JPH0812497A - Superconducting material having high levitation and damping characteristics and its production - Google Patents

Superconducting material having high levitation and damping characteristics and its production

Info

Publication number
JPH0812497A
JPH0812497A JP6162959A JP16295994A JPH0812497A JP H0812497 A JPH0812497 A JP H0812497A JP 6162959 A JP6162959 A JP 6162959A JP 16295994 A JP16295994 A JP 16295994A JP H0812497 A JPH0812497 A JP H0812497A
Authority
JP
Japan
Prior art keywords
phase
superconducting material
concentration
dispersed
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6162959A
Other languages
Japanese (ja)
Inventor
Hidekazu Tejima
英一 手嶋
Masamoto Tanaka
将元 田中
Katsuyoshi Miyamoto
勝良 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6162959A priority Critical patent/JPH0812497A/en
Publication of JPH0812497A publication Critical patent/JPH0812497A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a material having high levitation and damping characteristics in a short time by integrating a part at a different dispersed concentration of RE2BaCuO5 phase into a superconducting material containing the RE2BaCuO5 phase dispersed in an REBa2Cu3O7-x. phase. CONSTITUTION:This superconducting material contains an RE2BaCUO5 phase (211 phase) dispersed in a single crystalline REBa2CU3O7-x phase (123 phase) (RE is a rare earth element containing Y or a combination thereof) and further comprises a part At at 5-60% concentration expressed in terms of molar fraction of the 211 phase dispersed in the 123 phase and a part B2 at <5% concentration expressed in terms of the molar fraction of the 211 phase. The concentration of the 211 phase in the part B can be regulated to 0%, i.e., only the 123 phase. Furthermore, this method for producing the superconducting material comprises forming oxides of RE, Ba and Cu into a compact comprising the parts so as to provide the respective molar fractions of the charging composition of the 211 phase in a mixing and a forming steps in a method for production comprising carrying out the mixing, forming, semimelting, seeding, coagulating, cooling and oxygen-enriching heat treatment of the oxides.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導材料と磁石で形
成される非接触な浮上装置、例えば、ターボ分子ポンプ
や電力貯蔵用フライホイールの軸受装置、半導体製造プ
ロセスにおける非接触搬送装置、除振装置等に利用でき
る超電導材料およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact levitation device formed of a superconducting material and a magnet, for example, a bearing device for a turbo molecular pump or a flywheel for power storage, a non-contact transfer device in a semiconductor manufacturing process, and removal. The present invention relates to a superconducting material that can be used in a vibration device and the like, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】超電導材料と磁石で形成される非接触な
浮上装置は、波及性が大きな技術であり、その将来性が
有望視されている。この超電導浮上装置を実現するに
は、高浮上特性と振動を減衰させる能力である高ダンピ
ング特性が必要である。高浮上特性、すなわち高い臨界
電流密度(JC )を有する超電導材料としては、例えば
特開平4−40289号公報のようなQMG材と呼ばれ
る、単結晶状の超電導相であるREBa2 Cu37-X
相中に非超電導相であるRE2 BaCuO5 相が微細に
分散している酸化物超電導材料がある。しかしながら、
高JC の超電導材料においては、浮上力が大きくなると
ダンピング特性が小さくなるという傾向があった。その
ため、従来は高浮上特性でかつ高ダンピング特性を有す
る超電導材料は存在しなかった。
2. Description of the Related Art A non-contact levitation device formed of a superconducting material and a magnet is a technique having a large ripple effect, and its future prospect is considered promising. In order to realize this superconducting levitation device, high levitation characteristics and high damping characteristics, which are the ability to damp vibrations, are required. As a superconducting material having a high floating characteristic, that is, a high critical current density (J C ), REBa 2 Cu 3 O 7 which is a single crystal superconducting phase called a QMG material as disclosed in JP-A-4-40289. -X
There is an oxide superconducting material in which a RE 2 BaCuO 5 phase which is a non-superconducting phase is finely dispersed in the phase. However,
In the high J C superconducting material, there was a tendency that the damping characteristics became smaller as the levitation force increased. Therefore, conventionally, there has been no superconducting material having high floating characteristics and high damping characteristics.

【0003】[0003]

【発明が解決しようとする課題】本発明者らは先の出願
(特願平6−97933号)において、これまでと全く
逆の発想によって低JC の超電導材料をダンピング材と
して利用し、超電導浮上装置に組み込むことを提案し
た。これは浮上機能は高JC の超電導材料と磁石の組が
担い、ダンピング機能は低JC の超電導材料と磁石の組
が担うというものである。この技術では、高JC の超電
導材料と低JC の超電導材料の少なくとも2個の超電導
材料を使用しなければならず、しかもそれらは別々に製
造しなければならなかった。そのため、試料を作製する
時間がかかるという問題があった。
DISCLOSURE OF THE INVENTION In the previous application (Japanese Patent Application No. 6-97933), the inventors of the present invention used a superconducting material of low J C as a damping material based on an idea which is completely opposite to the conventional one. It was proposed to incorporate it in the levitation device. This is because the levitation function is carried out by a combination of a high J C superconducting material and a magnet, and the damping function is carried out by a combination of a low J C superconducting material and a magnet. This technique required the use of at least two superconducting materials, a high J C superconducting material and a low J C superconducting material, which had to be manufactured separately. Therefore, there is a problem that it takes time to manufacture a sample.

