JPH08124924A - Fabrication of semiconductor device - Google Patents

Fabrication of semiconductor device

Info

Publication number
JPH08124924A
JPH08124924A JP27969294A JP27969294A JPH08124924A JP H08124924 A JPH08124924 A JP H08124924A JP 27969294 A JP27969294 A JP 27969294A JP 27969294 A JP27969294 A JP 27969294A JP H08124924 A JPH08124924 A JP H08124924A
Authority
JP
Japan
Prior art keywords
oxide film
teos
silicon oxide
plasma
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27969294A
Other languages
Japanese (ja)
Other versions
JP2705593B2 (en
Inventor
Shigeo Ishikawa
重男 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6279692A priority Critical patent/JP2705593B2/en
Publication of JPH08124924A publication Critical patent/JPH08124924A/en
Application granted granted Critical
Publication of JP2705593B2 publication Critical patent/JP2705593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To deposit a high quality insulating planarization film having a good embedding shape while reducing the labor and shortening the fabrication time by performing prepurge using a doping gas prior to deposition of an oxide film of O3 -TEOS. CONSTITUTION: After forming a metal wiring 3 on a semiconductor substrate 1, a silicon oxide 4 is deposited by plasma CVD. The semiconductor device 1 is then placed in a low pressure CVD system where prepurge is carried out using a gas containing an organic boron compound and/or organic phosphorus compound. Subsequently to the preceding step, a gas containing O2 and TEOS is fed to deposit an undoped silicon oxide 5 under low or intermediate pressure (200-650 Torr) For example, a wafer deposited with an oxide 2, an Al wiring 3 and a plasma oxide is set in a low pressure CVD system where prepurge is carried out using a mixture gas of PO(OCH3 )3 and N2 and then an oxide film 5 of O3 -TEOS is deposited continuously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特にO3 /TEOSを原料ガスとして常圧CVD
法により形成される平坦化酸化膜の膜質の向上を図る方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to atmospheric pressure CVD using O 3 / TEOS as a source gas.
The present invention relates to a method for improving the film quality of a flattening oxide film formed by the method.

【0002】[0002]

【従来の技術】近年、配線の微細化に伴ってステップカ
バレッジ(段差被覆性)の優れた絶縁膜が要求されるよ
うになってきており、そのような要求を満たしかつ膜質
の良好な絶縁膜が得られる技術としてTEOS〔Tetra
Ethyl OrthoSilicate:Si(OC234 〕とO3
原料ガスとして用い常圧CVD法により成膜されるシリ
コン酸化膜(以下、O3 −TEOS酸化膜と記す)が注
目されている。
2. Description of the Related Art In recent years, with the miniaturization of wiring, an insulating film having excellent step coverage has been required, and an insulating film satisfying such a requirement and having a good film quality. TEOS [Tetra
Ethyl OrthoSilicate: Si (OC 2 H 3 ) 4 ] and O 3 are used as a source gas, and a silicon oxide film (hereinafter, referred to as an O 3 -TEOS oxide film) formed by an atmospheric pressure CVD method is receiving attention.

【0003】しかし、O3 −TEOS酸化膜は、プラズ
マCVD法により成膜されたシリコン酸化膜(以下、プ
ラズマ酸化膜と記す)に比較して多くの水分を含有して
いることが知られている。図4に、O3 −TEOS酸化
膜、プラズマ酸化膜についての水のTDS(Thermal De
sorption Spectroscopy ;脱ガス)分析の結果を示す。
同図において、点線はO3 −TEOS酸化膜の、また実
線はプラズマ酸化膜の各温度での脱水量を示す。そこ
で、このO3 −TEOS酸化膜が直接Al配線に触れる
ことのないように成膜することが考えられている。
However, it is known that the O 3 -TEOS oxide film contains more water than the silicon oxide film formed by the plasma CVD method (hereinafter referred to as the plasma oxide film). There is. FIG. 4 shows the TDS (Thermal Desorption) of water for the O 3 -TEOS oxide film and the plasma oxide film.
The results of sorption spectroscopy (degassing) analysis are shown.
In the figure, the dotted line shows the dehydration amount of the O 3 -TEOS oxide film, and the solid line shows the dehydration amount of the plasma oxide film at each temperature. Therefore, it is considered to form a film so that the O 3 -TEOS oxide film does not directly contact the Al wiring.

