JPH0847260A - Low loss snubber circuit of power converter - Google Patents

Low loss snubber circuit of power converter

Info

Publication number
JPH0847260A
JPH0847260A JP6176451A JP17645194A JPH0847260A JP H0847260 A JPH0847260 A JP H0847260A JP 6176451 A JP6176451 A JP 6176451A JP 17645194 A JP17645194 A JP 17645194A JP H0847260 A JPH0847260 A JP H0847260A
Authority
JP
Japan
Prior art keywords
capacitor
energy
self
snubber
stored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6176451A
Other languages
Japanese (ja)
Inventor
Hiroshi Narita
博 成田
Yoshimi Kurotaki
義巳 黒滝
Kenichi Onda
謙一 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6176451A priority Critical patent/JPH0847260A/en
Publication of JPH0847260A publication Critical patent/JPH0847260A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

PURPOSE:To constitute a regenerating means simply and at a low cost by a method wherein the energy stored in a snubber circuit is stored in a regenerative energy storing capacitor to which a regenerated energy is supplied by the regenerating means through an energy transfer means. CONSTITUTION:The energy stored in a snubber capacitor CS2 is stored in a capacitor CT through a transfer means composed of a reactor LT, the capacitor CT and a diode DT when a GTO thyristor GTO2 is turned on. Then the energy is stored in a regenerative energy storing capacitor CR to which a regenerating means Rg composed of a self-extinguishing device is connected through a regenerative energy storing diode DR2 when a GTO thyristor GTO1 is turned on. Further, the energy stored in an anode reactor LA1 and a snubber capacitor CS1 is stored in the regenerative energy storing capacitor CR by the on-off control of the GTO thyristor GTO1 and collected into a DC power supply by the regenerating means Rg. As a result, the regenerating means can be constituted simply and at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数個の自己消弧素子
を用いて構成された電力変換器の低損失スナバ回路に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-loss snubber circuit for a power converter which is constructed by using a plurality of self-turn-off devices.

【0002】[0002]

【従来の技術】複数個の自己消弧素子を用いて電力変換
器を構成し、直流から直流あるいは直流から交流等に電
力変換する装置は、多くの分野で用いられている。特
に、GTOサイリスタを用いた電圧型インバータは電気鉄
道や圧延機・電力の分野で実用化が進み、ますます大容
量化・高周波化が図られているが、このためGTOサイ
リスタの電圧・電流責務を軽減するために設けられてい
る電圧スナバ回路(コンデンサ等で構成され、GTOに
並列接続されるスナバ回路)及び電流スナバ回路(リア
クトル等で構成され、GTOに直列接続されるスナバ回
路)の抵抗損失(従来、これ等回路の蓄積エネルギーは
抵抗で消費されていた)が多くなり、その低減が非常に
重要な問題となっている。
2. Description of the Related Art An apparatus for constructing a power converter using a plurality of self-extinguishing elements and converting power from direct current to direct current or from direct current to alternating current is used in many fields. In particular, voltage-type inverters using GTO thyristors are being put to practical use in the fields of electric railways, rolling mills, and electric power, and are becoming larger in capacity and higher in frequency. Resistance of the voltage snubber circuit (which is composed of a capacitor and is connected in parallel to the GTO) and the current snubber circuit (which is composed of a reactor and which is connected in series to the GTO) provided to reduce the Losses (conventionally, the energy stored in these circuits has been consumed by resistors) have increased, and their reduction has become a very important issue.

【0003】そこで、これ等電圧・電流スナバ回路の抵
抗損失を低減した、いわゆる低損失のスナバ回路(以
下、低損失スナバ回路と呼称する)がいろいろと考えら
れている。
Therefore, various so-called low-loss snubber circuits (hereinafter referred to as low-loss snubber circuits) in which the resistance loss of these voltage / current snubber circuits is reduced are considered variously.

【0004】例えば、図2は、上記電圧・電流スナバ回
路の蓄積エネルギーを直流電源に回生する手段を備えた
従来の低損失スナバ回路を示すもので、3相電圧型イン
バータへの適用例を一相分回路図で示してある。
For example, FIG. 2 shows a conventional low-loss snubber circuit provided with a means for regenerating the stored energy of the voltage / current snubber circuit to a DC power source. An example of application to a three-phase voltage type inverter is shown in FIG. It is shown in a phase diagram.

