means for developing a suspension type chemical solution which exhibits high strength by I arrived.

【0016】消石灰濃度とゲルタイムとの関係を調査し
た。高炉スラグ微粉末濃度が一定の場合、消石灰濃度と
ゲルタイムとの関係は、消石灰濃度のかなり広い範囲に
おいて、両対数グラフ上で直線回帰となり、ゲルタイム
は、消石灰濃度の約2.5乗に反比例するという事実を
見いだした。すなわち、消石灰濃度とゲルタイムとの関
係は、双曲線方程式に回帰することが判った。高炉スラ
グ微粉末濃度が変わると、両対数グラフ上での回帰直線
は、極くわずかに平行移動する。
The relationship between slaked lime concentration and gel time was investigated. When the concentration of blast furnace slag fine powder is constant, the relationship between slaked lime concentration and gel time is linear regression on a log-log graph in a fairly wide range of slaked lime concentration, and gel time is inversely proportional to about 2.5th power of slaked lime concentration. I found the fact that. That is, it was found that the relationship between slaked lime concentration and gel time regressed to the hyperbolic equation. When the blast furnace slag fine powder concentration changes, the regression line on the log-log graph moves very slightly in parallel.

【0017】次に消石灰濃度が一定の場合、高炉スラグ
微粉末濃度とホモゲル強度との関係は、高炉スラグ微粉
末濃度のかなり広い範囲において、両対数グラフ上で直
線回帰となり、材齢3日以降のホモゲル強度は、高炉ス
ラグ微粉末濃度の約2乗に正比例するという事実を見い
だした。すなわち、高炉スラグ微粉末濃度とホモゲル強
度との関係は、放物線方程式に回帰することが判った。
消石灰濃度が変わると、両対数グラフ上での回帰直線
は、わずかに平行移動する。
Next, when the slaked lime concentration is constant, the relationship between the blast furnace slag fine powder concentration and the homogel strength is linear regression on a logarithmic log graph in a fairly wide range of the blast furnace slag fine powder concentration, and after 3 days of age. It was found that the homogel strength of No. 3 was directly proportional to the square of the blast furnace slag fine powder concentration. That is, it was found that the relationship between the blast furnace slag fine powder concentration and the homogel strength regressed to the parabolic equation.
When the slaked lime concentration changes, the regression line on the log-log graph slightly shifts.

【0018】消石灰濃度と高炉スラグ微粉末濃度との相
互作用は、両対数グラフ上での回帰直線のわずかな平行
移動にとどまるため、高炉スラグ微粉末濃度とは独立し
て、消石灰濃度でゲルタイムを設定することができ、消
石灰濃度とは独立して、高炉スラグ微粉末濃度でホモゲ
ル強度を設定することができることが判った。
Since the interaction between the slaked lime concentration and the blast furnace slag fine powder concentration is limited to a slight parallel shift of the regression line on the logarithmic log graph, the gel time is determined by the slaked lime concentration independently of the blast furnace slag fine powder concentration. It has been found that the homogel strength can be set by the blast furnace slag fine powder concentration, independently of the slaked lime concentration.

【0019】ゲルタイムを長くするために、消石灰濃度
を小さくしていくと、ゲルタイムは長くなるものの、水
ガラスのゲル化反応に消石灰の全量が消費されてしま
い、高炉スラグ微粉末を水和硬化させるに必要な刺激剤
としての消石灰が残らなくなるために、ホモゲル強度が
発現しなくなる消石灰濃度の下限値が存在することを見
いだした。したがって、消石灰濃度の下限値に伴うゲル
タイムの上限値も存在することが判った。
When the concentration of slaked lime is reduced to increase the gel time, the gel time becomes longer, but the gelation reaction of the water glass consumes the entire amount of slaked lime and hydrates and hardens the blast furnace slag fine powder. It has been found that there is a lower limit of slaked lime concentration at which homogel strength is not expressed because slaked lime as a stimulant necessary for syrup does not remain. Therefore, it was found that there is an upper limit value of gel time accompanying the lower limit value of slaked lime concentration.

【0020】しかし、ゲルタイムは消石灰濃度にも依存
するが、消石灰の平均粒子径にも依存する。すなわち、
消石灰の平均粒子径を大きくすると、消石灰が水ガラス
をゲル化させる反応速度が小さくなり、消石灰濃度が同
一であっても、ゲルタイムは長くなる。ゲルタイムを長
くしたいときは、消石灰濃度をできるだけ小さくする手
段に加えて、平均粒子径が大きい消石灰を使用すればよ
い。
However, the gel time depends not only on the concentration of slaked lime but also on the average particle size of slaked lime. That is,
When the average particle size of slaked lime is increased, the reaction rate at which slaked lime gels water glass decreases, and the gel time increases even if the concentration of slaked lime is the same. When it is desired to increase the gel time, slaked lime having a large average particle size may be used in addition to the means for reducing the slaked lime concentration as much as possible.

【0021】ゲルタイムを短くするために、消石灰濃度
を大きくしていくと、ゲルタイムは短くなるものの、こ
の反応が双曲線方程式に従うために、消石灰濃度を大き
くした割合には、ゲルタイムがそれほど短くならなくな
る上限らしきものが存在する。ゲルタイムを2秒まで短
くすることは可能であるが、1秒程度まで短くすること
は困難なようである。
When the slaked lime concentration is increased in order to shorten the gel time, the gel time is shortened. However, since this reaction follows the hyperbolic equation, the upper limit at which the slaked lime concentration is not shortened so much as the slaked lime concentration is increased. There seems to be something. It is possible to shorten the gel time to 2 seconds, but it seems difficult to shorten it to about 1 second.

【0022】高炉スラグ微粉末濃度を小さくしていく
と、高炉スラグ微粉末は水和するものの、水和生成物の
生成量が少なすぎて強度に寄与しなくなり、ホモゲル強
度が発現しなくなる高炉スラグ微粉末量の下限値が存在
する。しかし、それに伴うホモゲル強度の下限値は現象
論的には無限小となってしまう。
When the concentration of the blast furnace slag fine powder is reduced, the blast furnace slag fine powder is hydrated, but the amount of hydrated product is too small to contribute to the strength and the homogel strength is not developed. There is a lower limit for the amount of fine powder. However, the lower limit of the homogel strength associated with it becomes phenomenologically infinite.

【0023】無機系の溶液型薬液のホモゲル強度は、通
常、0.02〜0.03kgf/cm程度である。懸
濁型薬液のホモゲル強度は、溶液型薬液のホモゲル強度
より大きいことが要求されるので、懸濁型薬液のホモゲ
ルの初期強度の下限値は、1kgf/cm程度以上あ
れば十分と考えられる。溶液型薬液は材齢の進捗に伴う
強度増大は期待できないが、水硬性成分を含む懸濁型薬
液は長期強度が増大するので、初期強度は溶液型薬液よ
り多少大きければ、薬液注入工法上の問題は特に無いも
のと考えられる。
The homogel strength of an inorganic solution type chemical is usually about 0.02 to 0.03 kgf / cm 2 . Since the homogel strength of the suspension type drug solution is required to be higher than that of the solution type drug solution, it is considered that the lower limit of the initial strength of the homogel of the suspension type drug solution is about 1 kgf / cm 2 or more. . Although the strength of solution type chemicals cannot be expected to increase with age, suspension type chemicals containing hydraulic components increase their long-term strength. Therefore, if the initial strength is a little larger than that of solution type chemicals, the solution injection method It seems that there is no particular problem.

【0024】ホモゲル強度を大きくするために、高炉ス
ラグ微粉末濃度を大きくしていくと、この反応が放物線
方程式に従うために、高炉スラグ微粉末濃度のほぼ2乗
に正比例して、ホモゲル強度は大きくなるが、その他
に、ホモゲル強度は高炉スラグ微粉末の比表面積にも依
存する。すなわち、高炉スラグ微粉末濃度が同一であっ
ても、その比表面積が変わればホモゲル強度も変化して
しまう。ホモゲル強度を大きくしたいときは、高炉スラ
グ微粉末濃度を大きくする手段に加えて、比表面積の大
きい高炉スラグ微粉末を使用すればよい。
When the blast furnace slag fine powder concentration is increased in order to increase the homogel strength, this reaction follows the parabolic equation, so that the homogel strength increases in proportion to almost the square of the blast furnace slag fine powder concentration. However, the homogel strength also depends on the specific surface area of the blast furnace slag fine powder. That is, even if the blast furnace slag fine powder concentration is the same, if the specific surface area changes, the homogel strength also changes. When it is desired to increase the homogel strength, blast furnace slag fine powder having a large specific surface area may be used in addition to the means for increasing the concentration of the blast furnace slag fine powder.

【0025】次に、消石灰濃度が大きいほど、高炉スラ
グ微粉末濃度が大きいほど、ホモゲル強度が大きくなる
が、それぞれの濃度を大きくすると、懸濁型硬化剤水溶
液の粘性が増大し、懸濁型薬液の浸透性に問題が生じる
粘性の上限値が存在する。したがって、ホモゲル強度の
上限値は、懸濁型硬化剤水溶液の粘性の上限値により限
定される。
Next, the higher the slaked lime concentration and the higher the blast furnace slag fine powder concentration, the higher the homogel strength. However, when the respective concentrations are increased, the viscosity of the suspension-type curing agent aqueous solution increases and There is an upper limit of viscosity which causes a problem in the permeability of the chemical solution. Therefore, the upper limit of the homogel strength is limited by the upper limit of the viscosity of the suspension-type curing agent aqueous solution.

【0026】消石灰の懸濁水溶液は、凝集剤として使用
されているように凝集性が大きい。微粒子消石灰を使用
しても肉眼で観察できるような大きな凝集塊を生成して
しまう。この強い凝集性を解消するために、懸濁型水溶
液中の消石灰量に対して粉体換算で約1%から約3%の
範囲内で分散剤を添加し、これを数分間強制撹拌するこ
とによって、消石灰の凝集塊を解砕することができる。
これを顕微鏡で観察すると、消石灰は、平均粒径が1μ
m程度の透明な含水コロイドゲルになって分散している
ことを見いだした。したがって、このような手段によっ
て、消石灰の懸濁水溶液の浸透性を向上させることがで
きる。
The suspension solution of slaked lime has high cohesiveness as it is used as a coagulant. The use of fine slaked lime also produces large aggregates that can be visually observed. In order to eliminate this strong cohesiveness, it is necessary to add a dispersant within the range of about 1% to about 3% in terms of powder to the amount of slaked lime in the suspension type aqueous solution, and forcibly stir this for several minutes. The slaked lime agglomerate can be crushed.
When observed under a microscope, slaked lime has an average particle size of 1 μm.
It was found that the water-soluble colloidal gel of about m was dispersed. Therefore, the permeability of the suspension solution of slaked lime can be improved by such means.

【0027】なお、この現象は、微粒子の消石灰のみに
起こる現象であって、消石灰に連行している粗大な消石
灰は、前記の微細な含水コロイドゲルにならないことを
顕微鏡観察で確認している。したがって、使用する消石
灰は、粗大粒子を連行していない消石灰が好ましい。
It should be noted that this phenomenon occurs only in fine slaked lime, and it has been confirmed by microscopic observation that coarse slaked lime entrained in slaked lime does not become the above-mentioned fine hydrous colloidal gel. Therefore, the slaked lime used is preferably slaked lime not entrained with coarse particles.

【0028】このような改質を行った懸濁水溶液を、水
ガラス水溶液と混合して数秒間強制撹拌することによっ
て、光学顕微鏡では観察できない超微細な含水コロイド
ゲルに解砕することができることを見いだした。
By mixing the thus modified suspension aqueous solution with a water glass aqueous solution and forcibly stirring for several seconds, it is possible to disintegrate into an ultrafine hydrous colloidal gel that cannot be observed by an optical microscope. I found it.

【0029】水ガラス水溶液と混合して数秒間強制撹拌
した直後の超微細な含水コロイドゲルは、ゲル化反応が
完了するまでの間は、ゲル化反応によりその全てを消費
されたのではなく、ゲル化反応を引き続き継続させるに
必要な超微細な含水コロイドゲルは、残存しているはず
である。しかし、この段階の残存しているはずの含水コ
ロイドゲルは、光学顕微鏡では観察できないので、光学
顕微鏡では観察できない程度の超微細な含水コロイドゲ
ルとして存在しているものと思われる。したがって、こ
のような手段によって、消石灰の懸濁水溶液の浸透性
を、更に向上させることができる。
The ultrafine hydrous colloidal gel immediately after being mixed with the aqueous solution of water glass and forcibly stirred for several seconds was not completely consumed by the gelling reaction until the gelling reaction was completed. The ultrafine hydrous colloidal gel needed to continue the gelling reaction should remain. However, since the hydrocolloid gel that should remain at this stage cannot be observed by an optical microscope, it is considered that it exists as an ultrafine hydrocolloid gel that cannot be observed by an optical microscope. Therefore, by such means, the permeability of the suspension solution of slaked lime can be further improved.

【0030】以上の反応は、高炉スラグ微粉末を併用す
ると、高炉スラグ微粉末が妨害して、前記の消石灰の含
水コロイドゲルを観察できないので、高炉スラグ微粉末
を併用しない条件で観察して見いだしたものである。消
石灰の濃度が一定であれば、高炉スラグ微粉末を併用し
た系であっても、高炉スラグ微粉末を含まない系であっ
ても、ほぼ同じゲルタイムが得られるので、高炉スラグ
微粉末を併用した系においても、同様な反応が進行して
いるものと思われる。
The above reaction was found by observing under the condition that the blast-furnace slag fine powder is not used, because the blast-furnace slag fine powder interferes and the hydrous colloidal gel of slaked lime cannot be observed when the blast-furnace slag fine powder is also used. It is a thing. As long as the concentration of slaked lime is constant, almost the same gel time can be obtained even in a system that also uses blast furnace slag fine powder, or a system that does not contain blast furnace slag fine powder, so blast furnace slag fine powder was used in combination. It is considered that a similar reaction is proceeding in the system as well.

【0031】浸透性は、使用材料の最大粒子径に依存す
るので、浸透性を向上させるためには、最大粒子径は小
さい方が好ましい。前述したように、消石灰を超微細な
含水コロイドゲルに変化させる手段が開発されたので、
消石灰は粗大粒子を連行していなければ、浸透性の面か
らは粉末度には無関係に使用できる。高炉スラグ微粉末
も粗大粒子を連行していなければ、比表面積の小さいも
のも使用できるが、比表面積が大きいものの方が、ホモ
ゲル強度の向上を含めて、浸透性も向上することは言う
までもない。以上のような各種の手段を見いだしたこと
により、本発明を完成することができた。
Since the permeability depends on the maximum particle size of the material used, it is preferable that the maximum particle size is small in order to improve the permeability. As mentioned above, since a means for converting slaked lime into ultrafine hydrocolloid gel was developed,
Slaked lime can be used regardless of fineness from the viewpoint of permeability, as long as it does not carry coarse particles. Fine blast furnace slag can also be used if it does not carry coarse particles and has a small specific surface area, but it goes without saying that the one having a large specific surface area has improved permeability, including improved homogel strength. The present invention has been completed by finding various means as described above.

【0032】[0032]

【実施例】実施例に使用した材料は、以下のとおりであ
る。 消石灰 ;平均粒子径が異なる4種類
の消石灰市販品。平均粒子径は図1に併記する。以下図
中ではCHと略記する。 高炉スラグ微粉末 ;比表面積が異なる2種類の
高炉スラグ微粉末及び1種類の高炉スラグ粉末市販品。
比表面積および平均粒子径は2図に併記する。以下図中
ではSGと略記する。 分散剤 ;メラミン系のコンクリート
用高性能減水剤。 懸濁型硬化剤水溶液 ;所定量の水に、消石灰、高
炉スラグ微粉末および分散剤(無添加を含む)の所定量
を添加し、これを3分間強制撹拌した懸濁型硬化剤水溶
液。 水ガラス水溶液 ;3号水ガラス市販品を40
%含む水ガラス水溶液。 本発明の薬液 ;懸濁型硬化剤水溶液と水ガ
ラス水溶液を1:1で混合した薬液。
EXAMPLES Materials used in the examples are as follows. Slaked lime: Four types of slaked lime commercial products with different average particle sizes. The average particle size is also shown in FIG. In the following figures, it is abbreviated as CH. Blast furnace slag fine powder; two types of blast furnace slag fine powder having different specific surface areas and one type of blast furnace slag powder commercial product.
The specific surface area and average particle size are also shown in FIG. In the following figures, it is abbreviated as SG. Dispersant: Melamine-based high-performance water reducing agent for concrete. Suspension type curing agent aqueous solution: A suspension type curing agent aqueous solution obtained by adding a predetermined amount of slaked lime, blast furnace slag fine powder and a dispersant (including no addition) to a predetermined amount of water and forcibly stirring this for 3 minutes. Water glass aqueous solution: 40 No. 3 water glass commercial product
% Of water glass solution. Chemical liquid of the present invention: A chemical liquid in which a suspension type curing agent aqueous solution and a water glass aqueous solution are mixed at a ratio of 1: 1.

【0033】実施例の試験方法は、以下のとおりであ
る。 カップテスト;通常行われているカップ倒立法。1分以
上のゲルタイムの測定に採用した。 バッグテスト;従来から行われているカップテストで
は、ゲルタイムが極端に短い薬液のゲルタイムは測定で
きないため、バッグテストを採用した。 Ф
50mmの円筒型のポリエチレン製のバッグに懸濁型硬
化剤水溶 液100mlを入れ、バッグの中
央を絞り、その上に水ガラス水溶 液100
mlを入れ、バッグの上端も絞る。中央の絞りを解放す
る と同時に、バッグを激しく振蘯して両液
を手早く混合し、薬液の粘 性が急激に大き
くなるまでの時間をゲルタイムとする方法。この方法
は、両液の混合がカップテストより短時間で行えるた
め、ゲルタイムが1分未満の薬液のゲルタイムの測定に
採用した。 圧縮強度 ;JIS R 5201(セメントの物理
試験方法)に準じて測定した。ただし、標準砂を使わな
いホモゲルで試験し、養生は湿空養生とした。 沈降高さ ;懸濁水溶液中の消石灰濃度を一定とし、
消石灰に対する分散剤の添加量を0〜4%とした懸濁水
溶液を、3分間強制撹拌した後、200mlのメスシリ
ンダに200ml採取し、静置して15分後の沈澱物の
高さを測定した。本試験は、高炉スラグ微粉末を併用す
ると、高炉スラグ微粉末が妨害して、消石灰の分散状態
が観察できないため高炉スラグ微粉末を併用しなかっ
た。 顕微鏡観察 ;倍率1000倍の光学顕微鏡を用いて観
察した。
The test method of the examples is as follows. Cup test: The usual cup inversion method. Used for measuring gel time of 1 minute or more. Bag test: Since the conventional cup test cannot measure the gel time of a drug solution with an extremely short gel time, the bag test was adopted. Ф
In a 50 mm cylindrical polyethylene bag, add 100 ml of the suspension-type curing agent aqueous solution, squeeze the center of the bag, and place water glass aqueous solution 100 on it.
Add ml and squeeze the top of the bag. At the same time that the central squeeze is released, the bag is vigorously shaken to mix both solutions quickly, and the gel time is the time until the viscosity of the drug solution rapidly increases. This method was used to measure the gel time of a drug solution having a gel time of less than 1 minute, because the mixing of both solutions can be performed in a shorter time than the cup test. Compressive strength: Measured according to JIS R 5201 (physical test method for cement). However, the test was performed with a homogel that did not use standard sand, and the curing was wet air curing. Sedimentation height; constant slaked lime concentration in suspension solution,
The suspension aqueous solution in which the amount of dispersant added to slaked lime was 0 to 4% was forcibly stirred for 3 minutes, then 200 ml was collected in a 200 ml graduated cylinder, and the height of the precipitate was measured 15 minutes after standing still. did. In this test, when the blast furnace slag fine powder was used together, the blast furnace slag fine powder interfered and the dispersed state of slaked lime could not be observed, so the blast furnace slag fine powder was not used together. Microscopic observation: Observation using an optical microscope with a magnification of 1000 times.

【0034】[実施例−1]懸濁型硬化剤水溶液中の高
炉スラグ微粉末濃度を22%一定とし、消石灰の種類と
濃度を変えた場合の本発明の薬液のゲルタイムの試験結
果を図1に示す。高炉スラグ微粉末は図2の高炉スラグ
微粉末Cを使用した。分散剤は消石灰量の2%を添加し
た。消石灰濃度が一定の場合は、平均粒子径にほぼ比例
して、ゲルタイムが長くなることが判る。また、後述す
るように、ホモゲル強度の発現性から見た消石灰濃度の
下限値は2%であるため、ゲルタイムの上限値は、消石
灰Aの濃度を2%としたときの2680秒、すなわち、
約45分であることが判る。
[Example 1] Fig. 1 shows the gel time test results of the chemicals of the present invention when the blast furnace slag fine powder concentration in the suspension-type hardening agent aqueous solution was kept constant at 22% and the type and concentration of slaked lime were changed. Shown in. As the blast furnace slag fine powder, the blast furnace slag fine powder C shown in FIG. 2 was used. As the dispersant, 2% of the amount of slaked lime was added. It can be seen that when the slaked lime concentration is constant, the gel time becomes long in proportion to the average particle size. Further, as will be described later, the lower limit of the concentration of slaked lime seen from the expression of homogel strength is 2%, so the upper limit of the gel time is 2680 seconds when the concentration of slaked lime A is 2%, that is,
It turns out that it is about 45 minutes.

【0035】[実施例−2]懸濁型硬化剤水溶液中の消
石灰濃度を4%、高炉スラグ微粉末濃度を22%とし、
高炉スラグ微粉末の比表面積を変えた場合の本発明の薬
液のホモゲル強度の試験結果を図2に示す。消石灰は図
1の消石灰Cを使用した。分散剤は消石灰量の2%を添
加した。高炉スラグ微粉末濃度が一定の場合は、比表面
積にほぼ比例して、ホモゲル強度が大きくなることが判
る。
[Example 2] The concentration of slaked lime in the aqueous suspension type curing agent solution was 4%, and the concentration of fine powder of blast furnace slag was 22%.
The test results of the homogel strength of the chemical solution of the present invention when the specific surface area of the blast furnace slag fine powder is changed are shown in FIG. As slaked lime, slaked lime C shown in FIG. 1 was used. As the dispersant, 2% of the amount of slaked lime was added. It can be seen that the homogel strength increases substantially in proportion to the specific surface area when the blast furnace slag fine powder concentration is constant.

【0036】[実施例−3]懸濁型硬化剤水溶液中の高
炉スラグ微粉末濃度を22%一定とし、消石灰濃度を変
えた場合の本発明の薬液のゲルタイムとホモゲル強度の
試験結果を図3及び図4に示す。消石灰は図1の消石灰
Cを使用し、高炉スラグ微粉末は図2の高炉スラグ微粉
末Cを使用した。分散剤は消石灰量の2%を添加した。
[Example 3] Fig. 3 shows the test results of gel time and homogel strength of the chemical solution of the present invention when the blast furnace slag fine powder concentration in the suspension type hardening agent aqueous solution was kept constant at 22% and the slaked lime concentration was changed. And shown in FIG. As the slaked lime, the slaked lime C shown in FIG. 1 was used, and as the blast furnace slag fine powder, the blast furnace slag fine powder C shown in FIG. 2 was used. As the dispersant, 2% of the amount of slaked lime was added.

【0037】消石灰濃度が3%の場合は、初期強度は低
いが材齢7日のホモゲル強度が1kgf/cm以上と
なるため、高炉スラグ微粉末濃度が22%の場合のホモ
ゲルの強度面から見た消石灰濃度の下限値は約3%であ
る。この条件の消石灰濃度の下限値が図9のE点であ
る。
When the slaked lime concentration is 3%, the initial strength is low, but the homogel strength after 7 days of age is 1 kgf / cm 2 or more. Therefore, from the strength side of the homogel when the blast furnace slag fine powder concentration is 22%. The lower limit of the observed concentration of slaked lime is about 3%. The lower limit value of the slaked lime concentration under this condition is point E in FIG.

【0038】図4は、図3の試験結果から、消石灰濃度
とゲルタイムとの関係を図示したものであるが、両対数
グラフ上で直線回帰となり、ゲルタイムは消石灰濃度に
依存することが判る。これを相関分析すると、ゲルタイ
ムは、消石灰濃度の2.5乗に反比例することが判っ
た。
FIG. 4 shows the relationship between the slaked lime concentration and the gel time from the test results of FIG. 3, but it can be seen that a linear regression is obtained on a log-log graph and that the gel time depends on the slaked lime concentration. Correlation analysis of this revealed that the gel time was inversely proportional to the 2.5th power of the slaked lime concentration.

【0039】ゲルタイムが8秒未満になると、両対数グ
ラフ上での直線関係がくずれるが、これはバッグテスト
法を採用しても、懸濁型硬化剤水溶液と水ガラス水溶液
の混合が、8秒未満程度の短時間では十分に行なえな
く、十分に混合されるまでのロスタイムの影響であると
思われる。直線関係から外れても、ゲルタイムが消石灰
濃度に依存することに変わりはない。実施例−3の試験
結果からゲルタイムの下限値は2秒程度になるが、後述
するように消石灰濃度を35%程度以上にすると、懸濁
型硬化剤水溶液の粘性が10cpsを越えるため、特許
請求の範囲のゲルタイムの下限値は約3秒とした。
When the gel time is less than 8 seconds, the linear relationship on the logarithmic graph is broken, but even if the bag test method is adopted, mixing of the suspension-type curing agent aqueous solution and the water glass aqueous solution takes 8 seconds. It cannot be sufficiently performed in a short time of less than approximately, and it is considered that this is an influence of the loss time until the mixture is sufficiently mixed. Even if it deviates from the linear relationship, the gel time still depends on the slaked lime concentration. From the test results of Example-3, the lower limit of gel time is about 2 seconds, but when the slaked lime concentration is about 35% or more, the viscosity of the suspension-type hardening agent aqueous solution exceeds 10 cps as described later, and therefore, it is claimed. The lower limit of gel time in the range of was about 3 seconds.

【0040】[実施例−4]懸濁型硬化剤水溶液中の消
石灰濃度を4%一定とし、高炉スラグ微粉末濃度を変え
た場合の本発明の薬液のホモゲル強度の試験結果を図5
及び図6に示す。消石灰は図1の消石灰Cを使用し、高
炉スラグ微粉末は、図2の高炉スラグ微粉末Cを使用し
た。分散剤は消石灰量の2%を添加した。ゲルタイム
は、消石灰濃度が4%一定であるため、いずれも300
秒程度であった。
[Example-4] Fig. 5 shows the test results of the homogel strength of the chemical liquid of the present invention when the concentration of slaked lime in the suspension-type hardening agent aqueous solution was kept constant at 4% and the concentration of fine powder of blast furnace slag was changed.
And shown in FIG. As the slaked lime, the slaked lime C shown in FIG. 1 was used, and as the blast furnace slag fine powder, the blast furnace slag fine powder C shown in FIG. 2 was used. As the dispersant, 2% of the amount of slaked lime was added. The gel time is 300% because the slaked lime concentration is 4% constant.
It was about a second.

【0041】図6は、図5の試験結果から、高炉スラグ
微粉末濃度と材齢7日のホモゲル強度との関係を図示し
たものであり、消石灰濃度を14%及び24%とした場
合の7日強度も併記した。いずれも両対数グラフ上で直
線回帰となり、ホモゲル強度は高炉スラグ微粉末濃度に
依存することが判る。これを相関分析すると、ホモゲル
強度は、高炉スラグ微粉末濃度の約2乗に正比例するこ
とが判った。高炉スラグ微粉末濃度が5%以下になる
と、両対数グラフ上での直線関係がくずれるが、直線関
係から外れても、ホモゲル強度が高炉スラグ微粉末濃度
に依存することに変わりはない。
FIG. 6 is a graph showing the relationship between the blast furnace slag fine powder concentration and the homogel strength of 7 days old from the test results of FIG. 5, in the case of slaked lime concentrations of 14% and 24%. The daily intensity is also shown. Both are linear regressions on a log-log graph, and it can be seen that the homogel strength depends on the blast furnace slag fine powder concentration. Correlation analysis of this revealed that the homogel strength was directly proportional to the square of the blast furnace slag fine powder concentration. When the blast furnace slag fine powder concentration is 5% or less, the linear relationship on the logarithmic graph is broken, but even if the linear relationship is deviated, the homogel strength still depends on the blast furnace slag fine powder concentration.

【0042】後述するように、高炉スラグ微粉末濃度を
40%程度以上にすると、懸濁型硬化剤水溶液の粘性が
10cpsを越えるため、高炉スラグ微粉末濃度を40
%程度とした場合の材齢7日のホモゲル強度を、図6か
ら読み取ると約40kgf/cmとなる。水硬性成分
を含む懸濁型薬液は、材齢7日以降も材齢の進捗と共に
強度が増進し、最終強度はさらに増大するが、特許請求
の範囲では、ホモゲル強度の上限値を材齢7日の強度で
限定した。浸透性を度外視すると、実施例−4の試験結
果から、40kgf/cm以上の材齢7日のホモゲル
強度も実現できるが、浸透性を重視して、特許請求の範
囲ではホモゲル強度の上限値を約40kgf/cm
した。
As will be described later, when the concentration of the blast furnace slag fine powder is about 40% or more, the viscosity of the suspension-type curing agent aqueous solution exceeds 10 cps, so the concentration of the blast furnace slag fine powder is 40%.
When the homogel strength at 7 days of age is about 40% when read from FIG. 6, it is about 40 kgf / cm 2 . The suspension type chemical containing a hydraulic component increases in strength with the progress of age even after 7 days of age, and further increases in final strength. However, in the claims, the upper limit of the homogel strength is set to 7 years of age. Limited by day intensity. Excluding the permeability, from the test results of Example-4, it is possible to realize a homogel strength of 40 kgf / cm 2 or more at a material age of 7 days, but with an emphasis on permeability, the upper limit of the homogel strength is claimed in the claims. Was about 40 kgf / cm 2 .

【0043】図6から、材齢7日のホモゲル強度が1k
gf/cm以上となる高炉スラグ微粉末濃度の下限値
を読み取った。消石灰濃度が4%の場合の高炉スラグ微
粉末濃度の下限値は約8%であり、この条件の高炉スラ
グ微粉末濃度の下限値が図9のD点である。消石灰濃度
が14%の場合の高炉スラグ微粉末濃度の下限値は約6
%であり、この条件の高炉スラグ微粉末濃度の下限値が
図9のC点である。消石灰濃度が24%の場合の高炉ス
ラグ微粉末濃度の下限値は約4%であり、この条件の高
炉スラグ微粉末濃度の下限値が図9のB点である。
From FIG. 6, the homogel strength after 7 days of age is 1 k.
The lower limit value of the blast furnace slag fine powder concentration of gf / cm 2 or more was read. The lower limit value of the blast furnace slag fine powder concentration when the slaked lime concentration is 4% is about 8%, and the lower limit value of the blast furnace slag fine powder concentration under this condition is point D in FIG. 9. When the slaked lime concentration is 14%, the lower limit of the blast furnace slag fine powder concentration is about 6
%, And the lower limit value of the blast furnace slag fine powder concentration under this condition is point C in FIG. The lower limit value of the blast furnace slag fine powder concentration when the slaked lime concentration is 24% is about 4%, and the lower limit value of the blast furnace slag fine powder concentration under this condition is point B in FIG. 9.

【0044】[実施例−5]消石灰濃度および高炉スラ
グ微粉末濃度を変えた場合の懸濁型硬化剤水溶液の粘性
の測定結果を図7に示す。粘性は、消石灰濃度および高
炉スラグ微粉末濃度が大きくなるほど増大する。懸濁型
硬化剤水溶液の粘性が、薬液の浸透性を阻害する限界を
10cps程度であると考え、図7から消石灰濃度別に
粘性が、10cpsとなる高炉スラグ微粉末濃度の上限
値を読み取った。
[Embodiment 5] FIG. 7 shows the measurement results of the viscosity of the suspension-type hardening agent aqueous solution when the slaked lime concentration and the blast furnace slag fine powder concentration were changed. The viscosity increases as the slaked lime concentration and the blast furnace slag fine powder concentration increase. It was considered that the viscosity of the suspension-type hardening agent aqueous solution had a limit of about 10 cps that hinders the permeability of the chemical solution, and the upper limit of the blast furnace slag fine powder concentration at which the viscosity was 10 cps was read for each slaked lime concentration from FIG. 7.

【0045】消石灰濃度が24%の場合は、高炉スラグ
微粉末濃度の上限値が14%程度であり、この条件の高
炉スラグ微粉末濃度の上限値が図9のJ点である。消石
灰濃度が14%の場合は、高炉スラグ微粉末濃度の上限
値が25%程度であり、この条件の高炉スラグ微粉末濃
度の上限値が図9のI点である。消石灰濃度が8%の場
合は、高炉スラグ微粉末濃度の上限値が29%程度であ
り、この条件の高炉スラグ微粉末濃度の上限値が図9の
H点である。消石灰濃度が4%の場合は、高炉スラグ微
粉末濃度の上限値が37%程度であり、この条件の高炉
スラグ微粉末濃度の上限値は図9のG点である。いずれ
の場合も、消石灰濃度と高炉スラグ微粉末濃度の合計濃
度は40%程度である。
When the slaked lime concentration is 24%, the upper limit value of the blast furnace slag fine powder concentration is about 14%, and the upper limit value of the blast furnace slag fine powder concentration under this condition is point J in FIG. When the slaked lime concentration is 14%, the upper limit value of the blast furnace slag fine powder concentration is about 25%, and the upper limit value of the blast furnace slag fine powder concentration under this condition is point I in FIG. 9. When the slaked lime concentration is 8%, the upper limit value of the blast furnace slag fine powder concentration is about 29%, and the upper limit value of the blast furnace slag fine powder concentration under this condition is point H in FIG. 9. When the slaked lime concentration is 4%, the upper limit value of the blast furnace slag fine powder concentration is about 37%, and the upper limit value of the blast furnace slag fine powder concentration under this condition is point G in FIG. 9. In either case, the total concentration of slaked lime concentration and blast furnace slag fine powder concentration is about 40%.

【0046】[実施例−6]図9のCB線の外挿線と図
9のIJ線の外挿線との交点が、粘性から見た消石灰濃
度の上限値である。その交点の消石灰濃度は35%程度
である。一方、図9のDE線の外挿線と図9のHG線の
外挿線との交点が、粘性から見た高炉スラグ微粉末濃度
の上限値である。その交点の高炉スラグ微粉末濃度は4
0%程度である。
[Example-6] The intersection of the extrapolation line of the CB line in Fig. 9 and the extrapolation line of the IJ line in Fig. 9 is the upper limit of the slaked lime concentration in terms of viscosity. The slaked lime concentration at the intersection is about 35%. On the other hand, the intersection of the extrapolation line of the DE line in FIG. 9 and the extrapolation line of the HG line in FIG. 9 is the upper limit value of the blast furnace slag fine powder concentration viewed from the viscosity. Blast furnace slag fine powder concentration at the intersection is 4
It is about 0%.

【0047】消石灰濃度が35%の場合の高炉スラグ微
粉末濃度の下限値と、高炉スラグ微粉末濃度が40%の
場合の消石灰濃度の下限値を確認するための試験結果を
図8に示す。消石灰は図1の消石灰Cを使用し、高炉ス
ラグ微粉末は図2の高炉スラグ微粉末Cを使用した。分
散剤は消石灰量の2%を添加した。図8の1〜4番は、
ゲルタイムが約3秒と短いため、供試体1本毎に手早く
成型した。
FIG. 8 shows the test results for confirming the lower limit value of the blast furnace slag fine powder concentration when the slaked lime concentration is 35% and the lower limit value of the slaked lime concentration when the blast furnace slag fine powder concentration is 40%. As the slaked lime, the slaked lime C shown in FIG. 1 was used, and as the blast furnace slag fine powder, the blast furnace slag fine powder C shown in FIG. 2 was used. As the dispersant, 2% of the amount of slaked lime was added. Numbers 1 to 4 in FIG. 8 are
Since the gel time was as short as about 3 seconds, each specimen was quickly molded.

【0048】材齢7日のホモゲル強度が1kgf/cm
以上となる消石灰濃度が35%の場合の高炉スラグ微
粉末濃度の下限値は約1%であり、この条件の高炉スラ
グ微粉末濃度の下限値が図9のA点である。材齢7日の
ホモゲル強度が1kgf/cm以上となる高炉スラグ
微粉末濃度が40%の場合の消石灰濃度の下限値は約2
%であり、この条件の消石灰濃度の下限値が図9のF点
である。
Homogel strength of 7 days old is 1 kgf / cm
When the slaked lime concentration of 2 or more is 35%, the lower limit of the blast furnace slag fine powder concentration is about 1%, and the lower limit of the blast furnace slag fine powder concentration under this condition is point A in FIG. 9. The lower limit of the slaked lime concentration is about 2 when the homogel strength of 7 days old is 1 kgf / cm 2 or more and the blast furnace slag fine powder concentration is 40%.
%, And the lower limit value of the slaked lime concentration under this condition is point F in FIG.

【0049】実施例−6の結果から、高炉スラグ微粉末
濃度の下限値は約1%であり、消石灰濃度の下限値は約
2%であることが、最終的に確認できた。ここで、図9
について説明する。図9は、実施例−3から実施例−6
までの試験結果をまとめたもので、図中の斜線部分が特
許請求の範囲に記載した領域とほぼ合致する。
From the results of Example 6, it was finally confirmed that the lower limit of the blast furnace slag fine powder concentration was about 1% and the lower limit of the slaked lime concentration was about 2%. Here, FIG.
Will be described. FIG. 9 shows Example-3 to Example-6.
The test results up to this point are summarized, and the shaded portion in the figure almost matches the region described in the claims.

【0050】[実施例−7]本発明の緩結性薬液の代表
例として図3の5番を、本発明の瞬結性薬液の代表例と
して図3の10番を選定して長期強度の安定性を試験し
た結果を図10に示す。消石灰は図1の消石灰Cを使用
し、高炉スラグ微粉末は図2の高炉スラグ微粉末Cを使
用した。分散剤は消石灰量の2%を添加した。
Example 7 No. 5 of FIG. 3 was selected as a typical example of the slow-releasing drug solution of the present invention, and No. 10 of FIG. The results of stability tests are shown in FIG. As the slaked lime, the slaked lime C shown in FIG. 1 was used, and as the blast furnace slag fine powder, the blast furnace slag fine powder C shown in FIG. 2 was used. As the dispersant, 2% of the amount of slaked lime was added.

【0051】緩結性薬液は、初期強度が小さいが、材齢
と共にホモゲル強度は増大し、3ケ月以降の強度は安定
していて、強度の増減が無いことが判る。瞬結性薬液
は、初期からホモゲル強度が大きいが、強度の増大割合
は緩結性薬液より小さい。3ケ月以降の強度は安定して
いて、強度の増減が無いことが判る。
It can be seen that the slow-moving drug solution has a small initial strength, but the homogel strength increases with age, the strength is stable after 3 months, and the strength does not increase or decrease. The instant binding solution has a high homogel strength from the beginning, but the rate of increase in strength is smaller than that of the slow-setting solution. It can be seen that the strength after 3 months is stable and there is no increase or decrease in strength.

【0052】[実施例−8]懸濁水溶液中の消石灰濃度
を4%一定とし、消石灰量に対する分散剤の添加量を変
え、3分間の強制撹拌を行なった懸濁水溶液の分散剤添
加量と沈降高さとの関係の試験結果を図11に示す。本
試験は、高炉スラグ微粉末を併用すると、高炉スラグ微
粉末が妨害して、消石灰の分散状態が観察できないた
め、高炉スラグ微粉末を併用しなかった。消石灰は図1
の消石灰Dを使用した。
[Example-8] The concentration of slaked lime in the suspension aqueous solution was kept constant at 4%, the amount of the dispersant added was changed with respect to the amount of the slaked lime, and the amount of the dispersant added to the suspension aqueous solution was forcibly stirred for 3 minutes. The test results of the relationship with the sedimentation height are shown in FIG. In this test, when the blast furnace slag fine powder was used together, the blast furnace slag fine powder interfered and the dispersed state of slaked lime could not be observed, so the blast furnace slag fine powder was not used together. Slaked lime is Figure 1
Slaked lime D.

【0053】消石灰量に対する分散剤の添加量が1%程
度未満の場合は、沈降高さが無添加の場合とほとんど変
わらず、含水コロイドゲルの解砕が不十分で、分散性が
悪いことが判る。分散剤の添加量が1%程度以上になる
と、沈降高さは急激に小さくなる。分散剤の添加量が3
%程度になると、沈降高さが0mm近くなり、解砕され
た含水コロイドゲルは、ほとんど沈降しなくなることが
判る。分散剤の添加量を3%程度以上にしても、もはや
含水コロイドゲルの解砕がこれ以上進行しない限界であ
ることも判る。
When the amount of the dispersant added to the amount of slaked lime is less than about 1%, the sedimentation height is almost the same as that when no sediment is added, and the disintegration of the hydrocolloid gel is insufficient and the dispersibility is poor. I understand. When the amount of the dispersant added is about 1% or more, the settling height rapidly decreases. The amount of dispersant added is 3
%, The sedimentation height approaches 0 mm, and it can be seen that the crushed hydrous colloidal gel hardly sediments. It can also be seen that even if the amount of the dispersant added is about 3% or more, the crushing of the hydrous colloidal gel is no longer in progress.

【0054】なお、懸濁水溶液中の消石灰濃度を20%
一定とした場合についても実施したが、分散剤無添加の
場合は、消石灰が分離沈降して上澄み部分が認められる
ものの、分散剤を添加すると分散剤添加量に無関係に分
離沈降現象が認められなくなり、分散剤添加量と沈降高
さの関係を数値的に観察することはできなかった。これ
は、懸濁水溶液中の消石灰量が多いための、懸濁水溶液
中の比重が大きくなり、分離沈降しにくくなったためで
あるが、消石灰濃度が小さいときと同様な現象が起きて
いるものと想定できる。
The concentration of slaked lime in the suspension aqueous solution was 20%.
When the amount of dispersant was not added, the slaked lime was separated and settled, and a supernatant was observed, but when the dispersant was added, the separation and settling phenomenon was not observed regardless of the amount of added dispersant. It was not possible to numerically observe the relationship between the amount of dispersant added and the height of sedimentation. This is because the amount of slaked lime in the suspension aqueous solution was large, and the specific gravity in the suspension aqueous solution became large, making it difficult to separate and settle.However, the same phenomenon as when the concentration of slaked lime was small occurred. Can be assumed.

【0055】[実施例−9]実施例−8で作製した消石
灰濃度4%の懸濁水溶液を顕微鏡で観察した。分散剤の
添加量が3%程度の場合は、消石灰が平均粒子径1μm
程度の微細で透明な含水コロイドゲルになって分散して
いることが観察される。この場合、3分間程度の強制撹
拌による解砕を行なわないと、含水コロイドゲルは、肉
眼でも観察できるような粗大な凝集塊として存在してい
ることが観察される。
[Example-9] The suspended aqueous solution having a slaked lime concentration of 4% prepared in Example-8 was observed with a microscope. When the amount of dispersant added is about 3%, slaked lime has an average particle size of 1 μm.
It is observed that the particles are dispersed in the form of a fine and transparent hydrous colloidal gel. In this case, it is observed that the hydrous colloidal gel exists as coarse aggregates that can be visually observed unless disintegration is performed by forced stirring for about 3 minutes.

【0056】分散剤の添加量が1〜2%の場合は、平均
粒子径が1μm程度の含水コロイドゲルになっているも
のの、3分間以上の強制撹拌を行なっても、含水コロイ
ドゲルが部分的に凝集していることが観察される。
When the amount of the dispersant added is 1 to 2%, the hydrous colloidal gel has an average particle size of about 1 μm, but the hydrous colloidal gel partially remains even after forced stirring for 3 minutes or more. Are observed to be aggregated.

【0057】分散剤の添加量が1%未満の場合は、3分
間以上の強制撹拌を行なっても、肉眼でも観察できるよ
うな粗大な凝集塊として存在していることが観察され
る。消石灰濃度20%の場合は、顕微鏡観察では、ほぼ
同様な現象が認められたものの、懸濁水溶液中の濃度が
濃すぎて、目視観察では確認できる状況ではなかった。
When the amount of the dispersant added is less than 1%, it is observed that coarse agglomerates that can be observed with the naked eye are present even if forced stirring is performed for 3 minutes or more. When the slaked lime concentration was 20%, a similar phenomenon was observed by microscopic observation, but the concentration in the suspension aqueous solution was too high, and the situation could not be confirmed by visual observation.

【0058】[実施例−10]実施例−8で作製した消
石灰濃度4%の懸濁水溶液と水ガラス水溶液との反応を
観察した。黒色のプラスチック板上で、分散剤の添加量
が1〜3%の場合の懸濁水溶液の一滴に、水ガラス水溶
液の一滴を加え、ガラス棒で数秒間の強制撹拌を行なう
と、懸濁水溶液は直ちに透明な水溶液になることが目視
観察できる。この透明な水溶液を顕微鏡で観察すると、
含水コロイドゲルは消滅しており、光学顕微鏡では観察
できない。
[Example-10] The reaction between the suspension aqueous solution having a slaked lime concentration of 4% prepared in Example-8 and the aqueous solution of water glass was observed. On a black plastic plate, add one drop of a water glass aqueous solution to one drop of the suspension aqueous solution when the amount of the dispersant added is 1 to 3%, and forcibly stir with the glass rod for several seconds to obtain a suspension aqueous solution. It can be visually observed that the solution immediately becomes a transparent aqueous solution. When observing this transparent aqueous solution with a microscope,
The hydrocolloid gel has disappeared and cannot be observed with an optical microscope.

【0059】次に、黒色のプラスチック板上で、分散剤
無添加の懸濁水溶液の一滴に、水ガラス水溶液の一滴を
加え、ガラス棒で数秒間の強制撹拌を行なうと、懸濁水
溶液はほぼ透明な水溶液になるものの、島状のゲル状物
質が浮遊していることが目視観察される。これは、分散
剤が添加されていないと、消石灰が肉眼でも観察される
ような粗大な含水コロイドゲルの凝集塊となっていて、
十分に分散していないため、局部的に含水コロイドゲル
の濃い部分が存在し、これが水ガラス水溶液と短時間で
ゲル化反応を起こし、島状の珪酸ゲルおよび珪酸カルシ
ウムゲルを生成するものと考えられる。この島状ゲルの
生成は、薬液の浸透性を阻害するため、浸透性薬液とし
ては好ましい現象ではない。消石灰濃度20%の場合
も、同様な現象が認められ、ほぼ透明な水溶液になるも
のの、消石灰に連行している不純物あるいは粗大消石灰
の残存が、目視でも観察された。
Next, on a black plastic plate, one drop of the aqueous solution of water glass was added to one drop of the aqueous suspension solution without addition of a dispersant, and forced stirring was performed for several seconds with a glass rod. Although it is a transparent aqueous solution, it is visually observed that island-like gel-like substances are suspended. This is because if no dispersant is added, slaked lime is a coarse aggregate of hydrous colloidal gel that can be observed with the naked eye.
Since it is not sufficiently dispersed, there is a thick part of the hydrous colloidal gel locally, and it is considered that this causes a gelation reaction with the water glass aqueous solution in a short time to form island-shaped silicate gel and calcium silicate gel. To be The formation of this island-shaped gel hinders the permeability of the drug solution, and is not a preferable phenomenon as an osmotic drug solution. When the concentration of slaked lime was 20%, the same phenomenon was observed, and although an almost transparent aqueous solution was obtained, the impurities or coarse slaked lime remaining along with the slaked lime were visually observed.

【0060】本発明は、本発明による水ガラス系懸濁型
浸透性薬液を配合する場合において、内容物が0%から
100%の範囲内で消石灰を置換した高炉スラグ微粉末
であって、置換率および/または正味重量が異なる少な
くとも1種類以上の袋入り硬化剤の袋の数を適宜組み合
わせて配合するものである。これにより、任意で数多く
のゲルタイムと任意で数多くの強度を得ることが可能と
なる。以下、その組み合わせ配合の計算例を、袋入り硬
化剤を用いて硬化剤水溶液を配合する場合、1バッチを
200リットルとして配合する当業界における常用量で
説明する。
The present invention is a blast furnace slag fine powder in which slaked lime is replaced within the range of 0% to 100% when the water glass suspension type penetrating chemical liquid according to the present invention is blended. The number of bags of at least one type of bag-containing curing agent having different rates and / or net weights is appropriately combined and blended. This makes it possible to obtain arbitrarily many gel times and optionally many strengths. Hereinafter, a calculation example of the combination formulation will be described in the case of blending an aqueous curing agent solution with a curing agent contained in a bag, with one batch being 200 liters and the conventional dose in the art.

【0061】[計算例−1]例えば、消石灰4kgと高
炉スラグ微粉末6kgとの合計10kg入りの1種類の
袋入り硬化剤を想定する。この袋入り硬化剤を整数袋で
使用した場合の1バッチあたりの消石灰量および高炉ス
ラグ微粉末量を計算し、これらの量に対応するゲルタイ
ムとホモゲル強度を図4および図6から読み取り、整理
したものが図12である。
[Calculation Example-1] For example, assume that one kind of bag-type curing agent containing a total of 10 kg of slaked lime 4 kg and blast furnace slag fine powder 6 kg. The amount of slaked lime and the amount of blast furnace slag fine powder per batch when this bag-type curing agent was used in integer bags were calculated, and the gel times and homogel strengths corresponding to these amounts were read and arranged from FIGS. 4 and 6. The thing is FIG.

【0062】消石灰量については、初項を4kgとし公
差を4kgとした等差数列であり、高炉スラグ微粉末量
については、初項を6kgとし公差を6kgとした等差
数列である。この数列は無限に続くものであるが、消石
灰量を増大させた割合には、ゲルタイムが減少しなくな
る限界があるので、消石灰量が多い部分では、袋数を不
連続としてある。図12から、ゲルタイムは2秒から2
000秒の範囲で、ホモゲル強度は0.1〜70kgf
/cmの範囲で設定できることが判るが、これは計算
例であって、特許請求の範囲に記載したゲルタイムは約
3秒から約45分の範囲であり、ホモゲル強度は約1k
gf/cmから約40kgf/cmの範囲である。
The amount of slaked lime is an arithmetic sequence with the first term being 4 kg and the tolerance being 4 kg, and the blast furnace slag fine powder amount is an arithmetic sequence having the initial term of 6 kg and the tolerance being 6 kg. Although this number sequence continues infinitely, the rate at which the amount of slaked lime is increased has a limit at which the gel time does not decrease, so the number of bags is discontinuous in the portion where the amount of slaked lime is large. From Figure 12, gel time is 2 seconds to 2
The homogel strength is 0.1 to 70 kgf in the range of 000 seconds.
It can be seen that it can be set in the range of / cm 2 , but this is a calculation example, and the gel time described in the claims is in the range of about 3 seconds to about 45 minutes, and the homogel strength is about 1 k.
It is in the range of gf / cm 2 to about 40 kgf / cm 2 .

【0063】[計算例−2]消石灰量とゲルタイムとの
関係が双曲線方程式に従うため、消石灰量が少ない部分
は、設定できるゲルタイムの間隔が次第に大きくなって
いく。一方、高炉スラグ微粉末量とホモゲル強度との関
係が放物線方程式に従うため、高炉スラグ微粉末量が多
い部分は、設定できるホモゲル強度の間隔が次第に大き
くなっていく。
[Calculation Example-2] Since the relationship between the amount of slaked lime and the gel time follows a hyperbolic equation, the settable gel time interval gradually increases in the portion where the amount of slaked lime is small. On the other hand, since the relationship between the amount of fine powder of blast furnace slag and the homogel strength follows the parabolic equation, the interval of the homogel strength that can be set gradually increases in the portion where the amount of fine powder of blast furnace slag is large.

【0064】そこで、例えば、消石灰2kgと高炉スラ
グ微粉末3kgとで合計5kg入りの袋入り硬化剤を想
定し、この硬化剤袋を2袋以上の整数袋で使用するとす
れば、初項が同じで公差が半分の等差数列となり、設定
できるゲルタイムとホモゲル強度の数は計算例−1の倍
になる。
Therefore, for example, assuming a bag-containing curing agent containing a total of 5 kg of slaked lime 2 kg and blast furnace slag fine powder 3 kg, and if this curing agent bag is used as an integer bag of two or more bags, the first term is the same. The tolerance is half the arithmetic progression, and the settable gel times and the number of homogel strengths are twice those of Calculation Example-1.

【0065】同様の手段で公差を限りなく小さくする
と、不連続とは言うものの、設定できるゲルタイムとホ
モゲル強度の数は無限大となり、前記の設定できるゲル
タイムとホモゲル強度の間隔が大きくなっていく現象は
補間できる。しかし、いたずらに袋の重量を小さくする
と、1バッチあたりの袋の数が増えるため得策ではな
く、設定できるゲルタイムとホモゲル強度の数、経済
性、利便性等を勘案して最適な条件を設定すればよい。
If the tolerance is made as small as possible by the same means, the number of gel times and homogel strengths that can be set becomes infinite, though it is discontinuous, and the interval between the gel times and homogel strengths that can be set becomes larger. Can be interpolated. However, it is not a good idea to reduce the weight of the bag by mistake, because the number of bags per batch increases, so you should set the optimal conditions in consideration of the gel time and the number of homogel strength that can be set, economy, convenience, etc. Good.

【0066】なお、消石灰および高炉スラグ微粉末使用
量の下限値が存在するが、本発明の硬化剤袋の重量の下
限値を限定することはできない。なぜならば、硬化剤袋
の重量がそれぞれの下限値以下であっても、複数の袋を
使用すれば、下限値を越える量を配合することが可能で
あるからである。従って、消石灰濃度と高炉スラグ微粉
末濃度の下限値に、こだわる必要はないので、消石灰と
高炉スラグ微粉末の混合割合および合計重量は、1バッ
チあたりの袋の数が増え過ぎない範囲で、しかも、設定
できるゲルタイムとホモゲル強度の数がなるべく多くな
るように設定すればよい。以上が、袋入り硬化剤の種類
が1種類であっても、任意で数多くのゲルタイムとホモ
ゲル強度が設定できる説明である。
Although there is a lower limit of the amount of slaked lime and blast furnace slag fine powder used, the lower limit of the weight of the curing agent bag of the present invention cannot be limited. This is because even if the weight of the curing agent bag is less than or equal to the respective lower limit values, it is possible to add an amount exceeding the lower limit value by using a plurality of bags. Therefore, since it is not necessary to pay attention to the lower limit values of the slaked lime concentration and the blast furnace slag fine powder concentration, the mixing ratio and the total weight of the slaked lime and the blast furnace slag fine powder are within a range in which the number of bags per batch does not increase too much. The gel time and the homogel strength that can be set may be set as large as possible. The above is a description in which a large number of gel times and homogel strengths can be arbitrarily set even if there is only one type of curing agent in the bag.

【0067】[計算例−3]前記の設定できるゲルタイ
ムとホモゲル強度の間隔が大きくなっていく現象の補間
方法として、次のような方法も考えられる。例えば、消
石灰4kgと高炉スラグ微粉末6kgとの合計10kg
入りの袋入り硬化剤と、内容物が消石灰単味で重量が2
kgである硬化剤小袋と、内容物が高炉スラグ微粉末単
味で重量が3kgである硬化剤小袋との3種類の袋入り
硬化剤を併用すると、設定できるゲルタイムとホモゲル
強度の間隔を計算例−1よりも小さくすることができ
る。硬化剤小袋の重量を限りなく小さくすると、前述と
同様に設定できるゲルタイムとホモゲル強度の間隔が大
きくなっていく現象は補間できる。
[Calculation Example-3] The following method is also conceivable as an interpolation method for the phenomenon in which the interval between the set gel time and the homogel strength increases. For example, a total of 10 kg of slaked lime 4 kg and blast furnace slag fine powder 6 kg
A hardener in a bag and a slaked lime content that weighs 2
Example of calculating the interval between gel time and homogel strength that can be set by using three types of hardener in a bag, a hardener pouch that weighs kg and a hardener pouch that contains only blast furnace slag fine powder and weighs 3 kg. It can be smaller than -1. If the weight of the curing agent pouch is reduced as much as possible, the phenomenon in which the interval between the gel time and the homogel strength that can be set in the same manner as described above becomes large can be interpolated.

【0068】以上が、袋入り硬化剤の種類が3種類であ
っても、消石灰の置換率が0%から100%であって
も、すなわち、硬化剤小袋の内容物は、消石灰および高
炉スラグ微粉末の単味品であっても、ゲルタイムとホモ
ゲル強度を任意で数多く設定できることの説明である。
この場合も消石灰と高炉スラグ微粉末の混合割合および
袋の重量は任意でよい。
As described above, even if there are three kinds of hardening agents in the bag and the substitution rate of slaked lime is 0% to 100%, that is, the contents of the hardening agent pouch are slaked lime and blast furnace slag. This is an explanation that the gel time and the homogel strength can be arbitrarily set in large numbers even if the powder is a plain product.
Also in this case, the mixing ratio of the slaked lime and the blast furnace slag fine powder and the weight of the bag may be arbitrary.

【0069】[計算例−4]例えば、消石灰単味で重量
が8kg入り袋入り硬化剤と高炉スラグ微粉末単味で重
量が12kg入りの袋入り硬化剤との単味品の2種類の
袋入り硬化剤を想定する。この袋入り硬化剤を整数袋で
使用した場合の1バッチあたりの消石灰量および高炉ス
ラグ微粉末量を計算し、これらの量に対応するゲルタイ
ムとホモゲル強度を図4および図6から読取り、整理し
たものが図13であり、各ゲルタイム毎に複数のホモゲ
ル強度を設定することができる。
[Calculation example-4] For example, two types of bags, a slaked lime only bag containing hardening agent containing 8 kg and a blast furnace slag fine powder containing 12 kg bag containing hardening agent, are included in the bag. A hardener is assumed. The amount of slaked lime and the amount of fine powder of blast furnace slag per batch when the bag-containing curing agent was used in integer bags were calculated, and the gel times and homogel strengths corresponding to these amounts were read from FIGS. 4 and 6 and arranged. FIG. 13 shows one, and a plurality of homogel strengths can be set for each gel time.

【0070】設定できるゲルタイムとホモゲル強度の間
隔が大きくなっていく現象の補間方法は、前述した方法
と同じ方法で補間でき、任意で数多くのゲルタイムとホ
モゲル強度が設定できる。すなわち、袋入り硬化剤は単
味品の2種類のみでもよい。この場合も袋の重量は任意
でよい。
The interpolation method of the phenomenon in which the interval between the set gel time and the homogel strength increases can be interpolated by the same method as described above, and a large number of gel times and homogel strengths can be arbitrarily set. That is, the curing agent contained in the bag may be only two types of plain products. Also in this case, the weight of the bag may be arbitrary.

【0071】[計算例−5]設定できるゲルタイムとホ
モゲル強度の間隔が次第に大きくなっていく現象の補間
すると、1バッチあたりの小袋の数が増えてしまうこと
の改善方法を説明する。例えば、内容物が消石灰単味で
重量が20kg程度である硬化剤大袋と、内容物が高炉
スラグ微粉末単味で重量が20kg程度である大袋とを
併用すると、20kg程度以上の消石灰量および高炉ス
ラグ微粉末量を配合する場合の袋の数を減ずることがで
きる。硬化剤袋の正味重量の上限値は、作業者が1人で
容易に運搬でき、配合作業も容易に行なえる範囲内で常
識的に設定すべきであるが、2人作業の場合等を含めて
考えると限定できない。なお、袋の数を整数とした場合
について説明したが、袋数を端数にすれば、設定できる
ゲルタイムとホモゲル強度の数をさらに増やせることは
言うまでもない。
[Calculation Example-5] A method of improving the fact that the number of pouches per batch increases by interpolating the phenomenon that the interval between the set gel time and homogel strength gradually increases will be described. For example, when a large bag of hardener having a content of only slaked lime and a weight of about 20 kg and a large bag of content having only a blast furnace slag fine powder and a weight of about 20 kg are used together, a slaked lime amount of about 20 kg or more and a blast furnace are provided. It is possible to reduce the number of bags when blending the amount of slag fine powder. The upper limit of the net weight of the curing agent bag should be set as a common sense within the range that one worker can easily carry it and the compounding work can be performed easily. It cannot be limited if you think about it. Although the case where the number of bags is an integer has been described, it goes without saying that if the number of bags is a fraction, the number of gel times and homogel strength that can be set can be further increased.

【0072】[0072]

【発明の効果】以上のように本発明によると、水ガラス
系の薬液注入工法に用いる懸濁型硬化剤水溶液を配合す
る場合、消石灰濃度を変えるだけで、ホモゲル強度とは
独立して、ゲルタイムが3秒程度の超瞬結性薬液から、
ゲルタイムが45分程度の緩結性薬液までの各種のゲル
タイムを任意に設定することができ、また、高炉スラグ
微粉末濃度を変えるだけで、ゲルタイムとは独立して、
材齢7日のホモゲル強度を約1kgf/cm程度から
約40kgf/cm程度までの範囲内で任意に設定で
きる汎用性の大きい水ガラス系の懸濁型浸透性薬液を提
供することができる。この汎用性の大きい水ガラス系の
懸濁型浸透性薬液が提供され、選択の幅が大きくなった
ことにより、地盤の状況あるいは設計上の要求等によ
り、任意で最適な品質の水ガラス系の懸濁型浸透性薬液
を選択できるようになった本発明の効果は大きい。
As described above, according to the present invention, when the suspension type hardening agent aqueous solution used in the water glass type chemical injection method is blended, the gel time is independent of the homogel strength only by changing the slaked lime concentration. From the super-instantaneous drug solution for about 3 seconds,
Various gel times up to a slow-moving drug solution with a gel time of about 45 minutes can be set arbitrarily, and by simply changing the blast furnace slag fine powder concentration, the gel time can be set independently of the gel time.
It is possible to provide a suspension type permeability chemical large water glass type of versatility that can be set arbitrarily within a range of Homogeru strength at the age of 7 days from about 1 kgf / cm 2 of about up to about 40 kgf / cm 2 . This water-based suspension type penetrating chemical solution with great versatility is provided, and the selection range is widened. The effect of the present invention in which the suspension type penetrating drug solution can be selected is great.

【0073】1組の硬化剤(消石灰と高炉スラグ微粉
末)だけで、各種の使用目的に対応する水ガラス系の懸
濁型浸透性薬液を配合できるようになったことにより、
多種類の硬化剤を備蓄,管理する煩雑さをなくすことが
できる。
By using only one set of hardening agents (slaked lime and blast furnace slag fine powder), it is possible to mix water-glass suspension type penetrating chemicals for various purposes.
The complexity of stocking and managing various types of curing agents can be eliminated.

【0074】1組の硬化剤のみを使用するため、徐々に
あるいは急激に、水ガラス系の懸濁型浸透性薬液のゲル
タイムおよびホモゲル強度の変更が可能であるため、工
事の進捗による地層の性質の変化に迅速に対応すること
ができる。また、1組の硬化剤のみを使用するため、徐
々にあるいは急激に、水ガラス系の懸濁型浸透性薬液の
ホモゲル強度を変更することができるので、設計上の要
求に基づいて、同じ施工現場においても、低強度でよい
部分には低強度薬液を、高強度を必要とする部分には高
強度薬液を、それぞれ使い分けて注入することが可能で
ある。
Since only one set of curing agents is used, the gel time and homogel strength of the water-glass suspension type penetrating chemical can be changed gradually or rapidly. It is possible to quickly respond to changes in. Further, since only one set of curing agent is used, the homogel strength of the water-glass suspension type penetrating chemical solution can be gradually or rapidly changed. Even in the field, it is possible to separately inject a low-strength chemical solution into a portion having low strength and a high-strength chemical solution into a portion requiring high strength.

【0075】また、45分程度までの長いゲルタイムの
懸濁型浸透性薬液、3秒程度までの短いゲルタイムの懸
濁型浸透性薬液、および、何れのゲルタイムにおいても
材齢7日で約40kgf/cm程度までの懸濁型浸透
性高強度薬液など、従来から市販されていなかった分野
の水ガラス系の懸濁型浸透性薬液を提供することができ
る。
A suspension type osmotic drug solution having a long gel time up to about 45 minutes, a suspension type osmotic drug solution having a short gel time up to about 3 seconds, and about 40 kgf / at 7 days of age at any gel time. It is possible to provide a water-glass-based suspension type penetrating chemical liquid in a field that has not been commercially available, such as a suspension type penetrating high-strength chemical liquid up to about cm 2 .

【0076】水ガラス系の薬液注入工法において、ニー
ズがありながら要求される性能の懸濁型浸透性薬液が提
供されていなかったために、次善の性能の薬液しか使用
できなかった分野において、例えば、懸濁型薬液の複相
注入工法において、次善の性能の薬液として強度の小さ
い溶液型の緩結性薬液を併用している分野に、本発明の
ゲルタイムが長くてホモゲル強度の大きい懸濁型浸透性
薬液が提供されると、瞬結性も緩結性も強度の大きい懸
濁型浸透性薬液が併用できるので、地盤全体を高強度に
改良することができる。
In the water glass type chemical injection method, a suspension type penetrating chemical having the required performance has not been provided although there is a need. Therefore, for example, in the field where only the suboptimal chemical can be used. In the multi-phase injection method of a suspension type drug solution, in the field where a low strength solution type slow-releasing drug solution is used together as a drug solution of suboptimal performance, a suspension having a long gel time and a large homogel strength of the present invention When the type osmotic drug solution is provided, the suspension type osmotic drug solution having high strength in both quick-setting property and slow-setting property can be used in combination, so that the entire ground can be improved with high strength.

【0077】また、凝集性の強い消石灰の凝集塊を、光
学顕微鏡では見えない程度まで解砕する手段を開発し
て、懸濁型薬液の浸透性を向上させることができた本発
明の効果は大である。
Further, the effect of the present invention, which was able to improve the permeability of the suspension type drug solution, was developed by developing a means for crushing aggregates of slaked lime having a strong aggregation property to the extent that they cannot be seen by an optical microscope. Is large.

【0078】さらに、水ガラス系の薬液注入工法に用い
る本発明の懸濁型薬液は、1組の袋入り硬化剤のみの組
み合わせで、超瞬結型から緩結型までの任意のゲルタイ
ムを設定することができ、かつ任意のホモゲル強度を設
定することができるため、使用者、及び生産者側にとっ
て有益な効果がある。
Further, the suspension type chemical liquid of the present invention used in the water glass type chemical liquid injection method can set an arbitrary gel time from the super instantaneous setting type to the slow setting type by combining only one set of the curing agents in the bag. Since it is possible to set the strength of the homogel and the strength of the homogel can be set arbitrarily, there is a beneficial effect for the user and the producer.

【図面の簡単な説明】[Brief description of drawings]

【図1】平均粒子径が異なる消石灰を使用した場合のゲ
ルタイムの試験結果を示す表
FIG. 1 is a table showing gel time test results when slaked limes having different average particle sizes are used.

【図2】比表面積が異なる高炉スラグ微粉末を使用した
場合のホモゲル強度の試験結果を示す表
FIG. 2 is a table showing the homogel strength test results when blast furnace slag fine powders having different specific surface areas are used.

【図3】懸濁型硬化剤水溶液中の高炉スラグ微粉末濃度
を一定とし、消石灰濃度を変えた場合のゲルタイムとホ
モゲル強度の試験結果を示す表
FIG. 3 is a table showing the test results of gel time and homogel strength when the blast furnace slag fine powder concentration in the suspension-type curing agent aqueous solution is kept constant and the slaked lime concentration is changed.

【図4】懸濁型硬化剤水溶液中の消石灰濃度とゲルタイ
ムの関係を示すグラフ
FIG. 4 is a graph showing the relationship between slaked lime concentration and gel time in an aqueous suspension-type curing agent solution.

【図5】懸濁型硬化剤水溶液中の消石灰濃度を一定と
し、高炉スラグ微粉末濃度を変えた場合のホモゲル強度
の試験結果を示す表
FIG. 5 is a table showing the homogel strength test results when the slaked lime concentration in the suspension type curing agent aqueous solution is kept constant and the blast furnace slag fine powder concentration is changed.

【図6】懸濁型硬化剤水溶液中の高炉スラグ微粉末濃度
とホモゲル強度の関係を、消石灰の濃度別に示すグラフ
FIG. 6 is a graph showing the relationship between the blast furnace slag fine powder concentration and the homogel strength in the suspension-type curing agent aqueous solution for each concentration of slaked lime.

【図7】懸濁型硬化剤水溶液中の高炉スラグ微粉末濃度
と粘性の関係を、消石灰の濃度別に示すグラフ
FIG. 7 is a graph showing the relationship between the concentration of blast furnace slag fine powder and viscosity in an aqueous suspension-type curing agent solution, by concentration of slaked lime.

【図8】消石灰濃度と高炉スラグ微粉末濃度の下限値を
確認するための試験結果を示す表
FIG. 8 is a table showing test results for confirming the lower limits of slaked lime concentration and blast furnace slag fine powder concentration.

【図9】特許請求の範囲に記載した本発明の根拠を示す
グラフ
FIG. 9 is a graph showing the basis of the present invention described in the claims.

【図10】実施例の内の緩結性懸濁型薬液と瞬結性懸濁
型薬液の代表例の長期強度の試験結果を示す表
FIG. 10 is a table showing long-term strength test results of representative examples of the slow-releasing suspension type drug solution and the instant-setting suspension type drug solution of Examples.

【図11】消石灰濃度を一定とし、消石灰量に対する分
散剤添加量を変えた場合の分散剤添加量と沈降高さの関
係を示すグラフ
FIG. 11 is a graph showing the relationship between the amount of dispersant added and the settling height when the amount of slaked lime is fixed and the amount of dispersant added is changed with respect to the amount of slaked lime.

【図12】消石灰4kgと高炉スラグ微粉末6kgとで
合計10kg入りの1種類の袋入り硬化剤を想定して、
この袋入り硬化剤を整数袋で使用した場合の1バッチあ
たりの消石灰量及び高炉スラグ微粉末量の計算結果と、
これらの量に対応するゲルタイムとホモゲル強度を示す
FIG. 12: Assuming one type of bag-type curing agent containing 10 kg in total of 4 kg of slaked lime and 6 kg of blast furnace slag fine powder,
Calculation results of the amount of slaked lime and the amount of blast furnace slag fine powder per batch when this bag-type curing agent is used in integer bags,
Table showing gel times and homogel strengths corresponding to these amounts

【図13】消石灰単味で重量が8kg入りの袋入り硬化
剤と高炉スラグ微粉末単味で重量が12kg入りの袋入
り硬化剤単味品の2種類の袋入り硬化剤を想定して、こ
の袋入り硬化剤を整数袋で使用した場合の1バッチあた
りの消石灰量及び高炉スラグ微粉末量の計算結果と、こ
れらの量に対応するゲルタイムとホモゲル強度を示す表
[FIG. 13] Assuming two types of bag hardeners, a slaked lime only bag hardener having a weight of 8 kg and a blast furnace slag fine powder only bag hardener having a weight of 12 kg. A table showing the calculation results of the amount of slaked lime and the amount of fine powder of blast furnace slag per batch when this bagging curing agent is used in integer bags, and the gel time and homogel strength corresponding to these amounts.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年5月29日[Submission date] May 29, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0060[Correction target item name] 0060

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0060】本発明は、本発明による水ガラス系懸濁型
浸透性薬液を配合する場合において、内容物が0%から
100%の範囲内で消石灰を置換した高炉スラグ微粉末
であって、置換率および/または正味重量が異なる少な
くとも1種類以上の袋入り硬化剤の袋の数を適宜組み合
わせて配合するものである。これにより、任意で数多く
のゲルタイムと任意で数多くの強度を得ることが可能と
なる。以下、その組み合わせ配合の計算例を、袋入り硬
化剤を用いて硬化剤水溶液を配合する場合、1バッチを
200リットルとして配合する当業界における常用量で
説明する。尚、本発明の薬液に、この種の薬液に常用し
ているセメント,石膏等が併用できることは言うまでも
ない。
The present invention is a blast furnace slag fine powder in which slaked lime is replaced within the range of 0% to 100% when the water glass suspension type penetrating chemical liquid according to the present invention is blended. The number of bags of at least one type of bag-containing curing agent having different rates and / or net weights is appropriately combined and blended. This makes it possible to obtain arbitrarily many gel times and optionally many strengths. Hereinafter, a calculation example of the combination formulation will be described in the case of blending an aqueous curing agent solution with a curing agent contained in a bag, with one batch being 200 liters and the conventional dose in the art. It should be noted that the drug solution of the present invention should not be used for this type of drug solution.
Needless to say, existing cement, plaster, etc. can be used in combination.
Absent.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小幡 泰 東京都町田市山崎町1483山崎団地8−8− 204 (72)発明者 富田 茂芳 東京都江東区南砂5−19−16 (72)発明者 下田 一雄 神奈川県横須賀市南浦賀7番6号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasushi Obata 1483 Yamazaki-cho, Machida, Tokyo 8-8-204 (72) Inventor Shigeyoshi Tomita 5-19-16 Minamisuna, Koto-ku, Tokyo (72) Inventor Kazuo Shimoda 7-6 Minamiuraga, Yokosuka City, Kanagawa Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水ガラス系の薬液注入工法に用いる懸濁
型硬化剤水溶液を配合する場合において、懸濁型硬化剤
水溶液中の消石灰濃度を約2%から約35%の範囲内
で、高炉スラグ微粉末濃度を約1%から約40%の範囲
内で、しかも、懸濁型硬化剤水溶液中の消石灰濃度と高
炉スラグ微粉末濃度の合計濃度を約40%以下に設定す
ることによって、ホモゲル強度とは独立して、約3秒か
ら約45分の範囲内で任意のゲルタイムを設定可能と
し、かつ、ゲルタイムとは独立して、材齢7日のホモゲ
ル強度を約1kgf/cmから約40kgf/cm
の範囲内で任意に設定可能としたことを特徴とする水ガ
ラス系懸濁型浸透性薬液。
1. A blast furnace having a slaked lime concentration within the range of about 2% to about 35% in the suspension-type curing agent aqueous solution when blending the suspension-type curing agent aqueous solution used in the water glass chemical injection method. By setting the concentration of the slag fine powder within the range of about 1% to about 40% and by setting the total concentration of the slaked lime concentration and the blast furnace slag fine powder concentration in the aqueous suspension-type curing agent to about 40% or less, the homogel Independent of the strength, it is possible to set any gel time within the range of about 3 seconds to about 45 minutes, and independently of the gel time, the homogel strength of 7 days old is about 1 kgf / cm 2 to about. 40 kgf / cm 2
A water-glass suspension type penetrating drug solution, which can be arbitrarily set within the range.
【請求項2】 水ガラス系の薬液注入工法に用いる懸濁
型硬化剤水溶液を配合する場合において、懸濁型硬化剤
水溶液中の消石灰濃度を約2%から約35%の範囲内
で、高炉スラグ微粉末濃度を約1%から約40%の範囲
内で、しかも、懸濁型硬化剤水溶液中の消石灰濃度と高
炉スラグ微粉末濃度の合計濃度を約40%以下に設定す
ることによって、ホモゲル強度とは独立して、約3秒か
ら約45分の範囲内で任意のゲルタイムを設定可能と
し、かつ、ゲルタイムとは独立して、材齢7日のホモゲ
ル強度を約1kgf/cmから約40kgf/cm
の範囲内で任意に設定可能とし、内容物が0%から10
0%の範囲内で消石灰を置換した高炉スラグ微粉末であ
って、置換率および/または正味重量が異なる少なくと
も1種類以上の袋入り硬化剤の袋の数を適宜組み合わせ
て配合することを特徴とする水ガラス系懸濁型浸透性薬
液。
2. A blast furnace having a slaked lime concentration within the range of about 2% to about 35% in the suspension-type curing agent aqueous solution when the suspension-type curing agent aqueous solution used in the water glass-based chemical injection method is blended. By setting the concentration of the slag fine powder within the range of about 1% to about 40% and by setting the total concentration of the slaked lime concentration and the blast furnace slag fine powder concentration in the aqueous suspension-type curing agent to about 40% or less, the homogel Independent of the strength, it is possible to set any gel time within the range of about 3 seconds to about 45 minutes, and independently of the gel time, the homogel strength of 7 days old is about 1 kgf / cm 2 to about. 40 kgf / cm 2
Can be set arbitrarily within the range of 0% to 10%
A blast-furnace slag fine powder in which slaked lime is replaced within a range of 0%, wherein the number of bags of at least one kind of bag-hardening agent having different substitution rates and / or net weights is appropriately combined and blended. A water-glass suspension type penetrating drug solution.
【請求項3】 水ガラス系の薬液注入工法に用いる懸濁
型硬化剤水溶液中に含まれている消石灰量に対して粉体
換算で約1%から約3%の範囲内で、粉体または液体の
分散剤を添加した懸濁型硬化剤水溶液を、あるいは、袋
入りの硬化剤中に含まれている消石灰量に対して、約1
%から約3%の範囲内で、粉体分散剤を予め添加してあ
る袋入りの硬化剤を用いて配合した水ガラス系の薬液注
入工法に用いる懸濁型硬化剤水溶液を、強制撹拌して、
懸濁型硬化剤水溶液中の消石灰を平均粒径1μm程度の
微細な含水コロイドゲルに変化させることによって浸透
性を向上させ、このような改質を行った懸濁型硬化剤水
溶液を地盤に注入する直前に水ガラス水溶液と混合し、
これを強制撹拌して、微細な含水コロイドゲルを超微細
な含水コロイドゲルに変化させることによって、浸透性
を向上させることを特徴とする請求項1および2記載の
水ガラス系懸濁型浸透性薬液。
3. The amount of slaked lime contained in the aqueous suspension type curing agent solution used in the water glass chemical injection method is within the range of about 1% to about 3% in terms of powder or powder or About 1% of suspension type hardener aqueous solution to which liquid dispersant is added, or the amount of slaked lime contained in the hardener contained in a bag.
% To about 3%, forcibly stirring the suspension-type curing agent aqueous solution used in the water glass-based chemical injection method in which a bag-type curing agent to which a powder dispersant has been added in advance is blended. hand,
Immersion is improved by changing slaked lime in the suspension type hardener aqueous solution into a fine hydrous colloidal gel with an average particle size of about 1 μm, and the suspension type hardener aqueous solution thus modified is injected into the ground. Immediately before mixing with water glass solution,
3. The water glass suspension type penetrability according to claim 1 or 2, wherein the penetration is improved by forcibly stirring this to change the fine hydrous colloidal gel into an ultrafine hydrous colloidal gel. Drug solution.
JP29036994A 1994-11-01 1994-11-01 Penetrating water glass suspension chemical Pending JPH08127775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29036994A JPH08127775A (en) 1994-11-01 1994-11-01 Penetrating water glass suspension chemical

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29036994A JPH08127775A (en) 1994-11-01 1994-11-01 Penetrating water glass suspension chemical

Publications (1)

Publication Number Publication Date
JPH08127775A true JPH08127775A (en) 1996-05-21

Family

ID=17755142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29036994A Pending JPH08127775A (en) 1994-11-01 1994-11-01 Penetrating water glass suspension chemical

Country Status (1)

Country Link
JP (1) JPH08127775A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308612A (en) * 2007-06-15 2008-12-25 Ube Ind Ltd Slag-based grouting material and grouting method using the same
JP2009209522A (en) * 2008-02-29 2009-09-17 Ohbayashi Corp Filler, manufacturing method therefor, and stabilization method for natural ground
JP2023090035A (en) * 2021-12-17 2023-06-29 強化土エンジニヤリング株式会社 Method for estimating long-term strength of chemical improved soil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949284A (en) * 1982-09-16 1984-03-21 Shimoda Gijutsu Kenkyusho:Kk Slag-lime liquid impregnation method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949284A (en) * 1982-09-16 1984-03-21 Shimoda Gijutsu Kenkyusho:Kk Slag-lime liquid impregnation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308612A (en) * 2007-06-15 2008-12-25 Ube Ind Ltd Slag-based grouting material and grouting method using the same
JP2009209522A (en) * 2008-02-29 2009-09-17 Ohbayashi Corp Filler, manufacturing method therefor, and stabilization method for natural ground
JP2023090035A (en) * 2021-12-17 2023-06-29 強化土エンジニヤリング株式会社 Method for estimating long-term strength of chemical improved soil

Similar Documents

Publication Publication Date Title
US5683503A (en) Composition for and method of pumping concrete
Ahari et al. Thixotropy and structural breakdown properties of self consolidating concrete containing various supplementary cementitious materials
Habib et al. Studying the impact of admixtures chemical structure on the rheological properties of silica-fume blended cement pastes using various rheological models
SA01220101B1 (en) Concrete composition and method for its preparation
JP2000128612A (en) Concrete containing aqueous slurry of heavy calcium carbonate
BR112016008673B1 (en) METHOD TO ACHIEVE A FAST RESPONSE TIME OF A POLYCARBOXYLATE ETHER POLYMER IN A CONCRETE MIXTURE
CA2975415C (en) Liquid coloring suspension and colored cementitious composition
Diederich et al. Simple tools for achieving self-compacting ability of concrete according to the nature of the limestone filler
Senff* et al. Rheological characterisation of cement pastes with nanosilica, silica fume and superplasticiser additions
US20090258805A1 (en) Composition for and Method of Pumping Concrete
JPH08127775A (en) Penetrating water glass suspension chemical
JPH08133797A (en) Back-filling grouting material
JPH1161125A (en) Grouting material
JP3706670B2 (en) Foam mortar composition
JPH08169779A (en) Foamed mortar cavity filler
JP3502292B2 (en) Plastic injection material
JPH09118554A (en) High fluidity concrete
JP3575561B2 (en) Ground consolidated material
JPH0841456A (en) Water glass-based suspension type aqueous solution of slow setting hardener and suspension type slow setting agent
JPH09118881A (en) Slurry addition material
JP2901183B2 (en) Slurry and powder of cement hydrate, and cement composition containing these slurries and powder
JPH07324188A (en) Grout for the ground and method for grouting the ground
JPH05280032A (en) Civil-engineering material
JP4070982B2 (en) Neutral solidification material and neutral solidification treatment method
JP2022097977A (en) Method of producing premixed mortar, and premixed mortar

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980623