【0004】図5(a)〜(c)は、O3 −TEOS酸
化膜を有する半導体装置の従来の製造方法を示す工程順
断面図である。まず、図5(a)に示すように、シリコ
ン基板1上に酸化膜2を形成し、その酸化膜2上にアル
ミニウムを堆積しこれをパターニングして、Al配線3
を形成する。次いで、図5(b)に示すように、Al配
線3上にTEOSを原料ガスとするプラズマCVD法に
よりプラズマ酸化膜4を0.1〜0.2μmの膜厚に成
膜する。次いで、図5(c)に示すように、プラズマ酸
化膜4上に常圧CVD法によりO3 −TEOS酸化膜5
を形成する。
5A to 5C are cross-sectional views in order of the steps, showing a conventional method for manufacturing a semiconductor device having an O 3 -TEOS oxide film. First, as shown in FIG. 5A, an oxide film 2 is formed on a silicon substrate 1, aluminum is deposited on the oxide film 2, and this is patterned to form an Al wiring 3
To form. Next, as shown in FIG. 5B, a plasma oxide film 4 having a film thickness of 0.1 to 0.2 μm is formed on the Al wiring 3 by a plasma CVD method using TEOS as a source gas. Then, as shown in FIG. 5C, the O 3 -TEOS oxide film 5 is formed on the plasma oxide film 4 by the atmospheric pressure CVD method.
To form.

【0005】しかし、O3 −TEOS酸化膜をプラズマ
酸化膜上に成膜した場合には下地依存性があるため以下
の問題を生じる。 Si基板上に比べプラズマ酸化膜上ではO3 −TE
OS酸化膜の成長速度が6〜7割程度に減少する。 Si基板上に比べプラズマ酸化膜上ではO3 −TE
OS酸化膜の膜質が悪化しウエットエッチレートが2〜
4倍になる。 プラズマ酸化膜上のO3 −TEOS酸化膜は表面荒
れを起こし、図5(c)に示されるように、ボイド6が
発生する。
However, when the O 3 -TEOS oxide film is formed on the plasma oxide film, the following problems occur due to the underlayer dependency. O 3 -TE on the plasma oxide film is higher than that on the Si substrate.
The growth rate of the OS oxide film is reduced to about 60 to 70%. O 3 -TE on the plasma oxide film is higher than that on the Si substrate.
The film quality of the OS oxide film is deteriorated and the wet etch rate is 2 to
Quadrupled. The O 3 -TEOS oxide film on the plasma oxide film causes surface roughness, and voids 6 are generated as shown in FIG. 5C.

【0006】上記の問題を解決するために、プラズマ酸
化膜形成後にN2 プラズマ処理やエタノール処理を行う
ことが提案されている。このような技術は例えばJ.Elec
tronchem.Soc. Vol.139 No.6 pp.1690−1692やJpn.J.Ap
pl.phys.,Vol.32 pp.L110 −L112等に記載されている。
In order to solve the above problems, it has been proposed to perform N 2 plasma treatment or ethanol treatment after the formation of the plasma oxide film. Such technology is for example J. Elec
tronchem.Soc. Vol.139 No.6 pp.1690-1692 and Jpn.J.Ap
pl.phys., Vol.32 pp. L110-L112 etc.

【0007】[0007]

【発明が解決しようとする課題】しかし、このような下
地処理を行ってもそれぞれ以下のような問題を起こす。
すなわち、N2 プラズマ処理においては、 プラズマ膜中に電荷がチャージアップされる。ま
た、Al配線を介して素子へ電荷が流れ込み素子に悪影
響を及ぼす、 N2 プラズマ処理からO3 −TFOS酸化膜成長ま
での放置時間が長い場合、N2 プラズマ処理の効果が減
殺される、 表面荒れは改善されるもののボイドの発生は改善さ
れない、などの問題がある。
However, even if such a surface treatment is performed, the following problems occur.
That is, in the N 2 plasma treatment, electric charges are charged up in the plasma film. In addition, when the electric charge flows into the device through the Al wiring and adversely affects the device, and when the standing time from the N 2 plasma treatment to the growth of the O 3 -TFOS oxide film is long, the effect of the N 2 plasma treatment is diminished. Although the roughness is improved, the occurrence of voids is not improved.