【0005】図2において、GTO1,GTO2は自己
消弧素子の一例としてGTOサイリスタを適用してあ
る。PとNは直流電源の正と負の端子、CFは電源フィ
ルタコンデンサでUP,UNがU相の正負配線、またV
P,VN及びWP,WNは夫れ夫れV相とW相の正負配
線を示すものである。一相分回路を示すU相において、
LA1,LA2は夫れ夫れGTO1,GTO2に直列接
続されたアノードリアクトル(電流スナバ回路を構
成)、CS1とDS1,CS2とDS2は夫れ夫れGT
O1,GTO2に並列接続されたスナバコンデンサとス
ナバダイオード(電圧スナバ回路を構成)、DF1,D
F2は夫れ夫れGTO1,GTO2に並列接続されたフ
リーホィールダイオード、DR1とCR1,DR2とC
R2は上記電圧・電流スナバ回路の蓄積エネルギーをG
TO1,GTO2のオン,オフ制御に応じて一旦蓄電す
る回路を構成するためのダイオードとコンデンサであ
る。Rg1,Rg2は上記蓄電用コンデンサCR1,C
R2のエネルギーを直流電源に回生する手段で、ここで
は夫れ夫れ自己消弧素子GTOg1とリアクトルLg1
及びダイオードDg1,自己消弧素子GTOg2とリア
クトルLg2及びダイオードDg2で構成されるチョッ
パ回路としてある。
In FIG. 2, GTO1 and GTO2 are GTO thyristors as an example of self-extinguishing elements. P and N are positive and negative terminals of the DC power supply, CF is a power supply filter capacitor, and UP and UN are U-phase positive and negative wirings, and V
P, VN and WP, WN respectively indicate positive and negative wirings of V phase and W phase. In the U phase showing the circuit for one phase,
LA1 and LA2 are the anode reactors (current snubber circuit) serially connected to GTO1 and GTO2, and CS1 and DS1 and CS2 and DS2 are GT.
Snubber capacitors and snubber diodes (which make up a voltage snubber circuit) connected in parallel to O1 and GTO2, DF1 and D
F2 is a freewheel diode connected in parallel with GTO1 and GTO2, DR1 and CR1, DR2 and C
R2 is the energy stored in the voltage / current snubber circuit
A diode and a capacitor for forming a circuit for temporarily storing electricity according to ON / OFF control of TO1 and GTO2. Rg1 and Rg2 are the storage capacitors CR1 and C
A means for regenerating the energy of R2 to a DC power supply. Here, the self-extinguishing element GTOg1 and the reactor Lg1 are provided.
And a diode Dg1, a self-extinguishing element GTOg2, a reactor Lg2 and a diode Dg2.

【0006】ここで、上記電圧・電流スナバ回路蓄積エ
ネルギーの回生動作について、上アームを例に簡単に述
べる。上アームスナバコンデンサCS1の蓄積エネルギ
ーはGTO1がターンオンするとCS1−CR1−LA
1−GTO1−CS1の閉回路で、また上アームアノー
ドリアクトルLA1の蓄積エネルギーはGTO1をター
ンオフするとLA1−DS1−DR1−CR1−LA1
の閉回路で蓄電用コンデンサCR1に蓄電される。この
蓄電用コンデンサCR1の蓄積エネルギーを、回生手段
Rg1の自己消弧素子GTOg1のオンオフ制御による
チョッパ動作、つまりGTOg1のオンでリアクトルL
g1にエネルギーを蓄え、GTOg1のオフでそのリア
クトルLg1のエネルギーをダイオードDg1を介して
電源フィルタコンデンサCFに回収するものである。な
お、下アームの回生動作についても同様に考えられる。
Here, the regenerative operation of the energy stored in the voltage / current snubber circuit will be briefly described by taking the upper arm as an example. The energy stored in the upper arm snubber capacitor CS1 is CS1-CR1-LA when GTO1 is turned on.
1-GTO1-CS1 closed circuit, and the stored energy of the upper arm anode reactor LA1 is LA1-DS1-DR1-CR1-LA1 when GTO1 is turned off.
The closed circuit is used to store electricity in the electricity storage capacitor CR1. The stored energy of the storage capacitor CR1 is used for the chopper operation by the on / off control of the self-extinguishing element GTOg1 of the regenerative means Rg1, that is, when the GTOg1 is turned on, the reactor L is turned on.
Energy is stored in g1, and when the GTOg1 is turned off, the energy of the reactor Lg1 is recovered in the power supply filter capacitor CF via the diode Dg1. The regenerative operation of the lower arm can be considered in the same way.

