JPH08124600A - Lithium cell - Google Patents

Lithium cell

Info

Publication number
JPH08124600A
JPH08124600A JP6279951A JP27995194A JPH08124600A JP H08124600 A JPH08124600 A JP H08124600A JP 6279951 A JP6279951 A JP 6279951A JP 27995194 A JP27995194 A JP 27995194A JP H08124600 A JPH08124600 A JP H08124600A
Authority
JP
Japan
Prior art keywords
active material
electrode active
lithium
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6279951A
Other languages
Japanese (ja)
Inventor
So Arai
創 荒井
Shigeto Okada
重人 岡田
Hideaki Otsuka
秀昭 大塚
Junichi Yamaki
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6279951A priority Critical patent/JPH08124600A/en
Publication of JPH08124600A publication Critical patent/JPH08124600A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To provide a lithium cell having large discharge energy and high economical efficiency, by using a double oxide of LiFeO2 as a positive electrode active material and Li or the like as a negative electrode active material, in a composition formula having a specific peak value. CONSTITUTION: In a composition formula having a peak of surface space 4.8±0.3Å based on X-ray analysis by a copper Kαwire, a lithium cell is formed of positive electrode compound pellet 6 using a double oxide of LiFeO2 as a positive electrode active material, Li negative electrode 4 using Li or Li compound as a negative electrode active material, electrolyte of substance chemically stable against the negative electrode active material to be movable for electrochemical reaction of an Li ion with the active material, separator 5, etc. Then, the lithium secondary cell, easily diffusing Li to have large discharge energy and high economical efficiency, is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウム電池、さらに詳
細には充放電可能なリチウム二次電池に関し、特に安価
で放電エネルギーの大きい電池を提供する正極活物質に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery, and more particularly to a rechargeable lithium secondary battery, and more particularly to a positive electrode active material which provides a battery which is inexpensive and has a large discharge energy.

【0002】[0002]

【従来の技術および問題点】リチウムなどのアルカリ金
属およびその化合物を負極活物質とする非水電解液電池
は、負極金属イオンの正極活物質へのインサーションも
しくはインターカレーション反応によって、その大放電
容量と充放電可逆性を両立させている。従来からこれら
の正極活物質には、二硫化チタンなどの硫化物が提案さ
れているが、これらは電圧が2V程度と低く、放電エネ
ルギーが小さいという欠点があった。この問題を解決す
るために、4V級の電圧を示す正極材料LiCoO2
開発されている。この材料は一般式でLiMO2(Mは
遷移金属)と表される化合物群の一つで、分子量が小さ
いため単位重量当たりの容量が大きく、またリチウムを
脱離することにより高い酸化状態を実現できるため電圧
が高いという長所を有している。しかし、LiCoO2
は高価なコバルトを用いているため、実用的に不利であ
る欠点を有しており、安価で放電エネルギーの大きい材
料が探索されていた。そこでLoMO2化合物群の中で
最も安価なLiFeO2が注目されていたが、従来試験
されていたLiFeO2正極活物質は、X線回折におい
て面間隔4.8±0.3オングストロームのピークを有
せず、岩塩構造、あるいはLiScO2型の構造、ある
いは両者の中間的な構造に属しており、リチウムの拡散
が不可能であり、放電エネルギーが殆どとれない欠点を
有していた。
2. Description of the Related Art A non-aqueous electrolyte battery using an alkali metal such as lithium and its compound as a negative electrode active material has a large discharge due to an insertion or intercalation reaction of a negative electrode metal ion into the positive electrode active material. It has both capacity and reversibility of charge and discharge. Conventionally, sulfides such as titanium disulfide have been proposed for these positive electrode active materials, but these have the drawback that the voltage is as low as about 2 V and the discharge energy is small. In order to solve this problem, a positive electrode material LiCoO 2 showing a voltage of 4 V class has been developed. This material is one of a group of compounds represented by the general formula as LiMO 2 (M is a transition metal). It has a large capacity per unit weight due to its small molecular weight, and also realizes a high oxidation state by desorbing lithium. Since it is possible, it has the advantage of high voltage. However, LiCoO 2
Since it uses expensive cobalt, it has a disadvantage that it is practically disadvantageous, and an inexpensive material having a large discharge energy has been sought. Therefore lomo 2 but cheapest LiFeO 2 in compounds had been noted, 2 positive active material LiFeO which is conventionally tested, have a peak of interplanar spacing 4.8 ± 0.3 Å in the X-ray diffraction However, it belongs to a rock salt structure, a LiScO 2 type structure, or an intermediate structure between them, and has a drawback that diffusion of lithium is impossible and discharge energy is hardly taken.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記のよう
に電圧が低く放電エネルギーも少ないといった現状の課
題を解決し、安価で放電エネルギーが大きいリチウム電
池を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the current problems of low voltage and low discharge energy as described above, and to provide a lithium battery which is inexpensive and has a large discharge energy.