【0008】また、エタノール処理では、 成長速度が大幅に減少する、 パターンの疎密による成長速度差が大きくなる、 Al配線の高さが1.0μm以上と高い場合、埋め
込み形状が悪化する、などの問題が起こる。
In addition, in the ethanol treatment, the growth rate is greatly reduced, the growth rate difference due to the pattern density is large, and the embedded shape is deteriorated when the height of the Al wiring is as high as 1.0 μm or more. The problem arises.

【0009】しかも前記した各下地処理の方法では、膜
質が十分に安定化されず、また埋め込み形状も良好には
ならない。またこのような下地処理は工数の増加を招く
ほか下地処理とO3 −TEOS酸化膜の成長との間に遊
び時間が生じてしまう。本発明はこのような状況に鑑み
てなされたものであって、その目的は、プラズマ酸化膜
上に下地処理を行うことなくO3 −TEOS酸化膜の成
長を行うことができるようにして工数の削減/製造時間
の短縮を図るとともに、良質で埋め込み形状の良好な平
坦化絶縁膜を形成することができるようにすることであ
る。
In addition, the above-mentioned respective methods of undercoating do not sufficiently stabilize the film quality, and the embedding shape does not become good. Further, such undercoating causes an increase in man-hours and causes a play time between the undercoating and the growth of the O 3 -TEOS oxide film. The present invention has been made in view of such circumstances, and an object thereof is to make it possible to grow an O 3 -TEOS oxide film without performing a base treatment on the plasma oxide film, and to reduce the number of steps. This is to reduce the manufacturing time and shorten the manufacturing time, and to form a flattening insulating film having a good quality and a good filling shape.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明によれば、(1)半導体基板上に金属配線を
形成する工程と、(2)プラズマCVD法によりシリコ
ン酸化膜を形成する工程と、(3)常圧または中圧下に
おいてO3 とTEOSを含むガスを流しノンドープシリ
コン酸化膜を成膜する工程と、を有する半導体装置の製
造方法において、前記第(3)の工程に先立って有機ホ
ウ素化合物および/または有機リン化合物を含むドーピ
ングガスによるプリパージを行うか、あるいは、前記第
(3)の工程の初期の段階において所定の時間有機ホウ
素化合物および/または有機リン化合物を含むドーピン
グガスを流して前記ノンドープシリコン酸化膜の一部を
ドープト酸化膜として形成することを特徴とする半導体
装置の製造方法、が提供される。
To achieve the above object, according to the present invention, (1) a step of forming metal wiring on a semiconductor substrate, and (2) a silicon oxide film is formed by a plasma CVD method. In the method for manufacturing a semiconductor device, the method includes the step of: (3) flowing a gas containing O 3 and TEOS under normal pressure or medium pressure to form a non-doped silicon oxide film, prior to the step (3). Pre-purge with a doping gas containing an organic boron compound and / or an organic phosphorus compound, or a doping gas containing an organic boron compound and / or an organic phosphorus compound for a predetermined time in the initial stage of the step (3). And a part of the non-doped silicon oxide film is formed as a doped oxide film. It is subjected.

【0011】[0011]

【作用】プラズマ酸化膜上にBPSG( Boro-Phospho-
Silicate Glass)膜を成長させる場合には、プラズマ酸
化膜表面は親水性であるものの下地依存性のない成膜が
行われる。本発明においては、例えばO3 −TEOS酸
化膜の成長の先立ってドーピングガスによるプリパージ
が行われるが、その結果プラズマ酸化膜とO3 −TEO
S酸化膜との界面に薄くドープト酸化膜が形成される。
これによりプラズマ酸化膜上にBPSG膜を成膜するの
と同様の効果が生じ、ノンドープO3 −TEOS酸化膜
を下地依存性のない状態で成膜することが可能になる。
ドーピングガスによるプリパージに代え、O3 −TEO
S酸化膜の成膜の初期に一定時間ドーピングガスを流す
ようにしても同様の効果が得られる。
[Function] BPSG (Boro-Phospho-
When a Silicate Glass) film is grown, the surface of the plasma oxide film is hydrophilic but is not dependent on the underlying layer. In the present invention, for example, O 3 -TEOS prepurge by doping gas prior growth of oxide film is performed such that the plasma oxide film and the O 3 -TeO
A thin doped oxide film is formed at the interface with the S oxide film.
This produces the same effect as that of forming the BPSG film on the plasma oxide film, and makes it possible to form the non-doped O 3 -TEOS oxide film without depending on the underlying layer.
Instead of prepurge with doping gas, O 3 -TEO
The same effect can be obtained even if the doping gas is allowed to flow for a certain period of time at the beginning of the formation of the S oxide film.

