JPH08124595A - Activating method for alkaline secondary battery - Google Patents

Activating method for alkaline secondary battery

Info

Publication number
JPH08124595A
JPH08124595A JP25542294A JP25542294A JPH08124595A JP H08124595 A JPH08124595 A JP H08124595A JP 25542294 A JP25542294 A JP 25542294A JP 25542294 A JP25542294 A JP 25542294A JP H08124595 A JPH08124595 A JP H08124595A
Authority
JP
Japan
Prior art keywords
secondary battery
container
temperature
activating
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25542294A
Other languages
Japanese (ja)
Inventor
Koji Taguchi
幸治 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP25542294A priority Critical patent/JPH08124595A/en
Publication of JPH08124595A publication Critical patent/JPH08124595A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: To provide an activating method increasing a degree of activating positive/negative electrodes by controlling a temperature in a vessel to a prescribed value during a charging process. CONSTITUTION: An alkaline secondary battery is formed by receiving a positive electrode 1, negative electrode 2, separator 4, etc., in a vessel 4. During a charging process for activating this battery, a temperature inside the vessel 4 is controlled to 0 to 40 deg.C. By this temperature control, increasing a heating value due to a temperature rise according to internal resistance is suppressed, and decreasing a degree of activating the positive/negative electrodes, caused by decreasing charging efficiency of the positive/negative electrode 1, 2 based on the temperature rise, is prevented so as to obtain an activating method for the alkaline secondary battery increasing a degree of activating the positive/ negative electrodes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は充電工程を改良したアル
カリ二次電池の活性化方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for activating an alkaline secondary battery having an improved charging process.

【0002】[0002]

【従来の技術】アルカリ二次電池の一例であるニッケル
水素二次電池は、ニッケル酸化物を活物質として含む正
極と水素吸蔵合金を活物質として含む負極との間にセパ
レータを介装して作製された電極群を容器内に収納した
後、この容器にアルカリ電解液を注入し、前記容器の開
口部を封口することにより製造される。このようにして
組み立てられた前記二次電池を充電した後、放電するサ
イクルを1サイクル以上施すことにより前記正極及び前
記負極を活性化する。
2. Description of the Related Art A nickel-hydrogen secondary battery, which is an example of an alkaline secondary battery, is manufactured by interposing a separator between a positive electrode containing nickel oxide as an active material and a negative electrode containing a hydrogen storage alloy as an active material. It is manufactured by housing the prepared electrode group in a container, injecting an alkaline electrolyte into the container, and sealing the opening of the container. After charging the secondary battery assembled in this way, the positive electrode and the negative electrode are activated by carrying out one or more cycles of discharging.

【0003】前述した充放電サイクルとしては、例えば
20℃の温度下で0.1CmAの電流で15時間充電し
た後、1CmAの電流で電池作動電圧が1Vになるまで
放電する方法が知られている。また、この方法において
充電工程の電流を0.5CmA以上に設定することによ
り充電工程の時間を短縮して前記二次電池の生産性を向
上することが行われている。
As the above-mentioned charge / discharge cycle, for example, there is known a method of charging at a temperature of 20 ° C. with a current of 0.1 CmA for 15 hours and then discharging with a current of 1 CmA until the battery operating voltage becomes 1V. . In this method, the current of the charging process is set to 0.5 CmA or more to shorten the time of the charging process and improve the productivity of the secondary battery.