【0004】[0004]

【問題点を解決するための手段】かかる目的を達成する
ために本発明のリチウム電池では、X線回折において面
間隔4.8±0.3オングストロームのピークを有する
組成式LiFeO2で与えられる複酸化物を正極活物質
として含み、リチウムまたはその化合物を負極活物質と
し、前記正極活物質および前記負極活物質に対して化学
的に安定でありかつリチウムイオンが前記正極活物質あ
るいは前記負極活物質と電気化学反応をするための移動
を行い得る物質を電解質物質としたことを特徴としてい
る。
In order to achieve the above object, in the lithium battery of the present invention, a compound represented by the composition formula LiFeO 2 having a peak with an interplanar spacing of 4.8 ± 0.3 angstrom in X-ray diffraction is used. An oxide is included as a positive electrode active material, lithium or a compound thereof is used as a negative electrode active material, and the positive electrode active material and the negative electrode active material are chemically stable and lithium ions are the positive electrode active material or the negative electrode active material. It is characterized in that the substance that can move for electrochemical reaction with is an electrolyte substance.

【0005】本発明をさらに詳しく説明する。The present invention will be described in more detail.

【0006】発明者は安価で放電エネルギーが大きいリ
チウム電池用材料を鋭意探索した結果、上述のようにX
線回折において面間隔4.8±0.3オングストローム
のピークを有する組成式LiFeO2で与えられる複酸
化物を正極活物質として用いることにより、従来のリチ
ウム電池より、安価で放電エネルギーが大きいリチウム
電池を構成できることを確かめ、その認識の下に本発明
を完成した。
As a result of earnest search for a material for a lithium battery which is inexpensive and has a large discharge energy, the inventor has found that X
A lithium battery that is cheaper and has a larger discharge energy than a conventional lithium battery by using a complex oxide given by a composition formula LiFeO 2 having a peak of a surface spacing of 4.8 ± 0.3 angstrom in line diffraction as a positive electrode active material. The present invention has been completed based on the recognition that it can be constructed.

【0007】本発明のリチウム電池が従来の正極活物質
にLiFeO2を用いた電池に比べて放電エネルギーが
大きい理由は、LiFeO2の中でも、X線回折におい
て面間隔4.8±0.3オングストロームのピークを有
する化合物を用いることにより、層状の構造を有するこ
ととなり、リチウムの拡散が容易になるためと考えられ
る。
The reason why the lithium battery of the present invention has a larger discharge energy than the conventional battery using LiFeO 2 as the positive electrode active material is that among LiFeO 2 , the interplanar spacing in X-ray diffraction is 4.8 ± 0.3 angstrom. It is considered that the use of the compound having the peak of (3) has a layered structure and facilitates the diffusion of lithium.

【0008】本発明の正極活物質は、層状構造を有する
MFeO2型の化合物(Mはリチウム以外の1価ないし
2価の陽イオンとなりうる金属元素)のMを、イオン交
換等の手法によってリチウムに置換する、等の手法によ
り合成することができる。Mの具体例としては、Na、
K、H、Cu、Agなどを挙げることができる。
In the positive electrode active material of the present invention, M of the MFeO 2 type compound having a layered structure (M is a metal element other than lithium which can be a monovalent or divalent cation) is converted into lithium by a method such as ion exchange. Can be synthesized by a method such as substitution with. Specific examples of M include Na,
Examples thereof include K, H, Cu and Ag.

【0009】また、リチウムの挿入・脱離を繰り返し行
うことができ、二次電池として用いることもできる。特
にLiFeO2の状態からリチウム脱離を行うことによ
り、高い電圧を実現できる。この方法としては強力な酸
化剤を用いてリチウムを脱離する方法、酸処理による不
均化で脱離させる方法、あるいはLiFeO2を正極材
料として電池を構成し、その後充電を行い、正極材料を
酸化して同時にリチウムを脱離する電気化学的手法、等
を用いることができる。
Further, lithium can be repeatedly inserted and removed, and it can be used as a secondary battery. In particular, high voltage can be realized by desorbing lithium from the state of LiFeO 2 . As this method, a method of desorbing lithium by using a strong oxidant, a method of desorbing by disproportionation by acid treatment, or a battery using LiFeO 2 as a positive electrode material, and then charging is performed, and the positive electrode material is charged. An electrochemical method of oxidizing and desorbing lithium at the same time, or the like can be used.