【0012】本発明により、プラズマ酸化膜上へのO3
−TEOS酸化膜の成膜を下地依存性なく行うことがで
きるようになったことにより、成長速度、エッチング速
度もSi基板上に成膜した場合と同等になり、膜質が良
好で表面荒れがなく、かつ埋め込み形状の良好なO3
TEOSノンドープシリコン酸化膜を形成することが可
能になる。
According to the present invention, O 3 on the plasma oxide film is
-Because the TEOS oxide film can be formed without depending on the underlying layer, the growth rate and the etching rate are the same as those when the film is formed on the Si substrate, and the film quality is good and there is no surface roughness. And has a good embedded shape O 3
It becomes possible to form a TEOS non-doped silicon oxide film.

【0013】[0013]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1(a)〜(d)は、本発明の第1の実
施例の半導体装置の製造プロセスを説明するための工程
順断面図である。また、図2は、O3 /TEOSを原料
ガスとして常圧CVD法によりシリコン酸化膜を成膜す
る際のタイミングチャートである。まず、図1(a)に
示すように、シリコン基板1上に酸化膜2を形成し、そ
の酸化膜2上に、スパッタ蒸着法によりアルミニウムを
膜厚約1μmに堆積し、これをパターニングしてAl配
線3を形成する。次いで、図1(b)に示すように、A
l配線3上にTEOS、O2 ガスを用いるプラズマCV
D法により、膜厚0.1〜0.2μmのプラズマ酸化膜
4を形成する。
Embodiments of the present invention will now be described with reference to the drawings. 1A to 1D are cross-sectional views in order of the processes, for explaining the manufacturing process of the semiconductor device according to the first embodiment of the invention. Further, FIG. 2 is a timing chart when a silicon oxide film is formed by a normal pressure CVD method using O 3 / TEOS as a source gas. First, as shown in FIG. 1A, an oxide film 2 is formed on a silicon substrate 1, and aluminum is deposited to a thickness of about 1 μm on the oxide film 2 by a sputter deposition method, and this is patterned. The Al wiring 3 is formed. Then, as shown in FIG.
Plasma CV using TEOS and O 2 gas on the wiring 3
A plasma oxide film 4 having a film thickness of 0.1 to 0.2 μm is formed by the D method.

【0014】次に、ウェハを常圧CVD装置内に装着
し、図1(c)に示すように、ドーピングガスを供給し
てプリパージを行う、すなわち、CVD装置内の気体を
ドーピングガスによって置き換える。供給ガスは、PO
(OCH33 とN2 の混合ガスであり、混合ガスの流
量は2SLMで、図2に示されるように、15秒間パー
ジを行う。その後、このプリパージ工程に連続して、T
EOS流量:1〜2SLM、O3 濃度:90g/m3
成膜温度:370〜400℃、O2 流量:7.5SLM
の条件で約100秒気相成長を行い、O3 −TEOS酸
化膜5を成膜する〔図1(d)〕。
Next, the wafer is mounted in an atmospheric pressure CVD apparatus, and as shown in FIG. 1C, a doping gas is supplied to perform pre-purging, that is, the gas in the CVD apparatus is replaced with the doping gas. Supply gas is PO
It is a mixed gas of (OCH 3 ) 3 and N 2 , and the flow rate of the mixed gas is 2 SLM. As shown in FIG. 2, purging is performed for 15 seconds. Then, in succession to this prepurge step, T
EOS flow rate: 1-2 SLM, O 3 concentration: 90 g / m 3 ,
Film formation temperature: 370 to 400 ° C., O 2 flow rate: 7.5 SLM
Under these conditions, vapor phase growth is performed for about 100 seconds to form the O 3 -TEOS oxide film 5 [FIG. 1 (d)].