【0004】ところで、ニッケル水素二次電池は、近年
の高性能で、かつ高容量な電池の需要に応じてその容量
が向上されている。その結果、充電工程において前記二
次電池に流れる電流がこれに比例して増加し、これに伴
い前記二次電池の内部抵抗によって生じる熱が増加する
ため、前記二次電池の前記容器内の温度が上昇する。し
かしながら、前記二次電池の前記正極及び前記負極の充
電効率は前記容器内の温度が上昇するのに伴って低下す
るため、前記正極及び前記負極の活性化度合いが低くな
り、前記二次電池の放電容量が低下するという問題点が
あった。
By the way, the capacity of the nickel-hydrogen secondary battery has been improved in response to the recent demand for high-performance and high-capacity batteries. As a result, the current flowing through the secondary battery in the charging step increases in proportion to this, and the heat generated by the internal resistance of the secondary battery increases accordingly, so that the temperature inside the container of the secondary battery increases. Rises. However, since the charging efficiency of the positive electrode and the negative electrode of the secondary battery decreases as the temperature in the container rises, the degree of activation of the positive electrode and the negative electrode decreases, There is a problem that the discharge capacity is reduced.

【0005】[0005]

【発明が解決しようとする課題】本発明は従来の問題を
解決するためになされたもので、正極及び負極の活性化
度合いが向上されたアルカリ二次電池の活性化方法を提
供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the conventional problems, and an object thereof is to provide a method for activating an alkaline secondary battery in which the degree of activation of the positive electrode and the negative electrode is improved. Is.

【0006】[0006]

【課題を解決するための手段】本発明は、正極と負極と
の間にセパレータを介装して作製された電極群と、アル
カリ電解液とを容器内に収納した構造を有するアルカリ
二次電池の活性化方法において、充電工程中、前記容器
内の温度を0℃〜40℃に制御することを特徴とするア
ルカリ二次電池の活性化方法である。
SUMMARY OF THE INVENTION The present invention is an alkaline secondary battery having a structure in which an electrode group made by interposing a separator between a positive electrode and a negative electrode and an alkaline electrolyte are housed in a container. The activation method of the alkaline secondary battery, wherein the temperature in the container is controlled at 0 ° C. to 40 ° C. during the charging step.

【0007】充電工程中の前記容器内の温度を前記範囲
に制御するのは次のような理由によるものである。前記
温度が0℃未満になると、前記二次電池の容器内の温度
が低くなり過ぎて前記正極及び前記負極の活性化効率が
低下する。一方、前記温度が40℃を越えると、前記二
次電池の容器内の温度が高すぎるために前記正極及び前
記負極の充電効率が低下する。前記正極及び前記負極の
活性化効率を更に向上するために前記温度は20℃〜3
0℃にすることがより好ましい。
The temperature inside the container during the charging process is controlled within the above range for the following reasons. When the temperature is lower than 0 ° C., the temperature inside the container of the secondary battery becomes too low, and the activation efficiency of the positive electrode and the negative electrode decreases. On the other hand, if the temperature exceeds 40 ° C., the temperature inside the container of the secondary battery is too high, and the charging efficiency of the positive electrode and the negative electrode decreases. In order to further improve the activation efficiency of the positive electrode and the negative electrode, the temperature is 20 ° C. to 3 ° C.
More preferably, the temperature is 0 ° C.

【0008】前記容器内の温度の制御は、前記容器への
送風か、または充電電流を小さくするか、いずれか一方
または両方を前記二次電池に施すことにより行うことが
できる。このような送風や充電電流を小さくするのは前
記容器の温度が30℃〜40℃に達したときに開始する
ことが好ましい。
The temperature inside the container can be controlled by blowing air into the container, reducing the charging current, or applying either or both to the secondary battery. It is preferable to start the reduction of the blowing air and the charging current when the temperature of the container reaches 30 ° C to 40 ° C.

【0009】前記容器へ送風される気体の温度は0℃〜
40℃にすることが望ましく、より好ましい温度は20
℃〜30℃である。前記気体としては、例えば空気、ア
ルゴンガス、窒素などを挙げることができる。
The temperature of the gas blown to the container is 0 ° C.
A temperature of 40 ° C is desirable, and a more preferable temperature is 20
The temperature is 30 ° C to 30 ° C. Examples of the gas include air, argon gas, nitrogen and the like.