【0004】例えば、1台の熱処理炉を使って2個の超
電導材料を作製する場合、1個の超電導材料を作製する
時間の約2倍の時間を費やさなければならなくなる。ま
た、高浮上特性と高ダンピング特性を適正に満足させる
ため、高JC 材と低JC 材を後加工し組み合わせる等作
製が煩雑である。試料作製時間を大幅に短縮し後加工を
省略するために、高浮上特性で高ダンピング特性の超電
導材料が望まれている。本発明は上述の課題を解決し、
簡便な製造方法によって高浮上特性でかつ高ダンピング
特性を有する超電導材料を開発することを目的とする。
For example, when two superconducting materials are produced by using one heat treatment furnace, it is necessary to spend about twice as long as the time for producing one superconducting material. Further, in order to appropriately satisfy the high floating characteristic and the high damping characteristic, it is complicated to manufacture the high J C material and the low J C material by post-processing and combining them. A superconducting material having a high floating characteristic and a high damping characteristic is desired in order to significantly shorten the sample preparation time and omit the post-processing. The present invention solves the above problems,
It is an object of the present invention to develop a superconducting material having high floating characteristics and high damping characteristics by a simple manufacturing method.

【0005】[0005]

【課題を解決するための手段】本発明は、上述の課題を
解決するために、作製したときにすでに高JC を有する
部分と低JC を有する部分が一体化している超電導材料
およびその製造方法である。すなわち単結晶状のREB
2 Cu37-X 相(REはYを含む希土類元素あるい
はそれらの組み合わせ、以下123相と略す)中にRE
2 BaCuO5相(以下211相と略す)が分散してい
る超電導材料において、123相中に分散した211相
の濃度がモル分率で5〜60%である部分Aと211相
の濃度がモル分率で5%未満である部分Bからなること
を特徴とする高浮上特性と高ダンピング特性を有する超
電導材料である。ここにおいて部分Bの211相の濃度
が0%である、すなわち123相のみであることを特徴
とする高浮上特性と高ダンピング特性を有する超電導材
料であることも特徴とする。
In order to solve the above-mentioned problems, the present invention provides a superconducting material in which a portion having a high J C and a portion having a low J C are already integrated when they are manufactured, and the production thereof. Is the way. That is, single crystal REB
RE in the a 2 Cu 3 O 7-X phase (RE is a rare earth element containing Y or a combination thereof, hereinafter abbreviated as 123 phase)
In a superconducting material in which a 2 BaCuO 5 phase (hereinafter abbreviated as 211 phase) is dispersed, the concentration of the 211 phase dispersed in 123 phase is 5 to 60% in terms of molar fraction, and the concentration of the 211 phase is molar. It is a superconducting material having a high floating characteristic and a high damping characteristic, which is characterized by comprising a portion B having a fraction of less than 5%. Here, the superconducting material having a high floating characteristic and a high damping characteristic is characterized in that the concentration of the 211 phase of the portion B is 0%, that is, only the 123 phase.

【0006】またRE、Ba、Cuの酸化物を混合、成
形、半溶融、種付け、凝固冷却、酸素富化熱処理を行う
製造方法において、混合・成形過程において211相の
仕込み組成がモル分率で5〜60%となる部分Aと5%
未満になる部分Bからなる成形体に成形することによ
り、単結晶状の123相中に211相を濃度分布を有し
て微細分散させることを特徴とする高浮上特性と高ダン
ピング特性を有する超電導材料の製造方法である。ここ
において、部分Bの211相の濃度が0%である、すな
わち123相のみであることを特徴とする高浮上特性と
高ダンピング特性を有する超電導材料の製造方法である
ことも特徴とする。
In addition, in a manufacturing method in which oxides of RE, Ba and Cu are mixed, molded, semi-melted, seeded, solidified and cooled, and heat-treated for oxygen enrichment, in the mixing / molding process, the composition of the 211 phase is a molar fraction. 5% and part A that becomes 5-60%
A superconducting material having a high floating characteristic and a high damping characteristic, characterized in that the 211 phase is finely dispersed with a concentration distribution in a single crystal 123 phase by molding into a molded body composed of a portion B which becomes less than It is a method of manufacturing a material. Here, the method is also characterized by being a method of manufacturing a superconducting material having a high floating characteristic and a high damping characteristic, in which the concentration of the 211 phase in the portion B is 0%, that is, only the 123 phase.

【0007】[0007]

【作用】高JC を有するQMG材と呼ばれる超電導材料
は、単結晶状の123相中に211相が分散しているこ
とを特徴とするものであり、溶融法による製造プロセス
で作製される。ここで単結晶状というのは完璧な単結晶
でなく小傾角粒界など実用に差し支えない欠陥を有する
ものも包含するという意味である。以下に、その製造プ
ロセスの一例を示す。
The superconducting material called QMG material having a high J C is characterized in that the 211 phase is dispersed in the 123 phase of a single crystal, and it is produced by the manufacturing process by the melting method. Here, the term "single crystal" is meant to include not only perfect single crystals but also those having defects such as small-angle grain boundaries that may be practically acceptable. Below, an example of the manufacturing process is shown.