【0015】このようにして形成されたO3 −TEOS
酸化膜では、Si基板上に成膜した場合と同様に膜質が
よくまたボイドの発生もなかった。上記実施例では、ド
ーピングガスとして、有機リン化合物を使用していた
が、これに代え有機ホウ素化合物を用いてプリパージを
行うことができる。有機ホウ素化合物としては、B(O
CH33 、B(OC253 、B(OC373
を使用することができる。さらに、有機リン化合物と有
機ホウ素化合物の両方を含む混合ガスを供給するように
してもよい。プリパージは、各ガス流量を1〜3SLM
とし、10〜30秒程度行うのが適当である。また、O
3 −TEOS酸化膜の気相成長を中圧(200〜650
Torr)下において行なうようにしてもよい。
O 3 -TEOS formed in this way
The oxide film had good film quality and did not generate voids as in the case of forming the film on the Si substrate. Although the organic phosphorus compound is used as the doping gas in the above-mentioned embodiment, an organic boron compound may be used instead of the organic phosphorus compound to perform the pre-purge. As the organic boron compound, B (O
CH 3) 3, B (OC 2 H 5) 3, B (OC 3 H 7) 3
Can be used. Further, a mixed gas containing both the organic phosphorus compound and the organic boron compound may be supplied. Pre-purge, each gas flow rate is 1-3 SLM
Therefore, it is suitable to carry out for about 10 to 30 seconds. Also, O
Vapor phase growth of 3- TEOS oxide film is performed at a medium pressure (200 to 650).
It may be performed under Torr).

【0016】次に、本発明の第2の実施例について説明
する。図3は、第2の実施例におけるO3 −TEOS酸
化膜成長工程時のタイミングチャートである。この第2
の実施例の工程順断面図は図1と同様であるが、図1
(c)のドーピングガスのよるプリパージの工程は省略
され、代わりに成膜開始直後の一定時間ドーピングガス
の供給が行われる。
Next, a second embodiment of the present invention will be described. FIG. 3 is a timing chart during the O 3 -TEOS oxide film growth step in the second embodiment. This second
1 is similar to that of FIG.
The step of pre-purging with the doping gas in (c) is omitted, and instead, the doping gas is supplied for a certain period of time immediately after the start of film formation.

【0017】図1(b)に示すように、酸化膜2上にA
l配線3を形成し、その上に0.1〜0.2μmのプラ
ズマ酸化膜4を形成した後、ウェハを常圧CVD装置内
に装着し、TEOS流量:1〜2SLM、O3 濃度:9
0g/m3 、成膜温度:370〜400℃、O2 流量:
7.5SLM、PO(OCH33 流量:1〜2SL
M、B(OCH33 流量:1〜2SLMの条件で約1
0秒気相成長を行った後ドーピングガスの供給を中止
し、引き続き気相成長を約90秒続けて図1(d)に示
すようにO3 −TEOS酸化膜5を成膜する。このよう
にして形成されたO3 −TEOS酸化膜5の下層部分に
は、BPSGが薄く(20〜30nm)形成され、これ
により先の実施例と同様の効果を挙げることができる。
As shown in FIG. 1B, A is formed on the oxide film 2.
After forming the 1 wiring 3 and forming the plasma oxide film 4 of 0.1 to 0.2 μm thereon, the wafer is mounted in the atmospheric pressure CVD apparatus, the TEOS flow rate: 1 to 2 SLM, the O 3 concentration: 9
0 g / m 3 , film forming temperature: 370 to 400 ° C., O 2 flow rate:
7.5SLM, PO (OCH 3) 3 flow rate: 1~2SL
M, B (OCH 3 ) 3 flow rate: about 1 under the condition of 1-2 SLM
After vapor phase growth for 0 seconds, supply of the doping gas is stopped, and vapor phase growth is continued for about 90 seconds to form an O 3 -TEOS oxide film 5 as shown in FIG. 1D. In the lower layer portion of the O 3 -TEOS oxide film 5 thus formed, BPSG is thinly formed (20 to 30 nm), and the same effect as in the previous embodiment can be obtained.