【0010】また本発明にリチウム電池で用いている正
極活物質は、鉄酸化物系に属するため、前述のとおり安
価であり、しかも資源的に豊富な材料であるため、産業
上の価値が非常に高い。
Further, since the positive electrode active material used in the lithium battery of the present invention belongs to the iron oxide type, it is inexpensive as described above, and is a resource-rich material, so that it is of great industrial value. Very expensive.

【0011】この正極活物質を用いて正極を形成するに
は、前記複酸化物粉末とポリテトラフルオロエチレンの
ごとき結着剤粉末との混合物をステンレス等の支持体上
に圧着成形する、あるいは、かかる混合物粉末に導電性
を付与するためアセチレンブラックのような導電性粉末
を混合し、これにさらにポリテトラフルオロエチレンの
ような結着剤粉末を所要に応じて加え、この混合物を金
属容器にいれる、あるいは前述のステンレスなどの支持
体に圧着成形する、あるいは前述の混合物を有機溶剤等
の溶媒中に分散してスラリー状にして金属基板上に塗布
する、等の手段によって形成される。
In order to form a positive electrode using this positive electrode active material, a mixture of the above-mentioned double oxide powder and a binder powder such as polytetrafluoroethylene is pressure-molded on a support such as stainless steel, or In order to impart conductivity to the mixture powder, a conductive powder such as acetylene black is mixed, and a binder powder such as polytetrafluoroethylene is further added to the mixture as needed, and the mixture is put in a metal container. Alternatively, it is formed by means such as press-molding on a support such as the above-mentioned stainless steel, or by dispersing the above-mentioned mixture in a solvent such as an organic solvent to form a slurry and coating it on a metal substrate.

【0012】負極活物質であるリチウムは一般のリチウ
ム電池のそれと同様にシート上にして、またそのシート
をニッケル、ステンレス等の導電体網に圧着して負極と
して形成される。また負極活物質としては、リチウム以
外にリチウム−アルミニウム合金等のリチウム合金を用
いることができる。さらに炭素など、いわゆるロッキン
グチェア電池(リチウムイオン電池)用の負極を用いる
こともでき、本発明の場合、充電反応により正極から供
給されるリチウムイオンを電気化学的に挿入し、炭素−
リチウム負極などとすることもできる。
Lithium, which is the negative electrode active material, is formed as a negative electrode on a sheet as in the case of a general lithium battery, and the sheet is pressure-bonded to a conductor mesh of nickel, stainless steel or the like. In addition to lithium, a lithium alloy such as a lithium-aluminum alloy can be used as the negative electrode active material. Further, a negative electrode for so-called rocking chair battery (lithium ion battery) such as carbon can be used, and in the case of the present invention, lithium ions supplied from the positive electrode by a charging reaction are electrochemically inserted, and carbon-
It can also be a lithium negative electrode or the like.

【0013】電解液としては、例えばジメトキシエタ
ン、2−メチルテトラヒドロフラン、エチレンカーボネ
ート、メチルホルメート、ジメチルスルホキシド、プロ
ピレンカーボネート、アセトニトリル、ブチロラクト
ン、ジメチルホルムアミド、ジメチルカーボネート、ジ
エチルカーボネート、スルホラン、エチルメチルカーボ
ネート等の有機溶媒に、LiAsF6、LiBF4、Li
PF6、LiAlCl4、LiClO4等のルイス酸を溶
解した非水電解質溶媒、あるいは固体電解質等が使用で
きる。
Examples of the electrolytic solution include dimethoxyethane, 2-methyltetrahydrofuran, ethylene carbonate, methyl formate, dimethyl sulfoxide, propylene carbonate, acetonitrile, butyrolactone, dimethylformamide, dimethyl carbonate, diethyl carbonate, sulfolane and ethyl methyl carbonate. LiAsF 6 , LiBF 4 , Li in organic solvent
A non-aqueous electrolyte solvent in which a Lewis acid such as PF 6 , LiAlCl 4 or LiClO 4 is dissolved, or a solid electrolyte can be used.

【0014】さらにセパレータ、電池ケース等の構造材
料等の要素についても従来公知の各種材料が使用でき、
特に制限はない。
Furthermore, various conventionally known materials can be used for the structural materials such as the separator and the battery case.
There is no particular limitation.

【0015】[0015]

【実施例】以下実施例によって本発明の方法をさらに具
体的に説明するが、本発明はこれらにより何ら制限され
るものではない。なお、実施例において電池の作成およ
び測定はアルゴン雰囲気下のドライボックス内で行っ
た。
EXAMPLES The method of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. In the examples, the production and measurement of the battery were performed in a dry box under an argon atmosphere.

【0016】[0016]

【実施例1】図1は本発明による電池の一具体例である
コイン型電池の断面図であり、図中1は封口板、2はガ
スケット、3は正極ケース、4は負極、5はセパレー
タ、6は正極合剤ペレットを示す。
EXAMPLE 1 FIG. 1 is a cross-sectional view of a coin-type battery which is a specific example of the battery according to the present invention, in which 1 is a sealing plate, 2 is a gasket, 3 is a positive electrode case, 4 is a negative electrode, and 5 is a separator. , 6 are positive electrode material mixture pellets.

【0017】正極活物質には、Na22とFe34
3:2のモル比で混合し酸素雰囲気下60℃で12時間
焼成して得たNaFeO2をLiNO3:LiCl混合溶
媒塩中空気中260℃で12時間イオン交換させた後水
洗してLiNO3およびLiCl等の水溶成分をろ過に
より除去した後100℃で真空乾燥することにより得た
LiFeO2を用いた。このLiFeO2試料をaとす
る。銅Kα線で試料aのX線回折解析を行ったところ、
4.8±0.3オングストロームの面間隔に相当するピ
ークが観察された。
As a positive electrode active material, NaFeO 2 obtained by mixing Na 2 O 2 and Fe 3 O 4 in a molar ratio of 3: 2 and firing at 60 ° C. for 12 hours in an oxygen atmosphere is used as a LiNO 3 : LiCl mixed solvent. using LiFeO 2 obtained by vacuum drying at 100 ° C. after removal by washing with water and filtered water components such as LiNO 3 and LiCl to after 12 hours the ion exchange Shiochu 260 ° C. in air. This LiFeO 2 sample is designated as a. When the X-ray diffraction analysis of the sample a was conducted using copper Kα rays,
A peak corresponding to an interplanar spacing of 4.8 ± 0.3 angstrom was observed.

【0018】この試料aを粉砕して粉末とし、導電剤
(アセチレンブラック)、結着剤(ポリテトラフルオロ
エチレン)とともに混合の上、ロール成形し、正極合剤
ペレット6(厚さ0.5mm、直径15mm)とした。
This sample a was pulverized into a powder, mixed with a conductive agent (acetylene black) and a binder (polytetrafluoroethylene), and then roll-molded to form a positive electrode mixture pellet 6 (thickness: 0.5 mm, The diameter was 15 mm).

【0019】次にステンレス製の封口板1上に金属リチ
ウムの負極4を加圧配置したものをポリプロピレン製ガ
スケット2の凹部に挿入し、負極4の上にポリプロピレ
ン製で微孔性のセパレータ5、正極合剤ペレット6をこ
の順序に配置し、電解液としてエチレンカーボネートと
ジエチレンカーボネートの等容積混合溶媒にLiPF6
を溶解させた1規定溶液を適量注入して含浸させた後
に、ステンレス製の正極ケース3を被せてかしめること
により、厚さ2mm、直径23mmのコイン型電池を作
製した。
Next, a metallic lithium negative electrode 4 placed under pressure on a stainless steel sealing plate 1 was inserted into a recess of a polypropylene gasket 2, and a polypropylene microporous separator 5 was placed on the negative electrode 4. The positive electrode material mixture pellets 6 are arranged in this order, and LiPF 6 is used as an electrolytic solution in an equal volume mixed solvent of ethylene carbonate and diethylene carbonate.
After injecting an appropriate amount of the 1N solution in which was dissolved to impregnate it, the positive electrode case 3 made of stainless was covered and caulked to manufacture a coin-type battery having a thickness of 2 mm and a diameter of 23 mm.

【0020】このようにして作製した試料aを正極活物
質とする電池を、0.5mA/cm2の電流密度で、
4.5Vまで充電してその後2.5Vまで放電させた際
の充放電特性図を図2に、放電エネルギーを表に示す。
放電エネルギーが大きく、高エネルギー密度電池として
利用できる利点を有している。
A battery using thus prepared sample a as a positive electrode active material was tested at a current density of 0.5 mA / cm 2 .
FIG. 2 shows a charge / discharge characteristic diagram when the battery was charged to 4.5 V and then discharged to 2.5 V, and the discharge energy is shown in the table.
It has a large discharge energy and has an advantage that it can be used as a high energy density battery.

【0021】またこの電池を、0.5mA/cm2の充
放電電流密度で2.5V−4.5Vの電圧範囲規制で充
放電させた際の1回目の放電容量、および10回目の放
電容量を表に示す。これから明らかなようにサイクルに
よる容量低下が少ないことがわかる。
Further, this battery was charged and discharged at a charge / discharge current density of 0.5 mA / cm 2 within a voltage range regulation of 2.5 V to 4.5 V, and the discharge capacity at the first time and the discharge capacity at the 10th time. Is shown in the table. It is apparent from this that the capacity decrease due to the cycle is small.

【0022】実施例では特定の方法により得られたLi
FeO2を正極活物質とする場合について示したが、こ
の手法に限定されるものではなく、X線回折において面
間隔4.8±0.3オングストロームのピークを有する
組成式LiFeO2で与えられる複酸化物を正極活物質
に含んでいる場合は同様な効果が生じることは言うまで
もない。
In the examples, Li obtained by a specific method
Although the case where FeO 2 is used as the positive electrode active material is shown, the method is not limited to this method, and the compound given by the composition formula LiFeO 2 having the peak of the interplanar spacing of 4.8 ± 0.3 angstrom in X-ray diffraction is shown. It goes without saying that the same effect is produced when the oxide is included in the positive electrode active material.

【0023】[0023]

【比較例】比較例では、以下のようにして合成した面間
隔4.8±0.3オングストロームのピークを有さない
組成式LiFeO2で与えられる複酸化物を用いる他は
実施例と同様にしてリチウム電池を作製した。すなわち
Li2CO3とFe34を3:2のモル比で混合し酸素雰
囲気下800℃で12時間焼成することにより得たLi
FeO2を用いた。このLiFeO2を試料bとする。銅
Kα線で試料bのX線回折解析を行ったところ、4.8
±0.3オングストロームの面間隔に相当するピークは
観察されなかった。
[Comparative Example] In a comparative example, the same procedure as in the example was carried out except that a complex oxide represented by the composition formula LiFeO 2 having no peak of interplanar spacing of 4.8 ± 0.3 angstroms was synthesized as follows. To produce a lithium battery. That is, Li 2 CO 3 and Fe 3 O 4 were mixed in a molar ratio of 3: 2, and the mixture was baked at 800 ° C. for 12 hours in an oxygen atmosphere to obtain Li.
FeO 2 was used. This LiFeO 2 is designated as sample b. When the X-ray diffraction analysis of the sample b was conducted using copper Kα rays, 4.8
No peak corresponding to an interplanar spacing of ± 0.3 Å was observed.

【0024】このようにして作製した試料bを正極活物
質とする電池を、0.5mA/cm2の電流密度で、
4.5Vまで充電しその後2.5Vまで放電させた際の
放電エネルギーを表に示す。この電池と比較すると、本
発明の実施例で作製した電池は、放電エネルギーが大き
いことがわかる。
A battery using the thus prepared sample b as a positive electrode active material was tested at a current density of 0.5 mA / cm 2 .
The table shows the discharge energy when the battery was charged to 4.5V and then discharged to 2.5V. Compared with this battery, it can be seen that the batteries produced in the examples of the present invention have higher discharge energy.

【0025】 [0025]

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
安価で放電エネルギーの大きいリチウム電池を構成する
ことができ、携帯用の種々の電子機器の電源をはじめ、
様々な分野に利用できるという利点を有する。
As described above, according to the present invention,
It is possible to construct an inexpensive lithium battery with large discharge energy, including power supplies for various portable electronic devices,
It has an advantage that it can be used in various fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるコイン型電池の構成例
を示す断面図。
FIG. 1 is a cross-sectional view showing a configuration example of a coin battery according to an embodiment of the present invention.

【図2】本発明の実施例におけるLiFeO2(試料
a)の充放電特性図。
FIG. 2 is a charge / discharge characteristic diagram of LiFeO 2 (sample a) in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 封口板 2 ガスケット 3 正極ケース 4 負極 5 セパレータ 6 正極合剤ペレット 1 Sealing Plate 2 Gasket 3 Positive Electrode Case 4 Negative Electrode 5 Separator 6 Positive Electrode Mixture Pellets

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山木 準一 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Junichi Yamaki 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】X線回折において面間隔4.8±0.3オ
ングストロームのピークを有する組成式LiFeO2
与えられる複酸化物を正極活物質として含み、リチウム
またはその化合物を負極活物質とし、前記正極活物質お
よび前記負極活物質に対して化学的に安定でありかつリ
チウムイオンが前記正極活物質あるいは前記負極活物質
と電気化学反応をするための移動を行ない得る物質を電
解質物質としたことを特徴とするリチウム電池。
1. A positive electrode active material containing a complex oxide represented by the composition formula LiFeO 2 having a peak of a surface spacing of 4.8 ± 0.3 angstroms in X-ray diffraction, and lithium or a compound thereof as a negative electrode active material, An electrolyte material is a material that is chemically stable to the positive electrode active material and the negative electrode active material and that can move lithium ions to cause an electrochemical reaction with the positive electrode active material or the negative electrode active material. A lithium battery characterized by.
【請求項2】 前記複酸化物は、層状構造を有するMF
eO2型の化合物(Mはリチウム以外の1価ないし2価
の陽イオンとなりうる元素)のMをリチウムに置換した
ものであることを特徴とする請求項1記載のリチウム電
池。
2. The MF having a layered structure, wherein the complex oxide is
The lithium battery according to claim 1, wherein M of an eO 2 type compound (M is an element other than lithium which can be a monovalent or divalent cation) is replaced with lithium.
JP6279951A 1994-10-19 1994-10-19 Lithium cell Pending JPH08124600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6279951A JPH08124600A (en) 1994-10-19 1994-10-19 Lithium cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6279951A JPH08124600A (en) 1994-10-19 1994-10-19 Lithium cell

Publications (1)

Publication Number Publication Date
JPH08124600A true JPH08124600A (en) 1996-05-17

Family

ID=17618204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6279951A Pending JPH08124600A (en) 1994-10-19 1994-10-19 Lithium cell

Country Status (1)

Country Link
JP (1) JPH08124600A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196059A (en) * 1999-10-29 2001-07-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196059A (en) * 1999-10-29 2001-07-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP4547748B2 (en) * 1999-10-29 2010-09-22 パナソニック株式会社 Non-aqueous electrolyte battery

Similar Documents

Publication Publication Date Title
Tarascon et al. Li Metal‐Free Rechargeable Batteries Based on Li1+ x Mn2 O 4 Cathodes (0≤ x≤ 1) and Carbon Anodes
JP3484003B2 (en) Non-aqueous electrolyte secondary battery
KR20050094346A (en) Carbon-coated li-containing powders and process for production thereof
JPH09330720A (en) Lithium battery
CN115224254B (en) Cu, zn and Mg co-doped layered oxide sodium ion battery positive electrode material, and preparation method and application thereof
JP4152618B2 (en) Method for producing positive electrode active material for layered oxide battery
CN114927663A (en) Five-membered layered oxide sodium ion battery positive electrode material and preparation method and application thereof
US20140065477A1 (en) Positive active material composition for rechargeable lithium battery, and positive electrode and rechargeable lithium battery including same
JPH06283207A (en) Nonaqueous electrolyte battery
JPH06119926A (en) Nonaqueous electrplyte battery
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
US9966602B2 (en) Metal cyanometallates
JPH08287914A (en) Lithium battery
JPH11214001A (en) Nonaqueous electrolytic solution secondary battery
JP3289262B2 (en) Method for producing negative electrode active material
JPH09259879A (en) Manufacture of positive electrode active material for lithium battery
JP3289256B2 (en) Method for producing positive electrode active material for lithium battery
JPH0521067A (en) Nonaqueous electrolytic battery
WO2022182313A2 (en) Development of new air-stable o3-naxmo2 type layered metal oxides for sodium ion batteries
JP3625630B2 (en) Method for producing cobalt oxide positive electrode material, and battery using cobalt oxide positive electrode material produced by the method
JPH11139830A (en) Production of nickel oxide material and cell using the same nickel oxide material produced therewith
JP3503239B2 (en) Lithium secondary battery
JP3301026B2 (en) Lithium battery
JP3436292B2 (en) Positive electrode material for lithium battery, method for producing the same, and lithium battery using the same
JPH08124600A (en) Lithium cell