【0008】(1)秤量過程:イットリウム(Y)、バ
リウム(Ba)、銅(Cu)の酸化物を、123相と2
11相の化学量論組成である1:2:3の比と2:1:
1の比の間の割合で秤量し、それに211相を微細化す
るための白金を適量加える。 (2)混練過程:上記混合粉を乳鉢で数時間程度混練
し、十分に均一にする。 (3)仮焼過程:上記混練粉を大気中で800〜900
℃で数〜数十時間程度仮焼をする。 (4)成形過程:上記仮焼粉を粉砕し、一軸加圧成形機
で所定の形状に成形する。必要に応じて静水圧プレスを
用いる。 (5)焼成過程(凝固冷却過程):上記成形体を大気中
で1000℃以上に加熱し、一定温度に数分〜数時間程
度保持した後、必要により種結晶を設置し、1000℃
前後を200℃/hr以下で徐冷することにより種結晶
から結晶成長させる。 (6)酸素富化過程:上記焼成体を酸素気流中で600
〜400℃で数十〜数百時間程度熱処理し、試料中の酸
素量を増加させる。
(1) Weighing process: oxides of yttrium (Y), barium (Ba), and copper (Cu) are added to 123 phases and 2
The 11 phase stoichiometry is 1: 2: 3 ratio and 2: 1 :.
Weigh in a ratio between 1 and add to it the appropriate amount of platinum to refine the 211 phase. (2) Kneading process: The above mixed powder is kneaded for several hours in a mortar to make it sufficiently uniform. (3) Calcination process: The above kneaded powder is 800 to 900 in the atmosphere.
Calcination is performed at ℃ for several to several tens of hours. (4) Molding process: The calcined powder is crushed and molded into a predetermined shape by a uniaxial pressure molding machine. Use a hydrostatic press if necessary. (5) Firing process (solidification cooling process): The above-mentioned molded body is heated to 1000 ° C or higher in the atmosphere and kept at a constant temperature for several minutes to several hours, and then a seed crystal is installed if necessary, and the temperature is 1000 ° C.
Crystals are grown from the seed crystal by gradually cooling the front and rear at 200 ° C./hr or less. (6) Oxygen enrichment process: 600 ° C. of the fired body in an oxygen stream
Heat treatment is performed at ˜400 ° C. for several tens to several hundreds of hours to increase the amount of oxygen in the sample.

【0009】上記の(1)〜(6)のプロセスにより、
臨界温度が90Kを超え、JC が77Kかつ1Tで10
000A/cm2 を超えるものが作製できる。上記
(1)の秤量過程で123相の化学量論組成から211
相側にずらして秤量したのは、以下の理由による。QM
G材のJC は、123相中の211相のモル濃度により
図4のように変化する。211相はピン止め点として働
くので、少なすぎるとJCが低下する。逆に、211相
は非超電導相なので多すぎると試料全体の超電導性が低
下する。従って、高JC の超電導材料を作製するために
は単結晶状123相中の211相濃度のモル分率として
は5〜60%が望ましい。さらに、211相が多すぎる
と超電導相である123相の成長を妨げるので、211
相モル濃度としては20〜40%が特に望ましいと言え
る。
By the above processes (1) to (6),
Critical temperature is over 90K, J C is 77K and 1T is 10
It is possible to produce a material having a density of more than 000 A / cm 2 . From the stoichiometric composition of 123 phases in the weighing process of (1) above, 211
The reason for shifting to the phase side and weighing is as follows. QM
J C of the G material changes as shown in FIG. 4 depending on the molar concentration of the 211 phase in the 123 phase. Since the 211st phase acts as a pinning point, too little JC will decrease. On the other hand, since the 211 phase is a non-superconducting phase, the superconductivity of the entire sample decreases if too much. Therefore, in order to produce a high J C superconducting material, the molar fraction of the 211 phase concentration in the single crystal 123 phase is preferably 5 to 60%. Furthermore, if the 211 phase is too much, the growth of the 123 phase, which is a superconducting phase, is hindered.
It can be said that 20 to 40% is particularly desirable as the phase molar concentration.

【0010】本発明は、上記QMG材の製造プロセスを
改良した製造方法およびその製造方法により作製される
超電導材料に関するものである。本発明の超電導材料の
製造方法は、上記QMG材の製造プロセスの成形過程に
おいて、211相の仕込み組成がモル分率で5〜60%
となる部分Aと5%未満になる部分Bからなる成形体を
成形することを特徴とする製造方法である。成形体の組
成に濃度分布を持たせることにより、単結晶状の123
相中に211相が濃度分布を有して微細分散したことを
特徴とする超電導材料が作製できる。
The present invention relates to a manufacturing method in which the manufacturing process of the above QMG material is improved, and a superconducting material manufactured by the manufacturing method. According to the method for producing a superconducting material of the present invention, in the molding process of the production process for the QMG material, the composition of the 211 phase is 5 to 60% in terms of mole fraction.
The method is characterized in that a molded body is formed from a portion A that becomes 5% and a portion B that becomes less than 5%. By imparting a concentration distribution to the composition of the molded body, the single crystal 123
A superconducting material characterized in that the 211 phase has a concentration distribution and is finely dispersed can be produced.

【0011】本発明の超電導材料において、211相の
仕込み組成がモル分率で5〜60%となる部分Aが高J
C の特性を有し、浮上機能を担う。一方、211相の仕
込み組成がモル分率で5%未満になる部分Bが低JC
特性を有し、ダンピング機能を担う。従って、本発明の
超電導材料は、高浮上特性と高ダンピング特性を有する
ことになる。本発明の超電導材料では高JC を有する部
分と低JC を有する部分が作製時にすでに一体となって
いるので、試料作製時間を大幅に短縮することができ
る。
In the superconducting material of the present invention, the portion A where the charged composition of the 211 phase is 5 to 60% by mole fraction is high J.
It has the characteristics of C and bears the levitating function. On the other hand, the portion B in which the charged composition of the 211 phase is less than 5% in terms of mole fraction has a property of low J C and plays a damping function. Therefore, the superconducting material of the present invention has high floating characteristics and high damping characteristics. In the superconducting material of the present invention, the portion having a high J C and the portion having a low J C are already integrated at the time of production, so that the sample production time can be significantly shortened.

【0012】[0012]

【実施例】以下、本発明の実施例を図を用いて説明す
る。 実施例1 図1は、本発明の超電導材料における一実施例を示すも
のである。実施例1は、211相の濃度がモル分率で3
0%の部分A(符号1)と3%の部分B(符号2)が上
下二層構造になった超電導材料である。211相モル濃
度が30%の部分Aが高JC の特性を有し、浮上機能を
担う。一方、211相モル濃度が3%の部分Bが低JC
の特性を有し、ダンピング機能を担う。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 FIG. 1 shows an example of the superconducting material of the present invention. In Example 1, the 211 phase concentration was 3 in molar fraction.
A 0% portion A (reference numeral 1) and a 3% portion B (reference numeral 2) are superconducting materials having an upper and lower two-layer structure. The portion A having a 211 phase molar concentration of 30% has a high J C characteristic and plays a levitating function. On the other hand, the part B where the 211 phase molar concentration is 3% has a low J C
It has the characteristics of and has a damping function.

【0013】以下に、実施例1の超電導材料の作製方法
を述べる。211相モル濃度が30%の部分Aの超電導
材料の原料粉として、まず最初に市販されている純度9
9.9%のイットリウム(Y)、バリウム(Ba)、銅
(Cu)の酸化物を1.3:1.7:2.4の比で秤量
し、それに白金を0.5重量%加えた。この秤量粉を2
時間かけて十分混練してから、大気中で900℃で8時
間程度仮焼をした。一方、211相モル濃度が3%の部
分Bの超電導材料の原料粉として、まず最初に市販され
ている純度99.9%のイットリウム(Y)、バリウム
(Ba)、銅(Cu)の酸化物をそれぞれを1.03:
1.97:2.94の比で秤量し、それに白金を0.5
重量%を加えた。この秤量粉を2時間かけて十分混練し
てから、大気中で900℃で8時間程度仮焼をした。
The method for producing the superconducting material of Example 1 will be described below. 211 As the raw material powder for the superconducting material of the part A having a molar concentration of 30%, the purity 9
9.9% yttrium (Y), barium (Ba), and copper (Cu) oxides were weighed in a ratio of 1.3: 1.7: 2.4, and 0.5% by weight of platinum was added thereto. . 2 of this weighing powder
After sufficiently kneading for a period of time, calcination was performed in the air at 900 ° C. for about 8 hours. On the other hand, as raw material powder of the superconducting material of the part B having a 211 phase molar concentration of 3%, the first commercially available oxide of yttrium (Y), barium (Ba), copper (Cu) having a purity of 99.9%. 1.03 for each:
Weigh in a ratio of 1.97: 2.94 and add 0.5% platinum to it.
Wt% was added. This weighed powder was sufficiently kneaded for 2 hours and then calcined in the air at 900 ° C. for about 8 hours.

【0014】次に、円筒形の金型を用いて、211相モ
ル濃度が30%の部分Aの超電導材料の仮焼粉が下側
に、211相モル濃度が3%の部分Bの超電導材料の仮
焼粉が上側になるように成形した。この成形体を大気中
で1100℃まで8時間かけて昇温し、30分保持した
後、1005〜980℃の温度領域を100時間かけて
徐冷し結晶成長させた。最後に、酸素雰囲気中において
500℃で150時間程度熱処理して酸素付加を行っ
た。実施例1の超電導材料の最終的な大きさは、直径が
46mm、厚さが20mm(211相モル濃度が3%の
部分Bが約3mm、211相モル濃度が30%の部分A
が約17mm)である。
Next, using a cylindrical mold, the calcined powder of the superconducting material of the part A having a 211 phase molar concentration of 30% is on the lower side, and the superconducting material of the part B having a 211 phase molar concentration of 3% is the lower part. Was formed so that the calcined powder of was on the upper side. This molded body was heated to 1100 ° C. in the air over 8 hours, held for 30 minutes, and then gradually cooled in the temperature region of 1005 to 980 ° C. over 100 hours to grow crystals. Finally, heat treatment was performed at 500 ° C. for about 150 hours in an oxygen atmosphere to add oxygen. The final size of the superconducting material of Example 1 is 46 mm in diameter and 20 mm in thickness (about 3 mm in the part B where the 211% molar concentration is 3%, and in part A where the 211% molar concentration is 30%).
Is about 17 mm).