【0018】[0018]

【発明の効果】以上説明したように、本発明による半導
体装置の製造方法は、金属配線上にプラズマ酸化膜を形
成した下地に有機ホウ素化合物や有機リン化合物を含む
ガスを流した後連続的にO3 −TEOS酸化膜を形成す
るか、あるいは成膜開始直後に短時間ドーピングガスを
供給してO3 −TEOS酸化膜を形成するものであるの
で、プラズマ酸化膜上にBPSG膜を成長させる場合と
同様に下地依存性をなくすことができ、膜質がよく良好
な埋め込み形状をもつ平坦化絶縁膜を形成することが可
能となる。また、本発明の製造方法は下地処理を行う場
合のように新たな工程の増加を伴うものではなく、さら
に待機時間などの遊び時間が生じることがないのでスル
ープットの向上を図ることができる。
As described above, according to the method of manufacturing a semiconductor device of the present invention, a gas containing an organic boron compound or an organic phosphorus compound is continuously flowed after flowing a gas containing an organic boron compound on a base on which a plasma oxide film is formed on a metal wiring. When the BPSG film is grown on the plasma oxide film, since the O 3 -TEOS oxide film is formed or a doping gas is supplied for a short time immediately after the film formation is started to form the O 3 -TEOS oxide film. Similarly to the above, it is possible to eliminate the dependency on the underlying layer, and it is possible to form a planarization insulating film having a good film quality and a good buried shape. Further, the manufacturing method of the present invention does not involve the addition of new steps as in the case of performing the base treatment, and since idle time such as standby time does not occur, throughput can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の製造方法を示す工程順
断面図。
1A to 1D are cross-sectional views in order of the processes, showing a manufacturing method according to a first embodiment of the present invention.

【図2】本発明の第1の実施例におけるO3 −TEOS
酸化膜形成工程でのタイミングチャート。
FIG. 2 is an O 3 -TEOS in the first embodiment of the present invention.
The timing chart in an oxide film formation process.

【図3】本発明の第2の実施例におけるO3 −TEOS
酸化膜形成工程でのタイミングチャート。
FIG. 3 is an O 3 -TEOS in the second embodiment of the present invention.
The timing chart in an oxide film formation process.

【図4】O3 −TEOS酸化膜とプラズマ酸化膜のTD
S分析結果を示すグラフ。
FIG. 4 TD of O 3 -TEOS oxide film and plasma oxide film
The graph which shows S analysis result.

【図5】従来の製造方法を示す工程順断面図。5A to 5C are cross-sectional views in order of the processes, showing a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 酸化膜 3 Al配線 4 プラズマ酸化膜 5 O3 −TEOS酸化膜 6 ボイド1 silicon substrate 2 oxide film 3 Al wiring 4 plasma oxide film 5 O 3 -TEOS oxide film 6 void

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (1)半導体基板上に金属配線を形成す
る工程と、 (2)プラズマCVD法によりシリコン酸化膜を形成す
る工程と、 (3)半導体基板を常圧CVD装置内に配置し、有機ホ
ウ素化合物および/または有機リン化合物を含むガスで
プリパージを行う工程と、 (4)前記第(3)の工程に連続してO3 とTEOSを
含むガスを流し常圧または中圧(200〜650Tor
r)下においてノンドープシリコン酸化膜を成膜する工
程と、を有することを特徴とする半導体装置の製造方
法。
1. A step of (1) forming metal wiring on a semiconductor substrate, (2) a step of forming a silicon oxide film by a plasma CVD method, and (3) disposing the semiconductor substrate in an atmospheric pressure CVD apparatus. A step of pre-purging with a gas containing an organic boron compound and / or an organic phosphorus compound, and (4) a gas containing O 3 and TEOS is continuously supplied to the step (3) to bring the gas to a normal pressure or an intermediate pressure (200 ~ 650 Tor
r) a step of forming a non-doped silicon oxide film under r).
【請求項2】 前記第(3)の工程におけるプリパージ
が10〜30秒間行われることを特徴とする請求項1記
載の半導体装置の製造方法。
2. The method for manufacturing a semiconductor device according to claim 1, wherein the pre-purge in the third step is performed for 10 to 30 seconds.
【請求項3】 (1)半導体基板上に金属配線を形成す
る工程と、 (2)プラズマCVD法によりシリコン酸化膜を形成す
る工程と、 (3)常圧または中圧下においてO3 とTEOSを含む
ガスを流しノンドープシリコン酸化膜を成膜する工程
と、を有する半導体装置の製造方法において、前記第
(3)の工程の初期の段階において所定の時間有機ホウ
素化合物および/または有機リン化合物を含むドーピン
グガスを流し前記ノンドープシリコン酸化膜の一部をド
ープト酸化膜として形成することを特徴とする半導体装
置の製造方法。
3. A step of (1) forming a metal wiring on a semiconductor substrate, (2) a step of forming a silicon oxide film by a plasma CVD method, and (3) O 3 and TEOS under normal pressure or medium pressure. And a step of forming a non-doped silicon oxide film by flowing a gas containing the organic boron compound and / or the organic phosphorus compound for a predetermined time in the initial stage of the step (3). A method of manufacturing a semiconductor device, wherein a doping gas is flowed to form a part of the non-doped silicon oxide film as a doped oxide film.
【請求項4】 前記所定の時間が5〜20秒であること
を特徴とする請求項1記載の半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein the predetermined time is 5 to 20 seconds.
JP6279692A 1994-10-20 1994-10-20 Method for manufacturing semiconductor device Expired - Fee Related JP2705593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6279692A JP2705593B2 (en) 1994-10-20 1994-10-20 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6279692A JP2705593B2 (en) 1994-10-20 1994-10-20 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH08124924A true JPH08124924A (en) 1996-05-17
JP2705593B2 JP2705593B2 (en) 1998-01-28