【0007】[0007]

【発明が解決しようとする課題】このように、図2の従
来回路では、GTOの電圧・電流スナバ回路蓄積エネル
ギーを直流電源に回生できるので、低損失で非常に変換
効率のよい電力変換器とすることができる特徴がある
が、一方で回生手段が二組必要で、特にゲートドライバ
ーやスナバ等付属装置が必要な自己消弧素子が二組も必
要なので回生手段が複雑・高価となる。このため、電力
変換器も高価なものとなる。なお、図2の回生手段はチ
ョッパ回路で示したが、例えば変圧器を用いたDC−D
Cコンバータ回路としてもトランジスタ等の自己消弧素
子が複数個必要で、やはり複雑・高価となることは避け
られない。
As described above, in the conventional circuit of FIG. 2, since the energy stored in the voltage / current snubber circuit of the GTO can be regenerated to the DC power source, a power converter with low loss and very high conversion efficiency can be obtained. On the other hand, two sets of regenerative means are required, and in particular, two sets of self-extinguishing elements that require auxiliary devices such as a gate driver and a snubber are also required, which makes the regenerating means complicated and expensive. Therefore, the power converter also becomes expensive. Although the regenerative means of FIG. 2 is shown as a chopper circuit, for example, a DC-D using a transformer is used.
The C converter circuit also requires a plurality of self-extinguishing elements such as transistors, which inevitably becomes complicated and expensive.

【0008】この問題は、電力変換器の大容量化・高周
波化が進むほど上記回生手段の台数が増え、かつ大容量
となるので、電力変換器はますます高価のものとなる。
このため、回生手段の単純化,価格低減が非常に重要な
課題となる。
The problem is that as the capacity and frequency of the power converter increase, the number of the above-mentioned regenerative means increases and the capacity increases, so that the power converter becomes more expensive.
For this reason, simplification of regenerative means and price reduction are very important issues.

【0009】本発明の目的は、上記に鑑み、複数個の自
己消弧素子で構成された電力変換器において、上記した
電圧・電流スナバ回路の蓄積エネルギー回生手段を必要
以上に複雑・高価にすることなく構成できる低損失スナ
バ回路を提供することにある。
In view of the above, an object of the present invention is to make the stored energy regenerating means of the voltage / current snubber circuit in the power converter constituted by a plurality of self-extinguishing elements unnecessarily complicated and expensive. It is to provide a low-loss snubber circuit that can be configured without any need.

【0010】[0010]

【課題を解決するための手段】本発明は、複数個の自己
消弧素子で構成された電力変換器において、上記した電
圧・電流スナバ回路の蓄積エネルギー回生を、自己消弧
素子で構成された回生手段と該自己消弧素子で構成され
た回生手段が接続される回生エネルギー蓄電用コンデン
サに、他のスナバ回路の蓄積エネルギーをコンデンサや
リアクトルなどで構成されるエネルギー転送手段を介し
て蓄電することにある。
According to the present invention, in a power converter composed of a plurality of self-extinguishing elements, the stored energy regeneration of the above voltage / current snubber circuit is composed of self-extinguishing elements. To store the energy stored in another snubber circuit in a regenerative energy storage capacitor to which the regenerative means and the regenerative means composed of the self-extinguishing element are connected via the energy transfer means composed of a capacitor or a reactor. It is in.

【0011】[0011]

【作用】このため、自己消弧素子で構成された回生手段
がエネルギーを回生する回生エネルギー蓄電用コンデン
サに、他のスナバ回路の蓄積エネルギーをコンデンサや
リアクトルなどで構成されるエネルギー転送手段を介し
て蓄電することができるので、複雑・高価な自己消弧素
子で構成された回生手段の台数が少なくても、上記した
電圧・電流スナバ回路の蓄積エネルギー回生を行うこと
ができる特徴がある。
For this reason, the regenerative means constituted by the self-extinguishing element regenerates energy to the regenerative energy storage capacitor, and the energy stored in the other snubber circuit is passed through the energy transfer means constituted by the condenser and the reactor. Since the electricity can be stored, there is a feature that the stored energy of the voltage / current snubber circuit can be regenerated even if the number of regenerative means composed of complicated and expensive self-extinguishing elements is small.

【0012】[0012]

【実施例】図1は本発明による低損失スナバ回路の一実
施例で、図2の従来例に対応して、電圧型インバータへ
の適用例を示すものである。図1では、自己消弧素子で
構成された回生手段Rgは一組(図2のRg1に相当)
で、図2の従来例にあった下アームのアノードリアクト
ルLA2及び回生手段Rg2とコンデンサCR2は削減
されている。このため、下アームのアノードリアクトル
LA2による電流スナバ効果は、上アームのアノードリ
アクトルLA1の容量を増やしてもたせることになる。
1 is an embodiment of a low-loss snubber circuit according to the present invention, showing an application example to a voltage type inverter corresponding to the conventional example of FIG. In FIG. 1, one set of regenerative means Rg composed of self-extinguishing elements (corresponding to Rg1 in FIG. 2)
Thus, the lower arm anode reactor LA2, the regeneration means Rg2, and the capacitor CR2 in the conventional example of FIG. 2 are eliminated. For this reason, the current snubber effect by the lower arm anode reactor LA2 is given by increasing the capacity of the upper arm anode reactor LA1.

【0013】図1の本発明実施例では、スナバコンデン
サCS2の蓄積エネルギーは、先ずGTOサイリスタG
TO2(或いはフリーホィールダイオードDF2)のター
ンオン時に、リアクトルLT,コンデンサCT,ダイオ
ードDTで構成されるエネルギー転送手段により、コン
デンサCTに蓄電される。次にGTOサイリスタGTO1の
ターンオン時に、回生エネルギー蓄電回路用のダイオー
ドDR2を介して上記自己消弧素子で構成された回生手
段Rgが接続される回生エネルギー蓄電用コンデンサC
R(図2従来例のCR1に相当)に蓄電する。なお、他
の回路構成及び符号については、図2の従来例と同じな
のでここでは省略する。
In the embodiment of the present invention shown in FIG. 1, the energy stored in the snubber capacitor CS2 is first measured by the GTO thyristor G.
When the TO2 (or the freewheel diode DF2) is turned on, the energy is transferred to the capacitor CT by the energy transfer means including the reactor LT, the capacitor CT, and the diode DT. Next, when the GTO thyristor GTO1 is turned on, the regenerative energy storage capacitor C to which the regenerative means Rg composed of the self-extinguishing element is connected via the diode DR2 for the regenerative energy storage circuit.
Power is stored in R (corresponding to CR1 in the conventional example in FIG. 2). The other circuit configurations and reference numerals are the same as those in the conventional example of FIG.

【0014】アノードリアクトルLA1及びスナバコン
デンサCS1の蓄積エネルギーが、GTO1のオンオフ
制御に基づいて、回生エネルギー蓄電用コンデンサCR
に蓄電され、そして回生手段Rgにより直流電源に回収
されるのは、図2の従来例動作と同じである。
The stored energy of the anode reactor LA1 and the snubber capacitor CS1 is based on the on / off control of the GTO1, and the regenerative energy storage capacitor CR.
That is, the power is stored in and is recovered by the regenerative means Rg in the DC power source, which is the same as the operation of the conventional example of FIG.

【0015】一方、本発明では、スナバコンデンサCS
2の蓄積エネルギーは、GTO2(或いはフリーホィー
ルダイオードDF2)のターンオンにより、 CS2−DT−LT−CT−GTO2−CS2 の閉回路で、一旦コンデンサCTに蓄電され、次のGT
OサイリスタGTO1のターンオンで該コンデンサCT
の蓄電エネルギーが CT−DR2−CR−LA1−GTO1−CT の閉回路で、回生エネルギー蓄電用コンデンサCRに蓄
電される。この結果、前記スナバコンデンサCS2の蓄
積エネルギーも、一旦、前記回生エネルギー蓄電用コン
デンサCRに蓄電された後、上記回生手段Rgの動作に
より直流電源に回収できることになる。
On the other hand, in the present invention, the snubber capacitor CS
The stored energy of 2 is once stored in the capacitor CT in the closed circuit of CS2-DT-LT-CT-GTO2-CS2 when the GTO2 (or freewheel diode DF2) is turned on, and the next GT is stored.
When the O thyristor GTO1 is turned on, the capacitor CT
Is stored in the regenerative energy storage capacitor CR in the closed circuit of CT-DR2-CR-LA1-GTO1-CT. As a result, the energy stored in the snubber capacitor CS2 can also be stored in the regenerative energy storage capacitor CR and then recovered in the DC power supply by the operation of the regenerating means Rg.

【0016】以上、図1の本発明実施例によれば、上下
アームの各電圧・電流スナバ回路の蓄積エネルギー回生
を、従来二組必要であった自己消弧素子で構成された回
生手段一組で行うことができ、回生手段を安価に、つま
り電力変換器を安価にできる効果がある。
As described above, according to the embodiment of the present invention shown in FIG. 1, one set of regenerative means composed of self-extinguishing elements, which conventionally required two sets of stored energy regeneration of each voltage / current snubber circuit of the upper and lower arms. It is possible to reduce the cost of the regeneration means, that is, the power converter can be reduced.

【0017】図3は本発明の低損失スナバ回路の他の実
施例を示すもので、上記電圧型インバータの各上下アー
ムが自己消弧素子を2個直列接続した構成のものに適用
した例である。図3の実施例では、図2の従来実施例に
対して、自己消弧素子であるGTOサイリスタが各上下
アームにおいて一個ずつ増え、上アームがGTO1とG
TO2の直列接続、下アームがGTO3とGTO4の直
列接続で構成され、GTO1が図2の従来実施例のGT
O1に、またGTO4が図2の従来実施例のGTO2に
相当させてある。従ってGTO1のオンオフ制御による
アノードリアクトルLA1及びスナバコンデンサCS1
の蓄積エネルギー回生動作、及びGTO4のオンオフ制御に
よるアノードリアクトルLA2及びスナバコンデンサC
S4の蓄積エネルギー回生動作は、図2の従来実施例と
同じように回生手段Rg1及びRg2によって行われ
る。
FIG. 3 shows another embodiment of the low-loss snubber circuit of the present invention, which is an example applied to a structure in which each upper and lower arm of the above voltage type inverter has two self-extinguishing elements connected in series. is there. In the embodiment of FIG. 3, compared with the conventional embodiment of FIG. 2, the number of GTO thyristors, which are self-extinguishing elements, is increased by one in each of the upper and lower arms, and the upper arms are GTO1 and GTO.
The TO2 is connected in series, the lower arm is composed of GTO3 and GTO4 connected in series, and GTO1 is the GT of the conventional embodiment shown in FIG.
O1 and GTO4 correspond to GTO2 of the conventional embodiment shown in FIG. Therefore, the anode reactor LA1 and the snubber capacitor CS1 are controlled by the on / off control of the GTO1.
Stored energy regenerative operation and GTO4 on / off control for anode reactor LA2 and snubber capacitor C
The stored energy regeneration operation of S4 is performed by the regeneration means Rg1 and Rg2 as in the conventional example of FIG.

【0018】一方、本発明では、GTOサイリスタGT
O3のスナバコンデンサCS3の蓄積エネルギーは、先
ず該GTO3のターンオンでリアクトルLT2,コンデ
ンサCT2等で構成されるエネルギー転送手段ET2に
よりコンデンサCT2に蓄電し、次に該コンデンサCT
2の蓄電エネルギーをGTO1,GTO2のターンオン
時に、前記回生エネルギー蓄電回路用のダイオードDR
3を介して上記回生手段Rg1が接続された回生エネル
ギー蓄電用コンデンサCR1に供給してある。また上記
GTO3のスナバコンデンサCS3の蓄積エネルギーは
リアクトルLT2,コンデンサCT2等で構成されるエ
ネルギー転送手段ET2を介して上記回生手段Rg2が
接続された回生エネルギー蓄電用コンデンサCR2に供
給してある。上記エネルギー転送手段ET1及びET2
による回生エネルギー蓄電用コンデンサCR1及びCR
2へのスナバコンデンサ蓄積エネルギーの蓄電動作につ
いては、図1の本発明実施例での動作と同じなのでここ
では省略するが、図3の実施例によれば、図2の従来実
施例に追加された2個のGTOのスナバコンデンサ蓄積
エネルギーを、自己消弧素子で構成された回生手段の数
を増やすことなく電源に回収できる。なお、本実施例で
は、アームを構成する自己消弧素子の直列接続数を2個
としたが、これに限定されることなく、2以上の多数個
直列接続の場合にも適用できるものである。
On the other hand, in the present invention, the GTO thyristor GT
The energy stored in the snubber capacitor CS3 of O3 is first stored in the capacitor CT2 by the energy transfer means ET2 including the reactor LT2 and the capacitor CT2 when the GTO3 is turned on, and then the capacitor CT2.
When the GTO1 and GTO2 are turned on, the stored energy of 2 is the diode DR for the regenerative energy storage circuit.
It is supplied via 3 to the regenerative energy storage capacitor CR1 to which the regenerative means Rg1 is connected. Further, the stored energy of the snubber capacitor CS3 of the GTO3 is supplied to the regenerative energy storage capacitor CR2 to which the regenerative means Rg2 is connected via the energy transfer means ET2 including the reactor LT2 and the capacitor CT2. The energy transfer means ET1 and ET2
Regenerative energy storage capacitors CR1 and CR
The operation of accumulating the energy stored in the snubber capacitor to the second snubber capacitor is the same as the operation in the embodiment of the present invention shown in FIG. 1, and therefore the description thereof will be omitted here, but according to the embodiment shown in FIG. The energy stored in the snubber capacitors of the two GTOs can be recovered to the power source without increasing the number of regenerative means composed of self-turn-off devices. In the present embodiment, the number of series-connected self-extinguishing elements forming the arm is set to two, but the present invention is not limited to this and is also applicable to the case of multiple series connection of two or more. .

【0019】以上、図3の本発明実施例によれば、上下
アームを構成する自己消弧素子の直列接続数が多くなっ
た場合でも、各電圧・電流スナバ回路の蓄積エネルギー
回生を、自己消弧素子で構成された回生手段が並列接続
される回生エネルギー蓄電用コンデンサに他の電圧スナ
バ回路の蓄積エネルギーを蓄電するエネルギー転送手段
を設けることで、自己消弧素子で構成された回生手段の
数を増やすことなく行うことができ、回生手段を安価
に、つまり電力変換器を安価にできる効果がある。
As described above, according to the embodiment of the present invention shown in FIG. 3, even if the number of self-extinguishing elements forming the upper and lower arms is increased in series, the energy stored in each voltage / current snubber circuit is self-extinguished. The number of regenerative means composed of self-extinguishing elements is achieved by providing energy transfer means to store the stored energy of another voltage snubber circuit in the regenerative energy storage capacitor to which the regenerative means composed of arc elements are connected in parallel. Can be carried out without increasing the number, and the regeneration means can be made inexpensive, that is, the power converter can be made inexpensive.

【0020】図4は本発明の低損失スナバ回路の更に他
の実施例を示すもので、3レベル電圧型インバータ回路
への適用例である。3レベル電圧型インバータの動作に
ついては公知(例えば特開昭55−43996 号公報)なので
省略する。図4の本発明実施例では、上下アームの自己
消弧素子で構成された回生手段及び該自己消弧素子で構
成された回生手段が並列接続される回生エネルギー蓄電
用コンデンサに他の電圧スナバ回路の蓄積エネルギーを
蓄電するエネルギー転送手段の接続を、図3の実施例と
同じにしてある。そして、GTO1のオンオフ制御によ
るアノードリアクトルLA1及びスナバコンデンサCS
1の蓄積エネルギー回生動作、及びGTO4のオンオフ制御
によるアノードリアクトルLA2及びスナバコンデンサ
CS4の蓄積エネルギー回生動作は、図3の実施例と同
じように回生手段Rg1及びRg2によって行われる。
また、GTO2或いはGTO3のオン時に、対アームの
GTO3或いはGTO2のスナバコンデンサCS3,C
S2の蓄積エネルギーをエネルギー転送手段ET1,E
T2を介して夫れ夫れ上記回生手段Rg1及びRg2が
並列接続されている回生エネルギー蓄電用コンデンサC
R1及びCR2に供給する動作は、図3の実施例と同じ
ように行われる。
FIG. 4 shows still another embodiment of the low-loss snubber circuit of the present invention, which is an example of application to a three-level voltage type inverter circuit. The operation of the three-level voltage type inverter is publicly known (for example, Japanese Patent Laid-Open No. 55-43996) and will not be described. In the embodiment of the present invention shown in FIG. 4, another voltage snubber circuit is provided for the regenerative means composed of the self-extinguishing elements of the upper and lower arms and the regenerative energy storage capacitor to which the regenerative means composed of the self-extinguishing elements are connected in parallel. The connection of the energy transfer means for storing the stored energy is stored in the same manner as in the embodiment of FIG. Then, the anode reactor LA1 and the snubber capacitor CS are controlled by the ON / OFF control of the GTO1.
The stored energy regeneration operation of No. 1 and the stored energy regeneration operation of the anode reactor LA2 and the snubber capacitor CS4 by the ON / OFF control of GTO4 are performed by the regeneration means Rg1 and Rg2 as in the embodiment of FIG.
Further, when the GTO2 or GTO3 is turned on, the snubber capacitors CS3, C of the GTO3 or GTO2 of the opposite arm are turned on.
The energy stored in S2 is transferred to the energy transfer means ET1, E
Regenerative energy storage capacitor C in which the regeneration means Rg1 and Rg2 are connected in parallel via T2.
The operation of supplying R1 and CR2 is performed in the same manner as in the embodiment of FIG.

【0021】以上、図4の本発明実施例によれば、図3
の実施例と同様に、電力変換器を安価にできる効果があ
る。
As described above, according to the embodiment of the present invention shown in FIG.
Similar to the above embodiment, there is an effect that the power converter can be made inexpensive.

【0022】[0022]

【発明の効果】以上に詳述した本発明実施例の低損失ス
ナバ回路によれば、複数個の自己消弧素子で構成された
電力変換器において、複数個の自己消弧素子に接続され
る電圧・電流スナバ回路の蓄積エネルギー回生手段を必
要以上に複雑・高価にすることなく構成でき、電力変換
器を安価にできる効果がある。
According to the low-loss snubber circuit of the embodiment of the present invention described in detail above, in a power converter composed of a plurality of self-extinguishing elements, it is connected to a plurality of self-extinguishing elements. There is an effect that the stored energy regeneration means of the voltage / current snubber circuit can be configured without making it more complicated and expensive than necessary, and the power converter can be made inexpensive.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の低損失スナバ回路図である。FIG. 1 is a low-loss snubber circuit diagram of an embodiment of the present invention.

【図2】従来の低損失スナバ回路図である。FIG. 2 is a conventional low-loss snubber circuit diagram.

【図3】本発明の他の実施例の低損失スナバ回路図であ
る。
FIG. 3 is a low-loss snubber circuit diagram of another embodiment of the present invention.

【図4】本発明の他の実施例の低損失スナバ回路図であ
る。
FIG. 4 is a low-loss snubber circuit diagram of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

P…直流電源の正端子、N…直流電源の負端子、UP…
U相の正配線、UN…U相の負配線、VP…V相の正配
線、VN…V相の負配線、WP…W相の正配線、WN…
W相の負配線、CF,CF1,CF2…電源フィルタコン
デンサ、LA1,LA2…アノードリアクトル、GTO
1,GTO2,GTO3,GTO4…GOTサイリス
タ、DF1,DF2,DF3,DF4…フリーホィール
ダイオード、CS1,CS2,CS3,CS4…スナバ
コンデンサ、DS1,DS2,DS3,DS4…スナバ
ダイオード、DR1,DR2,DR3,DR4…ダイオ
ード、CR,CR1,CR2…コンデンサ、LT,LT
1,LT2…リアクトル、CT,CT1,CT2…コン
デンサ、DT,DT1,DT2…ダイオード、Rg,R
g1,Rg2…回生手段、GTOg,GTOg1,GT
Og2…自己消弧素子、Lg,Lg1,Lg2…リアク
トル、Dg,Dg1,Dg2…ダイオード。
P ... Positive terminal of DC power supply, N ... Negative terminal of DC power supply, UP ...
U-phase positive wiring, UN ... U-phase negative wiring, VP ... V-phase positive wiring, VN ... V-phase negative wiring, WP ... W-phase positive wiring, WN ...
W-phase negative wiring, CF, CF1, CF2 ... Power supply filter capacitors, LA1, LA2 ... Anode reactor, GTO
1, GTO2, GTO3, GTO4 ... GOT thyristor, DF1, DF2, DF3, DF4 ... Free wheel diode, CS1, CS2, CS3, CS4 ... Snubber capacitor, DS1, DS2, DS3, DS4 ... Snubber diode, DR1, DR2, DR3 , DR4 ... Diode, CR, CR1, CR2 ... Capacitor, LT, LT
1, LT2 ... Reactor, CT, CT1, CT2 ... Capacitor, DT, DT1, DT2 ... Diode, Rg, R
g1, Rg2 ... Regeneration means, GTOg, GTOg1, GT
Og2 ... Self-extinguishing element, Lg, Lg1, Lg2 ... Reactor, Dg, Dg1, Dg2 ... Diode.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】直流電源と、リアクトルから成る電流スナ
バが直列接続され、またコンデンサとダイオードの直列
体から成る第1の電圧スナバが並列接続された自己消弧
素子で一方のアームを、前記構成の第2の電圧スナバが
並列接続された自己消弧素子で他方のアームを構成した
電力変換器において、前記一方のアームにおける電流・
電圧スナバの蓄積エネルギーを蓄電するエネルギー蓄電
用コンデンサと該エネルギー蓄電用コンデンサに並列接
続される自己消弧素子より成る蓄電エネルギー回生手
段、前記他方のアームにおける電圧スナバの蓄積エネル
ギーをリアクトルとコンデンサ及びダイオードから構成
されるエネルギー転送手段を介して前記エネルギー蓄電
用コンデンサに蓄電することを特徴とする電力変換器の
低損失スナバ回路。
1. A self-extinguishing element in which a DC power source and a current snubber composed of a reactor are connected in series, and a first voltage snubber composed of a series body of a capacitor and a diode is connected in parallel to form one arm in the structure. In the power converter in which the other arm is configured by the self-extinguishing element in which the second voltage snubber of is connected in parallel,
A stored energy regenerating means comprising an energy storage capacitor for storing the stored energy of the voltage snubber and a self-extinguishing element connected in parallel to the energy storage capacitor, the stored energy of the voltage snubber in the other arm, a reactor, a capacitor and a diode. A low-loss snubber circuit for a power converter, which stores electricity in the energy storage capacitor via an energy transfer means including the following.
【請求項2】直流電源と、リアクトルから成る電流スナ
バが直列接続され、またコンデンサとダイオードの直列
体から成る第1の電圧スナバが並列接続された第1の自
己消弧素子と前記構成の第2の電圧スナバが並列接続さ
れた第2の自己消弧素子との直列体で夫れ夫れ上下アー
ムを構成した電力変換器において、上下アーム夫れ夫れ
の第1の自己消弧素子における電流・電圧スナバの蓄積
エネルギーを夫れ夫れ蓄電するエネルギー蓄電用コンデ
ンサと該エネルギー蓄電用コンデンサに並列接続される
自己消弧素子より成る蓄電エネルギー回生手段、上下ア
ーム夫れ夫れの第2の自己消弧素子における電圧スナバ
の蓄積エネルギーを夫れ夫れリアクトルとコンデンサ及
びダイオードから構成されるエネルギー転送手段を介し
て前記エネルギー蓄電用コンデンサに蓄電することを特
徴とする電力変換器の低損失スナバ回路。
2. A first self-extinguishing element in which a DC power supply and a current snubber composed of a reactor are connected in series, and a first voltage snubber composed of a series body of a capacitor and a diode is connected in parallel, and a first self-extinguishing element of the above construction. In a power converter in which two voltage snubbers are connected in parallel with a second self-extinguishing element in a series body to form upper and lower arms, a first self-extinguishing element for each of the upper and lower arms is provided. A stored energy regenerating means comprising an energy storage capacitor for storing and storing stored energy of a current / voltage snubber and a self-extinguishing element connected in parallel to the energy storage capacitor, and second upper and lower arms respectively. The energy stored in the voltage snubber in the self-extinguishing element is transferred through the energy transfer means including a reactor, a capacitor and a diode. Low-loss snubber circuit for a power converter wherein the power storage to electric capacitor.
【請求項3】請求項2において、前記直流電源は2分割
され、該分割点よりダイオードを夫れ夫れ前記上下アー
ムにおける第1と第2の自己消弧素子の接続点に接続し
た電力変換器から成ることを特徴とする電力変換器の低
損失スナバ回路。
3. The power conversion system according to claim 2, wherein the DC power supply is divided into two, and a diode is provided from the division point and the diode is connected to a connection point of the first and second self-extinguishing elements in the upper and lower arms. A low-loss snubber circuit for a power converter, comprising a power converter.
JP6176451A 1994-07-28 1994-07-28 Low loss snubber circuit of power converter Pending JPH0847260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6176451A JPH0847260A (en) 1994-07-28 1994-07-28 Low loss snubber circuit of power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6176451A JPH0847260A (en) 1994-07-28 1994-07-28 Low loss snubber circuit of power converter

Publications (1)

Publication Number Publication Date
JPH0847260A true JPH0847260A (en) 1996-02-16

Family

ID=16013942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6176451A Pending JPH0847260A (en) 1994-07-28 1994-07-28 Low loss snubber circuit of power converter

Country Status (1)

Country Link
JP (1) JPH0847260A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243631A (en) * 1997-02-27 1998-09-11 Toshiba Corp Power converter
WO2000003473A3 (en) * 1998-07-13 2000-05-04 Univ Ben Gurion Modular apparatus for regulating the harmonics of current drawn from power lines
JP2019519188A (en) * 2016-06-22 2019-07-04 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles System and method for converting DC power to three phase AC power including filtering means

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243631A (en) * 1997-02-27 1998-09-11 Toshiba Corp Power converter
WO2000003473A3 (en) * 1998-07-13 2000-05-04 Univ Ben Gurion Modular apparatus for regulating the harmonics of current drawn from power lines
US6445600B2 (en) 1998-07-13 2002-09-03 Ben-Gurion University Of The Negev Research & Development Authority Modular structure of an apparatus for regulating the harmonics of current drawn from power lines by an electronic load
JP2019519188A (en) * 2016-06-22 2019-07-04 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles System and method for converting DC power to three phase AC power including filtering means
JP2022046763A (en) * 2016-06-22 2022-03-23 イエフペ エネルジ ヌヴェル System converting dc power including filtering means to three-phase ac power

Similar Documents

Publication Publication Date Title
JP3663455B2 (en) Solar power converter
CN108475999B (en) Single-phase five-level active clamping converter unit and converter
JP2664275B2 (en) Power converter
KR100970566B1 (en) H-bridge type multi-level converter with power regeneration capability
JP2004135444A (en) Stack structure of power converter
JP2521698B2 (en) Snubber energy regeneration circuit
Dekka et al. A new 5–level voltage source inverter
JP3926618B2 (en) Power converter
CN217427743U (en) Multiphase annular battery energy storage system
JPH0847260A (en) Low loss snubber circuit of power converter
JP3160792B2 (en) Power converter
CN210444193U (en) Mixed clamping type five-level three-phase inverter
JPH07337028A (en) Low loss snubber circuit for power converter
JPH08126336A (en) Low-loss snubber circuit for power converter
JP3170368B2 (en) Inverter device
CN221177562U (en) Power module using neutral point clamped type three-level unit
CN212875677U (en) Converter based on three-level T-shaped topological layout
JP2576183Y2 (en) Self-excited converter
JP2807284B2 (en) Snubber circuit
EP4092702A1 (en) Capacitor structure and power converter
JPH0767353A (en) Snubber energy regenerative circuit for three-level inverter
CN112134471A (en) Converter based on three-level T-shaped topological layout
JP2024501980A (en) Bidirectional DC/AC power conversion system with multiple DC links
JPH06189444A (en) Low loss snubber circuit of power converter
KR0132187B1 (en) Inverter snubber circuit