【0015】実施例1の効果を調べるため、実施例1の
超電導材料と211相モル濃度が試料全体にわたって3
0%である通常のQMG材(比較例1)について、ダン
ピング特性を測定し比較した。ダンピング特性は、測定
試料を容器中の液体窒素に浸漬し、表面磁界0.45T
のNd−Fe−B系永久磁石を3mmの浮上高さに保っ
た状態で、磁石を取り付けたロッドに0.2〜200H
zの振動数の力を加え、振れの大きさから測定および評
価された。共振を起こす振動数の力が加わったときの振
れの大きさからダンピング係数を計算した。ダンピング
係数が大きいと、振れが小さくなる。
In order to examine the effect of Example 1, the superconducting material of Example 1 and the 211 phase molar concentration were 3
Damping characteristics were measured and compared for a 0% ordinary QMG material (Comparative Example 1). Damping characteristics are measured by immersing the measurement sample in liquid nitrogen in a container,
With the Nd-Fe-B system permanent magnet of No. 2 kept at a flying height of 3 mm, the magnet-attached rod has 0.2 to 200 H.
It was measured and evaluated from the magnitude of the shake by applying the force of the frequency of z. The damping coefficient was calculated from the magnitude of the shake when a frequency force causing resonance was applied. When the damping coefficient is large, the shake becomes small.

【0016】測定の結果、実施例1の超電導材料のダン
ピング係数は、3.72N・s/mで、比較例1のQM
G材のダンピング係数は1.21N・s/mであった。
本発明の方法でダンピング特性が約3倍程度向上したの
は、211相モル濃度が3%の部分Bを含んでいるから
である。高浮上特性を有するQMG材をベースにして、
211相に濃度分布を持たせることにより、高浮上特性
で高ダンピング特性を有する超電導材料が作製できる。
As a result of the measurement, the damping coefficient of the superconducting material of Example 1 was 3.72 N · s / m, and the QM of Comparative Example 1 was
The damping coefficient of the G material was 1.21 N · s / m.
The reason why the damping characteristic is improved about three times by the method of the present invention is that the portion B having a 211 phase molar concentration of 3% is included. Based on QMG material with high floating characteristics,
By giving the 211 phase a concentration distribution, a superconducting material having high floating characteristics and high damping characteristics can be manufactured.

【0017】次に、試料作製時間短縮の効果について述
べる。従来技術である高JC の超電導材料と低JC の超
電導材料を別々に作製する方法に比べて、本発明の製造
方法でも、秤量過程、混練過程、仮焼過程は別々にする
必要があるが、全試料作製時間に対するこれらのプロセ
スにかかる時間の割合は比較的小さい。本発明の製造方
法では、長時間を要する焼成過程(凝固冷却過程)や酸
素富化過程を2回する手間を省くことができる。さら
に、高JC の超電導材料と低JC の超電導材料を加工し
て一体化する時間も省略できる。したがって、本発明は
従来技術に比べて試料作製時間を約半分にする効果があ
る。
Next, the effect of shortening the sample preparation time will be described. In the production method of the present invention, the weighing process, the kneading process, and the calcination process need to be separate from each other, as compared with the conventional method of separately producing a high J C superconducting material and a low J C superconducting material. However, the ratio of the time required for these processes to the total sample preparation time is relatively small. In the production method of the present invention, it is possible to save the time and effort of performing the firing process (solidification cooling process) and the oxygen enrichment process that require a long time twice. Further, the time for processing and integrating the high J C superconducting material and the low J C superconducting material can be omitted. Therefore, the present invention has the effect of halving the sample preparation time compared to the prior art.

【0018】本実施例では、本発明の超電導材料の作製
時における成形過程において、211相モル濃度が30
%の部分Aの超電導材料の仮焼粉が下側に、211相モ
ル濃度が3%の部分Bの超電導材料の仮焼粉が上側にな
るように成形したが、これは逆にしても同様な効果があ
ることは言うまでもない。
In this example, the 211 phase molar concentration was 30 in the molding process during the production of the superconducting material of the present invention.
% Part A of the superconducting material calcination powder is on the lower side and 211 phase molar concentration of 3% part B of the superconducting material calcination powder is on the upper side. It goes without saying that it has a great effect.

【0019】本実施例では、浮上機能を担う部分Aの2
11相のモル濃度として30%としたが、これは、30
%に限定するものではない。211相のモル濃度を5〜
60%としても、同様な効果があることは言うまでもな
い。また本実施例では、ダンピング機能を担う部分Bの
211相のモル濃度として3%としたが、これは、3%
に限定するものではない。211相のモル濃度を5%未
満としても、同様な効果があることは言うまでもない。
In this embodiment, 2 of the portion A having a levitating function is used.
The molar concentration of the 11th phase was 30%, which was 30%.
It is not limited to%. 211 phase 5 to 5
It goes without saying that the same effect can be obtained even if the amount is 60%. Further, in this embodiment, the molar concentration of the 211 phase of the portion B having the damping function was set to 3%, but this is 3%.
It is not limited to. Needless to say, the same effect can be obtained even if the molar concentration of the 211 phase is less than 5%.

【0020】実施例2 実施例2は、図1において211相の濃度がモル分率で
40%の部分A(符号1)と0%の部分B(符号2)
(すなわち123相のみである部分)が上下二層構造に
なった超電導材料である。211相モル濃度が40%の
部分Aが高JC の特性を有し、浮上機能を担う。一方、
123相である部分Bが低JC の特性を有し、ダンピン
グ機能を担う。
Example 2 In Example 2, in FIG. 1, the portion A (reference numeral 1) where the concentration of the 211 phase is 40% and the portion B (reference numeral 2) are 0% in terms of mole fraction.
(That is, the portion having only 123 phases) is a superconducting material having a two-layered structure. The portion A having a 211 phase molar concentration of 40% has a high J C characteristic and plays a levitating function. on the other hand,
The part B, which is the 123 phase, has the characteristic of low J C and has a damping function.

【0021】以下に、実施例2の超電導材料の作製方法
を述べる。実施例2の製造方法は、秤量過程において、
211相モル濃度が40%の部分Aの超電導材料の原料
粉としてイットリウム(Y)、バリウム(Ba)、銅
(Cu)の酸化物を1.4:1.6:2.2の比で秤量
し、また123相である部分Bの超電導材料の原料粉と
してイットリウム(Y)、バリウム(Ba)、銅(C
u)の酸化物をそれぞれ1:2:3の比で秤量した以外
は、実施例1の製造プロセスと同じである。
The method for producing the superconducting material of Example 2 will be described below. In the weighing process, the manufacturing method of Example 2
211 Yttrium (Y), barium (Ba), and copper (Cu) oxides are weighed in a ratio of 1.4: 1.6: 2.2 as raw material powder of the superconducting material of the part A having a molar concentration of 40% of 40%. In addition, yttrium (Y), barium (Ba), copper (C
The manufacturing process of Example 1 is the same, except that the oxides of u) are weighed in a ratio of 1: 2: 3, respectively.

【0022】実施例2の効果を調べるため、実施例2の
超電導材料と211相モル濃度が試料全体にわたって4
0%である通常のQMG材(比較例2)について、ダン
ピング特性を測定し比較した。測定の結果、実施例2の
超電導材料のダンピング係数は、4.21N・s/m
で、比較例2のQMG材のダンピング係数は1.04N
・s/mであった。本発明の方法でダンピング特性が約
3倍以上向上したのは、123相である部分Bを含んで
いるからである。高浮上特性を有するQMG材をベース
にして、211相に濃度分布を持たせることにより、高
浮上特性で高ダンピング特性を有する超電導材料が作製
できる。また本発明は、実施例1と同様に、従来技術に
比べて試料作製時間を約半分にする効果がある。
In order to examine the effect of Example 2, the superconducting material of Example 2 and the 211 phase molar concentration were 4
The damping characteristics of a normal QMG material (Comparative Example 2) of 0% were measured and compared. As a result of the measurement, the damping coefficient of the superconducting material of Example 2 is 4.21 N · s / m.
Then, the damping coefficient of the QMG material of Comparative Example 2 is 1.04N.
-It was s / m. The reason why the damping characteristic is improved about three times or more by the method of the present invention is that the portion B which is 123 phase is included. A superconducting material having a high floating characteristic and a high damping characteristic can be manufactured by providing a concentration distribution in the 211 phase based on a QMG material having a high floating characteristic. Further, like the first embodiment, the present invention has an effect of halving the sample preparation time as compared with the conventional technique.

【0023】実施例3 図3は、本発明の超電導材料における他の実施例を示す
ものである。実施例3は、211相の濃度がモル分率で
30%の部分A(符号3)と0%の部分B(符号4)
(すなわち123相のみである部分)が同心円状構造に
なった超電導材料である。211相モル濃度が30%の
部分Aが高JC の特性を有し、浮上機能を担う。一方、
123相のみである部分Bが低JC の特性を有し、ダン
ピング機能を担う。
Example 3 FIG. 3 shows another example of the superconducting material of the present invention. In Example 3, the portion A (reference numeral 3) and the portion B (reference numeral 4) in which the concentration of the 211 phase was 30% in terms of molar fraction were 0%.
The superconducting material (that is, the portion having only 123 phases) has a concentric circular structure. The portion A having a 211 phase molar concentration of 30% has a high J C characteristic and plays a levitating function. on the other hand,
The part B, which is only the 123 phase, has the characteristic of low J C and has a damping function.

【0024】以下に実施例3の超電導材料の作製方法を
述べる。実施例3の製造方法は、秤量過程において、2
11相モル濃度が30%の部分Aの超電導材料の原料粉
としてイットリウム(Y)、バリウム(Ba)、銅(C
u)の酸化物を1.3:1.7:2.4の比で秤量し、
また、123相である部分Bの超電導材料の原料粉とし
てイットリウム(Y)、バリウム(Ba)、銅(Cu)
の酸化物をそれぞれ1:2:3の比で秤量したこと、お
よび成形過程において、211相モル濃度が30%の部
分Aを外側に、123相である部分Bを内側にして円筒
状に成形したこと以外は、実施例1の製造プロセスと同
じである。実施例3の超電導材料の最終的な大きさは、
211相モル濃度が30%の部分Aの直径が46mm、
123相である部分Bの直径が22mm、厚さが20m
mである。
The method for producing the superconducting material of Example 3 will be described below. The manufacturing method of Example 3 was
Yttrium (Y), barium (Ba), copper (C) as raw material powder of the superconducting material of the portion A having 11-phase molar concentration of 30%
the oxide of u) is weighed in a ratio of 1.3: 1.7: 2.4,
Further, yttrium (Y), barium (Ba), copper (Cu) as raw material powder of the superconducting material of the part B which is 123 phase
Oxides were weighed in a ratio of 1: 2: 3, respectively, and in the molding process, a portion A having a 211 phase molar concentration of 30% was formed into an outer shape and a 123 phase portion B was formed into an inner shape. The manufacturing process is the same as that of the embodiment 1 except for the above. The final size of the superconducting material of Example 3 is
The diameter of the portion A having a 211 phase molar concentration of 30% is 46 mm,
The diameter of the part B, which is 123 phase, is 22 mm and the thickness is 20 m.
m.

【0025】実施例3の効果を調べるため、実施例3の
超電導材料と211相モル濃度が試料全体にわたって3
0%である通常のQMG材(比較例1)について、ダン
ピング特性を測定し比較した。、測定の結果、実施例3
の超電導材料のダンピング係数は、4.77N・s/m
で、比較例1のQMG材のダンピング係数は1.21N
・s/mであった。本発明の方法でダンピング特性が約
3倍以上向上したのは、123相である部分Bを含んで
いるからである。高浮上特性を有するQMG材をベース
にして、211相に濃度分布を持たせることにより、高
浮上特性で高ダンピング特性を有する超電導材料が作製
できる。また本発明は、実施例1と同様に従来技術に比
べて試料作製時間を約半分にする効果がある。特に、本
実施例のように円筒状に加工する場合、酸化物超電導材
料は加工困難性を有するセラミックスであるため、試料
作製時間短縮の効果は大きい。
In order to investigate the effect of the third embodiment, the superconducting material of the third embodiment and the 211 phase molar concentration were 3 over the entire sample.
Damping characteristics were measured and compared for a 0% ordinary QMG material (Comparative Example 1). , Measurement results, Example 3
Damping coefficient of superconducting material of 4.77N · s / m
Then, the damping coefficient of the QMG material of Comparative Example 1 is 1.21N.
-It was s / m. The reason why the damping characteristic is improved about three times or more by the method of the present invention is that the portion B which is 123 phase is included. A superconducting material having high floating characteristics and high damping characteristics can be produced by providing a concentration distribution in the 211 phase based on a QMG material having high floating characteristics. Further, the present invention has an effect of halving the sample preparation time as compared with the conventional technique as in the first embodiment. In particular, when the material is processed into a cylindrical shape as in this embodiment, the oxide superconducting material is a ceramic having processing difficulty, so that the effect of shortening the sample preparation time is great.

【0026】[0026]

【発明の効果】以上のように、本発明は高浮上特性でか
つ高ダンピング特性を有するように、単結晶状123相
中に微細分散した211相が濃度分布を有することを特
徴とする超電導材料およびその製造方法に関するもので
ある。211相モル濃度が高い部分が高JC の特性を有
し、浮上機能を担う。211相モル濃度が低い部分が低
C の特性を有し、ダンピング機能を担う。本発明の超
電導材料および製造プロセスを用いれば、従来技術と比
較して、大幅な試料作製時間の短縮を実現できる。した
がって、本発明は広範な技術分野において超電導浮上装
置の実用化を可能にする。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, the superconducting material is characterized in that the 211 phase finely dispersed in the single crystal 123 phase has a concentration distribution so as to have high floating characteristics and high damping characteristics. And a method for manufacturing the same. 211 The portion with a high molar concentration has a high J C characteristic and plays a levitating function. 211 The portion with a low molar concentration has a low J C characteristic and plays a damping function. By using the superconducting material and the manufacturing process of the present invention, it is possible to realize a significant reduction in sample preparation time as compared with the prior art. Therefore, the present invention enables the practical application of the superconducting levitation device in a wide range of technical fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超電導材料の実施例を示す概略構成図FIG. 1 is a schematic configuration diagram showing an embodiment of a superconducting material of the present invention.

【図2】本発明の超電導材料の実施例を示す概略構成図FIG. 2 is a schematic configuration diagram showing an example of a superconducting material of the present invention.

【図3】QMG材における臨界電流密度と211相モル
濃度の関係を示すグラフ
FIG. 3 is a graph showing the relationship between the critical current density and the 211 phase molar concentration in the QMG material.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 単結晶状のREBa2 Cu37-X
(REはYを含む希土類元素あるいはそれらの組み合わ
せ、以下123相と略す)中にRE2 BaCuO5
(以下211相と略す)が分散している超電導材料にお
いて、123相中に分散した211相の濃度がモル分率
で5〜60%である部分Aと211相の濃度がモル分率
で5%未満である部分Bからなることを特徴とする高浮
上特性と高ダンピング特性を有する超電導材料。
1. A RE 2 BaCuO 5 phase (hereinafter abbreviated as 211 phase) in a single crystal REBa 2 Cu 3 O 7-X phase (RE is a rare earth element containing Y or a combination thereof, hereinafter abbreviated as 123 phase). ) Are dispersed in the superconducting material, the portion A in which the concentration of the 211 phase dispersed in the 123 phase is 5 to 60% by mole fraction, and the portion B in which the concentration of the 211 phase is less than 5% by mole fraction. A superconducting material having a high levitation characteristic and a high damping characteristic.
【請求項2】 請求項1において、部分Bの211相の
濃度が0%である、すなわち123相のみであることを
特徴とする高浮上特性と高ダンピング特性を有する超電
導材料。
2. The superconducting material having high floating characteristics and high damping characteristics according to claim 1, wherein the concentration of the 211 phase of the portion B is 0%, that is, only the 123 phase.
【請求項3】 RE、Ba、Cuの酸化物を混合、成
形、半溶融、種付け、凝固冷却、酸素富化熱処理を行う
製造方法において、混合・成形過程においてRE2 Ba
CuO5 相(REはYを含む希土類元素あるいはそれら
の組み合わせ、以下211相と略す)の仕込み組成がモ
ル分率で5〜60%となる部分Aと5%未満になる部分
Bからなる成形体に成形することにより、単結晶状のR
EBa2Cu37-X 相中に211相を濃度分布を有し
て微細分散させることを特徴とする高浮上特性と高ダン
ピング特性を有する超電導材料の製造方法。
3. A manufacturing method in which oxides of RE, Ba, and Cu are mixed, molded, semi-melted, seeded, solidified and cooled, and oxygen-enriched heat-treated, and RE 2 Ba is mixed and molded during the manufacturing process.
A molded product comprising a portion A in which the charged composition of the CuO 5 phase (RE is a rare earth element containing Y or a combination thereof, abbreviated as 211 phase hereinafter) is 5 to 60% in mole fraction and a portion B in which it is less than 5%. By molding into a single crystal R
A method for producing a superconducting material having high floating characteristics and high damping characteristics, which comprises finely dispersing 211 phases in an EBa 2 Cu 3 O 7-X phase with a concentration distribution.
【請求項4】 請求項3において、部分Bの211相の
濃度が0%である、すなわち123相のみであることを
特徴とする高浮上特性と高ダンピング特性を有する超電
導材料の製造方法。
4. The method for producing a superconducting material having high floating characteristics and high damping characteristics according to claim 3, wherein the concentration of the 211 phase of the portion B is 0%, that is, only the 123 phase.
JP6162959A 1994-06-22 1994-06-22 Superconducting material having high levitation and damping characteristics and its production Withdrawn JPH0812497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6162959A JPH0812497A (en) 1994-06-22 1994-06-22 Superconducting material having high levitation and damping characteristics and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6162959A JPH0812497A (en) 1994-06-22 1994-06-22 Superconducting material having high levitation and damping characteristics and its production

Publications (1)

Publication Number Publication Date
JPH0812497A true JPH0812497A (en) 1996-01-16

Family

ID=15764539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6162959A Withdrawn JPH0812497A (en) 1994-06-22 1994-06-22 Superconducting material having high levitation and damping characteristics and its production

Country Status (1)

Country Link
JP (1) JPH0812497A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080221A (en) * 2000-06-28 2002-03-19 Dowa Mining Co Ltd Hollow oxide superconductor and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080221A (en) * 2000-06-28 2002-03-19 Dowa Mining Co Ltd Hollow oxide superconductor and method of producing the same

Similar Documents

Publication Publication Date Title
EP0493007B1 (en) Rare earth oxide superconducting material and process for producing the same
JPH0812497A (en) Superconducting material having high levitation and damping characteristics and its production
US5334578A (en) Method of manufacturing superconductor
JP4101903B2 (en) Oxide superconducting bulk material and manufacturing method thereof
JP3889822B2 (en) Manufacturing method of oxide superconducting material
JP2625280B2 (en) Manufacturing method of oxide superconducting material
JP3155333B2 (en) Method for producing oxide superconductor having high critical current density
JP3195041B2 (en) Oxide superconductor and manufacturing method thereof
JP4071860B2 (en) Superconducting bulk material and manufacturing method thereof
JP3237953B2 (en) Manufacturing method of oxide superconducting material
JP3260410B2 (en) Oxide superconductor containing rare earth element and manufacturing method thereof
EP0562618A1 (en) Oxide superconductor having large magnetic levitation force and its production method
JP2518043B2 (en) Method for producing ceramics by melt solidification method
JP4101930B2 (en) Oxide bulk superconductor
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material
JP2000169145A (en) Oxide superconducting material and its production
JPH0365509A (en) Rare earth metal oxide superconductor
JPS63274652A (en) Method for elevating purity of ceramic superconductor to high level
JPH0733434A (en) Production of re1ba2cu3o7-x type oxide superconductor
JPH08325013A (en) Neodymium based oxide superconducting formed body and its manufacture
JPH0416511A (en) Oxide superconductor and its production
JP4628042B2 (en) Oxide superconducting material and manufacturing method thereof
JP5114642B2 (en) Oxide superconductor and manufacturing method thereof
JP2828396B2 (en) Oxide superconductor and manufacturing method thereof
RU1547241C (en) Method of production of high-temperature ceramic superconductors

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904