Family

ID=17614549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6279692A Expired - Fee Related JP2705593B2 (en) 1994-10-20 1994-10-20 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2705593B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127054A (en) * 1999-10-29 2001-05-11 Applied Materials Inc Equipment and method of forming thin film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206107A (en) * 1991-02-27 1993-08-13 Sony Corp Semiconductor device and manufacture thereof
JPH05343542A (en) * 1992-06-11 1993-12-24 Oki Electric Ind Co Ltd Manufacture of semiconductor element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206107A (en) * 1991-02-27 1993-08-13 Sony Corp Semiconductor device and manufacture thereof
JPH05343542A (en) * 1992-06-11 1993-12-24 Oki Electric Ind Co Ltd Manufacture of semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127054A (en) * 1999-10-29 2001-05-11 Applied Materials Inc Equipment and method of forming thin film

Also Published As

Publication number Publication date
JP2705593B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
US5426076A (en) Dielectric deposition and cleaning process for improved gap filling and device planarization
US6406975B1 (en) Method for fabricating an air gap shallow trench isolation (STI) structure
US7141116B2 (en) Method for manufacturing a silicon structure
US20130260564A1 (en) Insensitive dry removal process for semiconductor integration
JPH09172008A (en) Method and device that form good boundary between sacvd oxide film and pecvd oxide film
US7955948B2 (en) Manufacturing method of semiconductor device
KR100558999B1 (en) FILLING SUBSTRATE DEPRESSIONS WITH SiO2 BY HDP VAPOR PHASE DEPOSITION WITH PARTICIPATION OF H2O2 OR H2O AS REACTION GAS
US20060205175A1 (en) Methods of forming silicon dioxide layers, and methods of forming trench isolation regions
KR20040100767A (en) method for forming low pressure-silicon nitride layer
JPH06104181A (en) Manufacture of insulating film by optical cvd method and manufacture of insulating film subjected to planarizaton
JP2705593B2 (en) Method for manufacturing semiconductor device
JPH04343456A (en) Manufacture of semiconductor device
JP2758860B2 (en) Method for manufacturing semiconductor device
JPH0851107A (en) Formation of flattening structure on wafer and formation of bpsg flattening structure basing on silane on wafer
JP2629579B2 (en) Semiconductor device manufacturing method and manufacturing apparatus
JP2004165533A (en) Semiconductor device fabricating method
JPH07100860B2 (en) Method for forming tungsten silicide film
KR100382543B1 (en) method for forming contact plug of semiconductor device
US5920791A (en) Method of manufacturing intermetal dielectrics for sub-half-micron semiconductor devices
JPH05267220A (en) Method of forming sealing layer and metal plug in semiconductor device
JPH05206110A (en) Semiconductor device and manufacture thereof
JPH0951035A (en) Formation of interlayer insulation layer
JPH10256183A (en) Manufacture of semiconductor device
JPH0855808A (en) Polycrystalline si film forming method
JPH07130847A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees