JPH08126336A - Low-loss snubber circuit for power converter - Google Patents

Low-loss snubber circuit for power converter

Info

Publication number
JPH08126336A
JPH08126336A JP6257843A JP25784394A JPH08126336A JP H08126336 A JPH08126336 A JP H08126336A JP 6257843 A JP6257843 A JP 6257843A JP 25784394 A JP25784394 A JP 25784394A JP H08126336 A JPH08126336 A JP H08126336A
Authority
JP
Japan
Prior art keywords
snubber
self
energy
circuit
power converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6257843A
Other languages
Japanese (ja)
Inventor
Hiroshi Narita
博 成田
Yoshimi Kurotaki
義巳 黒滝
Kenichi Onda
謙一 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6257843A priority Critical patent/JPH08126336A/en
Publication of JPH08126336A publication Critical patent/JPH08126336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE: To improve conversion efficiency of a power converter without increasing the number or the capacity of regenerating means by utilizing the energy stored in a voltage snubber circuit using no regenerating means as the snubber energy of a pair of arms through an energy transferring means consisting of a reactor and a diode. CONSTITUTION: The energy stored in the snubber capacitor CS2 of an upper arm GTO2 is utilized for the recovery of the free wheel diodes DF3 and DF4 of lower arms and for charging a lower-arm snubber circuit through an energy transferring means ET2 composed of a reactor LT2 and diode DT2 when upper arms GTO1 and GTO2 are turned on. The energy stored in the snubber capacitor CS3 of a lower arm GTO3 is utilized for the recovery of the free wheel diodes DF1 and DF2 of upper arms and for charging an upper-arm snubber circuit through an energy transferring means ET1 composed of a reactor LT1 and diode DT1 when lower arms GTO3 and GTO4 are turned on.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数個の自己消弧素子
を用いて構成された電力変換器の低損失スナバ回路に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-loss snubber circuit for a power converter which is constructed by using a plurality of self-turn-off devices.

【0002】[0002]

【従来の技術】複数個の自己消弧素子を用いて電力変換
器を構成し、交流から直流或いは直流から交流等に電力
変換する装置は、多くの分野で用いられている。特に、
GTOサイリスタを用いた電圧型インバータは電気鉄道
や圧延機・電力の分野で実用化が進み、ますます大容量
化・高周波化が図られているが、このためGTOサイリ
スタの電圧・電流責務を軽減するために設けられている
電圧スナバ回路(コンデンサ等で構成され、GTOに並
列接続されるスナバ回路)及び電流スナバ回路(リアク
トル等で構成され、GTOに直列接続されるスナバ回
路)の抵抗損失(従来、これ等回路の蓄積エネルギは抵
抗で消費されていた)が多くなり、その低減が非常に重
要な問題となっている。
2. Description of the Related Art An apparatus for constructing a power converter using a plurality of self-extinguishing elements and converting power from alternating current to direct current or from direct current to alternating current is used in many fields. In particular,
Voltage-type inverters that use GTO thyristors are being put to practical use in the fields of electric railways, rolling mills, and electric power, and are being made even larger in capacity and higher in frequency. Resistance loss of a voltage snubber circuit (a snubber circuit configured by a capacitor or the like and connected in parallel to the GTO) and a current snubber circuit (a snubber circuit configured by a reactor or the like and connected in series with the GTO) provided for Conventionally, the energy stored in these circuits has been consumed by resistance, and the reduction thereof has become a very important problem.

【0003】そこで、これ等電圧・電流スナバ回路の抵
抗損失を低減した、いわゆる低損失のスナバ回路(以
下、低損失スナバ回路と呼称する)がいろいろと考えら
れている。
Therefore, various so-called low-loss snubber circuits (hereinafter referred to as low-loss snubber circuits) in which the resistance loss of these voltage / current snubber circuits is reduced are considered variously.

【0004】例えば、図3は、電圧・電流スナバ回路の
蓄積エネルギを直流電源に回生する手段を備えた従来の
低損失スナバ回路を示すもので、3相電圧型インバータ
への適用例を一相分回路図で示してある。
For example, FIG. 3 shows a conventional low-loss snubber circuit provided with a means for regenerating the stored energy of the voltage / current snubber circuit to a DC power source. One example of application to a three-phase voltage type inverter is shown in FIG. It is shown in a circuit diagram.

【0005】図3において、GTO1,GTO2は自己
消弧素子の一例としてGTOサイリスタを適用してあ
る。PとNは直流電源の正と負の端子、CFは電源フィ
ルタコンデンサでUP,UNがU相の正負配線、またV
P,VN及びWP,WNはそれぞれV相とW相の正負配
線を示すものである。一相分回路を示すU相において、
LA1,LA2はそれぞれGTO1,GTO2に直列接
続されたアノードリアクトル(電流スナバ回路を構
成)、CS1とDS1,CS2とDS2はそれぞれGT
O1,GTO2に並列接続されたスナバコンデンサとダ
イオード(電圧スナバ回路を構成)、DF1,DF2は
それぞれGTO1,GTO2に並列接続されたフリーホ
ィールダイオード、DR1とCR1,DR2とCR2は
電圧・電流スナバ回路の蓄積エネルギをGTO1,GT
O2のオン,オフ制御に応じて、一旦、蓄電する回路を
構成するためのダイオードとコンデンサである。Rg
1,Rg2は蓄電用コンデンサCR1,CR2のエネル
ギを直流電源に回生する手段で、ここではそれぞれ自己
消弧素子GTOg1とリアクトルLg1及びダイオード
Dg1,自己消弧素子GTOg2とリアクトルLg2及び
ダイオードDg2で構成されるチョッパ回路としてあ
る。
In FIG. 3, GTO1 and GTO2 are GTO thyristors as an example of self-extinguishing elements. P and N are positive and negative terminals of the DC power supply, CF is a power supply filter capacitor, and UP and UN are U-phase positive and negative wirings, and V
P, VN and WP, WN respectively indicate positive and negative wirings of V phase and W phase. In the U phase showing the circuit for one phase,
LA1 and LA2 are anode reactors (constituting a current snubber circuit) connected in series to GTO1 and GTO2, respectively, and CS1 and DS1 and CS2 and DS2 are GT, respectively.
Snubber capacitors and diodes connected in parallel to O1 and GTO2 (configure voltage snubber circuit), DF1 and DF2 are freewheel diodes connected in parallel to GTO1 and GTO2, respectively, and DR1 and CR1, DR2 and CR2 are voltage and current snubber circuits. Stored energy of GTO1, GT
These are a diode and a capacitor for forming a circuit for temporarily storing electricity according to on / off control of O2. Rg
Reference numerals 1 and Rg2 are means for regenerating the energy of the storage capacitors CR1 and CR2 to the DC power supply, and here, the self-extinguishing element GTOg1, the reactor Lg1 and the diode, respectively.
This is a chopper circuit composed of Dg1, a self-extinguishing element GTOg2, a reactor Lg2, and a diode Dg2.

【0006】ここで、電圧・電流スナバ回路蓄積エネル
ギの回生動作について、上アームを例に簡単に述べる。
上アームスナバコンデンサCS1の蓄積エネルギはGT
O1がターンオンするとCS1−CR1−LA1−GT
O1−CS1の閉回路で、また上アームアノードリアク
トルLA1の蓄積エネルギはGTO1をターンオフする
とLA1−DS1−DR1−CR1−LA1の閉回路で
蓄電用コンデンサCR1に蓄電される。この蓄電用コンデ
ンサCR1の蓄積エネルギを、回生手段Rg1の自己消
弧素子GTOg1のオンオフ制御によるチョッパ動作、
つまりGTOg1 のオンでリアクトルLg1にエネルギを蓄
え、GTOg1のオフでそのリアクトルLg1のエネル
ギをダイオードDg1を介して電源側のフイルタコンデ
ンサCFに回収するものである。なお、下アームの回生
動作についても同様に考えられる。
Here, the regenerative operation of the energy stored in the voltage / current snubber circuit will be briefly described by taking the upper arm as an example.
The stored energy of the upper arm snubber capacitor CS1 is GT
When O1 turns on, CS1-CR1-LA1-GT
The energy stored in the closed circuit of O1-CS1 and in the upper arm anode reactor LA1 is stored in the storage capacitor CR1 in the closed circuit of LA1-DS1-DR1-CR1-LA1 when GTO1 is turned off. The energy stored in the storage capacitor CR1 is used for the chopper operation by the on / off control of the self-extinguishing element GTOg1 of the regenerative means Rg1.
That is, when GTOg1 is turned on, energy is stored in the reactor Lg1, and when GTOg1 is turned off, the energy of the reactor Lg1 is recovered to the power supply side filter capacitor CF via the diode Dg1. The regenerative operation of the lower arm can be considered in the same way.

【0007】ところで、このような低損失スナバ回路
を、電圧型インバータの各上下アームが自己消弧素子を
2個直列接続した構成の回路に適用することを考える
と、図4に示す回路となる。即ち、図3の従来回路に対
して、自己消弧素子であるGTOサイリスタが各上下ア
ームにおいて一個ずつ増え、上アームがGTO1とGTO2
の直列接続、下アームがGTO3とGTO4の直列接続
で構成され、GTO1が図3の従来実施例のGTO1
に、またGTO4が図3の従来実施例のGTO2に相当
させてある。従ってGTO1のオンオフ制御によるアノ
ードリアクトルLA1及びスナバコンデンサCS1の蓄
積エネルギ回生動作、及びGTO4のオンオフ制御によ
るアノードリアクトルLA2及びスナバコンデンサCS
4の蓄積エネルギ回生動作は、図3の従来回路例と同じ
ように回生手段Rg1及びRg2によって行われる。し
かし、各上下アーム内側GTOのスナバコンデンサCS
2とCS3の蓄積エネルギは、このままでは抵抗Rで消費
されるので、回生手段がもう一組以上必要となる。
By the way, considering that such a low-loss snubber circuit is applied to a circuit in which each upper and lower arm of a voltage type inverter has two self-extinguishing elements connected in series, the circuit shown in FIG. 4 is obtained. . That is, in comparison with the conventional circuit of FIG. 3, the number of GTO thyristors, which are self-extinguishing elements, is increased by one in each of the upper and lower arms, and the upper arms are GTO1 and GTO2.
, And the lower arm is composed of GTO3 and GTO4 connected in series, and GTO1 is the GTO1 of the conventional embodiment shown in FIG.
Further, the GTO 4 is made to correspond to the GTO 2 of the conventional embodiment shown in FIG. Therefore, the stored energy of the anode reactor LA1 and the snubber capacitor CS1 is controlled by the ON / OFF control of the GTO1, and the anode reactor LA2 and the snubber capacitor CS is controlled by the ON / OFF control of the GTO4.
The stored energy regeneration operation of No. 4 is performed by the regeneration means Rg1 and Rg2 as in the conventional circuit example of FIG. However, the snubber capacitor CS of the GTO inside each upper and lower arms
Since the stored energy of 2 and CS3 is consumed by the resistor R as it is, another set of regenerating means is required.

【0008】[0008]

【発明が解決しようとする課題】このように、図3の従
来回路では、GTOの電圧・電流スナバ回路の蓄積エネ
ルギを二組の回生手段で直流電源に回生できるので、低
損失で非常に変換効率のよい電力変換器とすることがで
きるが、図4の従来回路では、回生手段が三組以上も必
要で、特にゲートドライバーやスナバ等付属装置が必要
な自己消弧素子が三組以上も必要となるので、回生手段
が複雑・高価となる。このため、電力変換器も高価なも
のとなる。なお、図3と図4で示した回生手段はチョッ
パ回路で示したが、例えば変圧器を用いたDC−DCコ
ンバータ回路としてもトランジスタ等の自己消弧素子が
複数個必要で、やはり複雑・高価となることは避けられ
ない。
As described above, in the conventional circuit of FIG. 3, the energy stored in the voltage / current snubber circuit of the GTO can be regenerated to the DC power source by the two sets of regenerating means, so that it can be converted with a low loss. Although it can be an efficient power converter, the conventional circuit of FIG. 4 requires three or more sets of regenerative means, especially three or more sets of self-extinguishing elements that require auxiliary devices such as gate drivers and snubbers. Since it is necessary, the regenerating means becomes complicated and expensive. Therefore, the power converter also becomes expensive. Although the regenerative means shown in FIGS. 3 and 4 is shown as a chopper circuit, a DC-DC converter circuit using a transformer, for example, requires a plurality of self-extinguishing elements such as transistors, which is also complicated and expensive. It is inevitable that

【0009】この問題は、電力変換器の大容量化・高周
波化が進むほど回生手段の台数が増え、かつ大容量とな
るので、電力変換器はますます高価のものとなる。この
ため、回生手段の単純化,価格低減が非常に重要な課題
となる。
The problem is that as the capacity and frequency of the power converter increase, the number of regenerative means increases and the capacity increases, so the power converter becomes more expensive. For this reason, simplification of regenerative means and price reduction are very important issues.

【0010】本発明の目的は、複数個の自己消弧素子で
構成された電力変換器において、電圧・電流スナバ回路
の蓄積エネルギ回生手段を必要以上にふやすことなく、
もって複雑・高価にすることなく構成できる低損失スナ
バ回路を提供することにある。
An object of the present invention is, in a power converter composed of a plurality of self-extinguishing elements, without increasing the stored energy regeneration means of a voltage / current snubber circuit more than necessary.
An object of the present invention is to provide a low-loss snubber circuit that can be configured without making it complicated and expensive.

【0011】[0011]

【課題を解決するための手段】本発明は、複数個の自己
消弧素子で構成された電力変換器において、電圧・電流
スナバ回路の蓄積エネルギ回生を自己消弧素子で構成さ
れた回生手段で行うと共に、該回生手段が接続されてい
ない他の電圧スナバ回路の蓄積エネルギをリアクトルと
ダイオードで構成されるエネルギ転送手段を介して対ア
ームのスナバエネルギ供給に利用することにある。
SUMMARY OF THE INVENTION The present invention relates to a power converter composed of a plurality of self-extinguishing elements, in which the energy stored in a voltage / current snubber circuit is regenerated by self-extinguishing elements. At the same time, the stored energy of another voltage snubber circuit to which the regeneration means is not connected is utilized for snubber energy supply to the pair of arms via the energy transfer means composed of a reactor and a diode.

【0012】[0012]

【作用】このため、回生手段を設けない電圧スナバ回路
の蓄積エネルギをリアクトルやダイオードで構成される
エネルギ転送手段を介して対アームのスナバエネルギ供
給に利用することができるので、複雑・高価な自己消弧
素子で構成された回生手段の台数や容量をふやすことな
く、変換効率のよい電力変換器とすることができる。
Therefore, the stored energy of the voltage snubber circuit without the regeneration means can be utilized for the snubber energy supply of the anti-arm via the energy transfer means composed of the reactor and the diode, so that the complicated and expensive self A power converter with good conversion efficiency can be obtained without increasing the number or capacity of the regenerative means composed of arc extinguishing elements.

【0013】[0013]

【実施例】図1は本発明の低損失スナバ回路の一実施例
を示すもので、図4の従来回路に適用した例である。図
1の実施例では、図4の従来回路と同様に、上アームが
GTO1とGTO2の直列接続、下アームがGTO3と
GTO4の直列接続で構成され、GTO1のオンオフ制
御によるアノードリアクトルLA1及びスナバコンデン
サCS1の蓄積エネルギ回生動作、及びGTO4のオン
オフ制御によるアノードリアクトルLA2及びスナバコ
ンデンサCS4の蓄積エネルギ回生動作は、図3の従来
回路例と同じように回生手段Rg1及びRg2によって
行われる。一方、本発明では、上アームGTO2のスナ
バコンデンサCS2の蓄積エネルギは、上アームGTO
1,GTO2のターンオン時にリアクトルLT2,ダイ
オードDT2で構成されるエネルギ転送手段ET2を介
して、それ迄フリホィール状態にあった下アームフリー
ホィールダイオードDF3,DF4のリカバリと下アー
ムスナバ回路の充電に利用する。また、GTO3のスナ
バコンデンサCS3の蓄積エネルギは、下アームGTO
3,GTO4のターンオン時にリアクトルLT1,ダイ
オードDT1で構成されるエネルギ転送手段ET1を介
して、それ迄フリホィール状態にあった上アームフリー
ホィールダイオードDF1,DF2のリカバリと上アー
ムスナバ回路の充電に利用する。このように図1の実施
例によれば、図3の従来回路例に追加された2個のGT
Oのスナバコンデンサ蓄積エネルギを、自己消弧素子で
構成された回生手段の容量や数を増やすことなく、対ア
ームフリーホィールダイオードのリカバリと上アームス
ナバ回路の充電に利用することが出来る効果がある。な
お、本実施例では、軽負荷時の対アームフリーホィール
ダイオードのリカバリが行われない時のために、図に点
線で示した抵抗R(通常のスナバ抵抗より大きな値)を
接続しておき、該抵抗Rで消費させることも考えられ
る。
1 shows an embodiment of a low-loss snubber circuit according to the present invention, which is an example applied to the conventional circuit of FIG. In the embodiment shown in FIG. 1, similarly to the conventional circuit shown in FIG. 4, the upper arm is composed of GTO1 and GTO2 connected in series and the lower arm is composed of GTO3 and GTO4 connected in series, and the anode reactor LA1 and the snubber capacitor are controlled by the ON / OFF control of GTO1. The stored energy regeneration operation of CS1 and the stored energy regeneration operation of the anode reactor LA2 and the snubber capacitor CS4 by the ON / OFF control of the GTO 4 are performed by the regeneration means Rg1 and Rg2 as in the conventional circuit example of FIG. On the other hand, in the present invention, the energy stored in the snubber capacitor CS2 of the upper arm GTO2 is equal to the upper arm GTO2.
1, when the GTO2 is turned on, it is used for recovery of the lower arm free wheel diodes DF3, DF4 and charging of the lower arm snubber circuit which have been in the freewheel state through the energy transfer means ET2 composed of the reactor LT2 and the diode DT2. In addition, the energy stored in the snubber capacitor CS3 of the GTO3 is
3, when the GTO 4 is turned on, it is used for recovery of the upper arm free wheel diodes DF1 and DF2, which were in the freewheel state until then, and charging of the upper arm snubber circuit, through the energy transfer means ET1 composed of the reactor LT1 and the diode DT1. As described above, according to the embodiment of FIG. 1, the two GTs added to the conventional circuit example of FIG.
There is an effect that the energy stored in the snubber capacitor of O can be used for the recovery of the anti-arm freewheel diode and the charging of the upper arm snubber circuit without increasing the capacity or the number of the regenerative means composed of the self-extinguishing element. In this embodiment, in order to prevent the recovery of the anti-arm freewheel diode at light load, the resistor R shown by the dotted line in the figure (value larger than the normal snubber resistor) is connected, It is also conceivable to consume the resistance R.

【0014】以上、図1の本実施例によれば、上下アー
ムを構成する自己消弧素子の直列接続数が多くなった場
合でも、電圧・電流スナバ回路の蓄積エネルギ回生を自
己消弧素子で構成された回生手段で行うと共に、回生手
段が接続されていない他の電圧スナバ回路の蓄積エネル
ギをリアクトルとダイオードで構成されるエネルギ転送
手段を介して対アームのスナバエネルギ供給等に利用出
来るので、自己消弧素子で構成された回生手段の容量や
数を増やすことなく、回生手段を安価に、つまり電力変
換器を安価にできる。
As described above, according to this embodiment of FIG. 1, even if the number of self-extinguishing elements forming the upper and lower arms is increased in series, the self-extinguishing element can regenerate the stored energy of the voltage / current snubber circuit. Since it is performed by the configured regenerative means, the stored energy of the other voltage snubber circuit to which the regenerative means is not connected can be used for the snubber energy supply of the anti-arm via the energy transfer means composed of the reactor and the diode. The regenerating means can be made inexpensive, that is, the power converter can be made inexpensive, without increasing the capacity or the number of the regenerating means composed of the self-extinguishing element.

【0015】図2は本発明の低損失スナバ回路の更に他
の実施例を示すもので、3レベル電圧型インバータ回路
への適用例である。3レベル電圧型インバータの動作に
ついては公知(例えば特開昭55−43996 号公報)なので省
略する。図2の本発明実施例では、上下アームの電圧・
電流スナバ回路の蓄積エネルギ回生を行う自己消弧素子
で構成された回生手段及び他の電圧スナバ回路の蓄積エ
ネルギを対アームのスナバエネルギ供給等に利用するエ
ネルギ転送手段の接続を、図1の実施例と同じにしてあ
る。そして、GTO1のオンオフ制御によるアノードリ
アクトルLA1及びスナバコンデンサCS1の蓄積エネ
ルギ回生動作、及びGTO4のオンオフ制御によるアノ
ードリアクトルLA2及びスナバコンデンサCS4の蓄
積エネルギ回生動作は、図1の実施例と同じように回生
手段Rg1及びRg2によって行われる。また、GTO
2或いはGTO3のオン時に、対アームのGTO3或い
はGTO2のスナバコンデンサCS3,CS2の蓄積エ
ネルギをエネルギ転送手段ET1,ET2を介してそれ
ぞれ対アームのスナバエネルギ供給等に利用する動作
は、図1の実施例と同じように行われる。
FIG. 2 shows still another embodiment of the low-loss snubber circuit of the present invention, which is an example of application to a three-level voltage type inverter circuit. The operation of the three-level voltage type inverter is publicly known (for example, Japanese Patent Laid-Open No. 55-43996) and will not be described. In the embodiment of the present invention shown in FIG. 2, the voltage of the upper and lower arms
As shown in FIG. 1, the connection of the regenerative means constituted by the self-extinguishing element for regenerating the stored energy of the current snubber circuit and the energy transfer means for utilizing the stored energy of the other voltage snubber circuit for the snubber energy supply of the anti-arm is implemented. Same as the example. The stored energy regenerating operation of the anode reactor LA1 and the snubber capacitor CS1 by the ON / OFF control of the GTO1 and the stored energy regenerating operation of the anode reactor LA2 and the snubber capacitor CS4 by the ON / OFF control of the GTO4 are regenerated as in the embodiment of FIG. By means Rg1 and Rg2. Also, GTO
2 or when the GTO3 is turned on, the stored energy of the snubber capacitors CS3, CS2 of the GTO3 or GTO2 of the opposite arm is used to supply the snubber energy of the opposite arm via the energy transfer means ET1, ET2. The same is done as in the example.

【0016】以上、図2の本実施例によれば、図1の実
施例と同様に、電力変換装置を安価にできる。
As described above, according to the present embodiment shown in FIG. 2, the power conversion device can be made inexpensive as in the embodiment shown in FIG.

【0017】[0017]

【発明の効果】本発明によれば、複数個の自己消弧素子
で構成された電力変換装置において、複数個の自己消弧
素子に接続される電圧・電流スナバ回路の蓄積エネルギ
回生手段を必要以上に複雑,高価にすることなく構成で
き、電力変換装置を安価にできる。
According to the present invention, in the power conversion device composed of a plurality of self-extinguishing elements, the stored energy regenerating means of the voltage / current snubber circuit connected to the plurality of self-extinguishing elements is required. As described above, the power conversion device can be inexpensive because it can be configured without making it complicated and expensive.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による低損失スナバの一実施例の回路
図。
FIG. 1 is a circuit diagram of an embodiment of a low-loss snubber according to the present invention.

【図2】本発明による低損失スナバの他の実施例の回路
図。
FIG. 2 is a circuit diagram of another embodiment of the low loss snubber according to the present invention.

【図3】従来の低損失スナバの回路図。FIG. 3 is a circuit diagram of a conventional low-loss snubber.

【図4】従来の低損失スナバの他の回路図。FIG. 4 is another circuit diagram of a conventional low-loss snubber.

【符号の説明】[Explanation of symbols]

P…直流電源の正側端子、N…直流電源の負側端子、U
P…U相の正側電源配線、UN…U相の負側電源配線、
VP…V相の正側電源配線、VN…V相の負側電源配
線、WP…W相の正側電源配線、WN…W相の負側電源
配線。
P ... DC power source positive side terminal, N ... DC power source negative side terminal, U
P ... U-phase positive side power supply wiring, UN ... U-phase negative side power supply wiring,
VP ... V phase positive side power supply wiring, VN ... V phase negative side power supply wiring, WP ... W phase positive side power supply wiring, WN ... W phase negative side power supply wiring.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】直流電源と、リアクトルから成る電流スナ
バが直列接続され、またコンデンサとダイオードの直列
体から成る第一の電圧スナバが並列接続された第一の自
己消弧素子と前記構成の第二の電圧スナバが並列接続さ
れた第二の自己消弧素子との直列体でそれぞれ上下アー
ムを構成した電力変換器において、前記上下アームのそ
れぞれの第一の自己消弧素子における電流・電圧スナバ
の蓄積エネルギをそれぞれ蓄電するエネルギ蓄電用コン
デンサと前記エネルギ蓄電用コンデンサに並列接続され
る自己消弧素子より成る蓄電エネルギ回生手段、上下ア
ームそれぞれの第二の自己消弧素子における電圧スナバ
の蓄積エネルギを前記第二の自己消弧素子のターンオン
時にそれぞれリアクトルとダイオードから構成されるエ
ネルギ転送手段を介して対アームのスナバエネルギ供給
に利用することを特徴とする電力変換器の低損失スナバ
回路。
1. A first self-extinguishing element in which a DC power supply and a current snubber composed of a reactor are connected in series, and a first voltage snubber composed of a series body of a capacitor and a diode is connected in parallel, and a first self-extinguishing element of the above construction. In a power converter in which upper and lower arms are respectively formed of a series body of a second voltage snubber and a second self-extinguishing element connected in parallel, a current / voltage snubber in each of the first self-extinguishing elements of the upper and lower arms is provided. Stored energy of each of the stored energy and a stored energy regenerating means comprising a self-extinguishing element connected in parallel with the energy storage capacitor, and stored energy of a voltage snubber in the second self-extinguishing element of each of the upper and lower arms. An energy transfer means composed of a reactor and a diode when the second self-extinguishing element is turned on. Low-loss snubber circuit for a power converter which is characterized by utilizing a snubber energy supply of the pair arms and.
【請求項2】請求項2において、前記直流電源は2分割
され、分割点よりダイオードをそれぞれ前記上下アーム
における第一と第二の自己消弧素子の接続点に接続した
3レベル型電力変換器から成る電力変換器の低損失スナ
バ回路。
2. The three-level power converter according to claim 2, wherein the DC power supply is divided into two, and diodes are respectively connected from the dividing points to connection points of the first and second self-extinguishing elements in the upper and lower arms. Power converter low loss snubber circuit consisting of.
JP6257843A 1994-10-24 1994-10-24 Low-loss snubber circuit for power converter Pending JPH08126336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6257843A JPH08126336A (en) 1994-10-24 1994-10-24 Low-loss snubber circuit for power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6257843A JPH08126336A (en) 1994-10-24 1994-10-24 Low-loss snubber circuit for power converter

Publications (1)

Publication Number Publication Date
JPH08126336A true JPH08126336A (en) 1996-05-17

Family

ID=17311924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6257843A Pending JPH08126336A (en) 1994-10-24 1994-10-24 Low-loss snubber circuit for power converter

Country Status (1)

Country Link
JP (1) JPH08126336A (en)

Similar Documents

Publication Publication Date Title
JP3663455B2 (en) Solar power converter
JP2521698B2 (en) Snubber energy regeneration circuit
JPS58151877A (en) Inverter device
JPH0435994B2 (en)
CN111884534A (en) Multi-level boost inverter circuit based on switch capacitor and flying capacitor
JPH08126336A (en) Low-loss snubber circuit for power converter
JPH0847260A (en) Low loss snubber circuit of power converter
CN113258804A (en) Five-level photovoltaic inverter capable of reducing number of switching tubes and modulation method thereof
JPH1169501A (en) Controller for electric car
CN113328454A (en) Flexible multi-state switch, flexible alternating current-direct current interconnection system and control method
CN217427743U (en) Multiphase annular battery energy storage system
JPH07337028A (en) Low loss snubber circuit for power converter
JP2807284B2 (en) Snubber circuit
JP3170368B2 (en) Inverter device
JPH0444510B2 (en)
CN217216396U (en) Single-phase voltage source energy storage power module and capacitor energy storage voltage source converter thereof
JPH06189444A (en) Low loss snubber circuit of power converter
JPH0731158A (en) Snubber energy recovery circuit for power converter
JP2576183Y2 (en) Self-excited converter
JPH0767353A (en) Snubber energy regenerative circuit for three-level inverter
JP2555621B2 (en) Inverter energy recovery circuit
JPH04308474A (en) Inverter unit
JP2024501980A (en) Bidirectional DC/AC power conversion system with multiple DC links
KR0132187B1 (en) Inverter snubber circuit
JP3290826B2 (en) Voltage source self-excited converter