【0010】前記アルカリ二次電池の活性化は例えば次
のような方法によりなされる。まず、前記二次電池に放
置エージングを施す。ひきつづき、1.3V以下の定電
圧か、または0.05CmA〜0.1CmAの電流で充
電を行った後、0.05CmA〜1.2CmAの電流で
充電を行う。この充電工程において前記容器の温度が3
0℃〜40℃に達した際に前記容器への送風を開始する
か、または充電電流を小さくするか、いずれか一方また
は両方を行うことにより前記容器内の温度を前記範囲に
制御する。この時、充電電流は0.05CmA以上の範
囲内で小さくすることが望ましい。その後、放電し、こ
のような充放電サイクルを1サイクル以上施すことによ
り前記二次電池を活性化する。
Activation of the alkaline secondary battery is carried out, for example, by the following method. First, the secondary battery is subjected to standing aging. Subsequently, charging is performed with a constant voltage of 1.3 V or less or with a current of 0.05 CmA to 0.1 CmA, and then with a current of 0.05 CmA to 1.2 CmA. In this charging process, the temperature of the container is 3
When the temperature reaches 0 ° C. to 40 ° C., air blowing to the container is started, or the charging current is reduced, or either one or both are performed to control the temperature in the container within the above range. At this time, it is desirable that the charging current be small within the range of 0.05 CmA or more. After that, the secondary battery is activated by discharging and performing one or more such charging / discharging cycles.

【0011】本発明の方法により活性化されるアルカリ
二次電池を図1を参照して詳細に説明する。正極1は、
負極2との間に合成樹脂繊維製不織布からなるセパレー
タ3を介在してスパイラル状に捲回され、有底円筒状の
容器4内に収納されている。前記負極2は作製された電
極群の最外周に配置されて前記容器4と電気的に接触し
ている。アルカリ電解液は、前記容器4内に収容されて
いる。中央に穴5を有する円形の封口板6は、前記容器
4の上部開口部に配置されている。リング状の絶縁性ガ
スケット7は、前記封口板6の周縁と前記容器4の上部
開口部内面の間に配置され、前記上部開口部を内側に縮
径するカシメ加工により前記容器4に前記封口板6を前
記ガスケット7を介して気密に固定している。正極リー
ド8は、一端が前記正極1に接続、他端が前記封口板6
の下面に接続されている。帽子形状をなす正極端子9
は、前記封口板6上に前記穴5を覆うように取り付けら
れている。ゴム製の安全弁10は、前記封口板4と前記
正極端子9で囲まれた空間内に前記穴5を塞ぐように配
置されている。
The alkaline secondary battery activated by the method of the present invention will be described in detail with reference to FIG. The positive electrode 1 is
It is spirally wound with a separator 3 made of a synthetic resin fiber non-woven fabric interposed between the negative electrode 2 and the negative electrode 2 and is housed in a bottomed cylindrical container 4. The negative electrode 2 is arranged on the outermost periphery of the prepared electrode group and is in electrical contact with the container 4. The alkaline electrolyte is contained in the container 4. A circular sealing plate 6 having a hole 5 in the center is arranged in the upper opening of the container 4. The ring-shaped insulating gasket 7 is arranged between the peripheral edge of the sealing plate 6 and the inner surface of the upper opening of the container 4, and the sealing plate is attached to the container 4 by caulking to reduce the diameter of the upper opening inward. 6 is airtightly fixed via the gasket 7. One end of the positive electrode lead 8 is connected to the positive electrode 1, and the other end is the sealing plate 6.
Is attached to the underside of. Hat-shaped positive terminal 9
Is mounted on the sealing plate 6 so as to cover the hole 5. The rubber safety valve 10 is arranged so as to close the hole 5 in the space surrounded by the sealing plate 4 and the positive electrode terminal 9.

【0012】前記正極1は、水酸化ニッケル粉末、コバ
ルト化合物及び結着剤を含むペーストを調製し、前記ペ
ーストを集電体に充填し、乾燥した後、ローラプレスす
ることにより製造される。
The positive electrode 1 is manufactured by preparing a paste containing nickel hydroxide powder, a cobalt compound, and a binder, filling the current collector with the paste, drying it, and then roller pressing.

【0013】前記コバルト化合物としては、例えば一酸
化コバルト、三酸化二コバルト、水酸化コバルト等を挙
げることができる。前記結着剤としては、例えばカルボ
キシメチルセルロース、メチルセルロース、ポリアクリ
ル酸ナトリウム、ポリテトラフルオロエチレン等を挙げ
ることができる。
Examples of the cobalt compound include cobalt monoxide, dicobalt trioxide, cobalt hydroxide and the like. Examples of the binder include carboxymethyl cellulose, methyl cellulose, sodium polyacrylate, polytetrafluoroethylene and the like.

【0014】前記集電体としては、例えばニッケル、ス
テンレス、ニッケルメッキが施された樹脂などの耐アル
カリ性材料から形成された網状、スポンジ状、繊維状、
フェルト状などの金属多孔体を挙げることができる。
The current collector is, for example, a net-like, sponge-like or fibrous material made of an alkali-resistant material such as nickel, stainless steel or a resin plated with nickel.
Examples thereof include a metallic porous body having a felt shape.

【0015】前記負極2は、例えば水素吸蔵合金粉末に
例えばカーボンブラックなどの導電剤を添加し、結着剤
及び水と共に混練してペーストを調製し、前記ペースト
を集電体に充填し、乾燥した後、成形することにより製
造される。前記結着剤及び前記集電体としては、前記正
極1と同様なものを挙げることができる。また、前記負
極2としては前記水素吸蔵合金粉末の代りにカドミウム
化合物の粉末を含むペーストを前記集電体に充填して製
造したものを用いることができる。
For the negative electrode 2, for example, a conductive agent such as carbon black is added to hydrogen storage alloy powder, and the mixture is kneaded with a binder and water to prepare a paste, and the paste is filled in a current collector and dried. After that, it is manufactured by molding. Examples of the binder and the current collector may be the same as those of the positive electrode 1. Further, as the negative electrode 2, one prepared by filling the current collector with a paste containing a powder of a cadmium compound in place of the hydrogen storage alloy powder can be used.

【0016】前記アルカリ電解液としては、例えば水酸
化カリウムと水酸化ナトリウムと水酸化リチウムの混合
液、水酸化カリウムと水酸化リチウムの混合液等を用い
ることができる。
As the alkaline electrolyte, for example, a mixed solution of potassium hydroxide, sodium hydroxide and lithium hydroxide, a mixed solution of potassium hydroxide and lithium hydroxide and the like can be used.

【0017】[0017]

【作用】本発明のアルカリ二次電池の活性化方法によれ
ば、充電工程中、前記二次電池の容器内の温度を0℃〜
40℃に制御することによって、前記二次電池の正極及
び負極の活性化効率を向上することができるため、前記
二次電池の放電容量を向上することができる。また、充
電工程中に前記容器に送風することによって、前記容器
内の温度制御をより簡単に行うことができる。
According to the method for activating an alkaline secondary battery of the present invention, during the charging process, the temperature in the container of the secondary battery is 0 ° C to
By controlling the temperature to 40 ° C., the activation efficiency of the positive electrode and the negative electrode of the secondary battery can be improved, so that the discharge capacity of the secondary battery can be improved. Further, by blowing air into the container during the charging process, the temperature inside the container can be controlled more easily.

【0018】[0018]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。 実施例1〜8 まず、水酸化ニッケル粉末90重量部に導電剤として一
酸化コバルト10重量部を添加し、この混合物に結着剤
としてカルボキシメチルセルロース0.3重量%、ポリ
アクリル酸ナトリウム0.175重量%、ポリテトラフ
ルオロエチレン0.5重量%及び水45重量%を添加し
て混練しペーストを調製した。前記ペーストをニッケル
繊維基板に充填した後、乾燥し、成型することにより正
極を製造した。
Embodiments of the present invention will now be described in detail with reference to the drawings. Examples 1 to 8 First, 10 parts by weight of cobalt monoxide as a conductive agent was added to 90 parts by weight of nickel hydroxide powder, and 0.3% by weight of carboxymethyl cellulose as a binder and 0.175 of sodium polyacrylate were added to this mixture. %, Polytetrafluoroethylene 0.5% by weight and water 45% by weight were added and kneaded to prepare a paste. A nickel fiber substrate was filled with the paste, dried, and molded to prepare a positive electrode.

【0019】一方、LmNi4.0 Co0.4 Mn0.3 Al
0.3 の組成からなる水素吸蔵合金粉末100重量部に、
ポリアクリル酸塩0.5重量部、カルボキシメチルセル
ロース0.125重量部、ポリテトラフルオロエチレン
1.5重量部、カーボン1.0重量部及び純水50重量
部を混練してペーストを調製し、このペーストを集電体
となるニッケル製のネットに塗布、乾燥し、ローラプレ
スして負極を作製した。
On the other hand, LmNi 4.0 Co 0.4 Mn 0.3 Al
100 parts by weight of hydrogen storage alloy powder having a composition of 0.3 ,
0.5 parts by weight of polyacrylate, 0.125 parts by weight of carboxymethyl cellulose, 1.5 parts by weight of polytetrafluoroethylene, 1.0 part by weight of carbon and 50 parts by weight of pure water were kneaded to prepare a paste. The paste was applied to a nickel net serving as a current collector, dried, and roller pressed to produce a negative electrode.

【0020】次いで、前記正極と前記負極との間に例え
ば親水処理が施されたポリオレフィン繊維製不織布から
なるセパレータを介装し渦巻状に捲回して電極群を作製
した。この電極群を例えば7NのKOH及び1NのLi
OHからなるアルカリ電解液と共に有底円筒状容器に収
納して前述した図1に示す構造を有する容量1500m
Ahで4/5Aタイプの円筒形ニッケル水素二次電池を
組み立てた。
Next, a separator made of, for example, a non-woven fabric made of polyolefin fiber, which has been subjected to hydrophilic treatment, is interposed between the positive electrode and the negative electrode and wound in a spiral to form an electrode group. This electrode group is, for example, 7N KOH and 1N Li
A container with a bottomed cylindrical container together with an alkaline electrolyte consisting of OH and having the structure shown in FIG.
A 4 / 5A type cylindrical nickel-hydrogen secondary battery was assembled with Ah.

【0021】得られた二次電池100個について25℃
で放置エージングを行った後、30cm四方のトレーに
縦横10個ずつになるように収納した。前記二次電池の
容器の側面の温度を測定しながら25℃の温度下で1.
2Vの定電圧で8時間充電を行った後、1CmAの定電
流で80分間充電を行った。この定電流充電において前
記容器の側面の温度が30℃に達した際に、下記表1に
示す条件での前記容器の側面への送風か、または充電電
流を下げた定電流充電か、いずれか一方または両方を行
った。その後、前記二次電池を1CmAの電流で電池作
動電圧が1Vになるまで放電した。 比較例1 実施例1〜8と同様な構成の二次電池100個につい
て、充電工程中に温度制御を行わなかったこと以外、実
施例1〜8と同様な条件で活性化を施した。
25 ° C. for 100 obtained secondary batteries
After leaving it to stand for aging, it was stored in a 30 cm square tray so that 10 trays in each length and width. 1. While measuring the temperature of the side surface of the container of the secondary battery, at a temperature of 25 ° C.
After charging at a constant voltage of 2 V for 8 hours, charging was performed at a constant current of 1 CmA for 80 minutes. In this constant current charging, when the temperature of the side surface of the container reaches 30 ° C., air is blown to the side surface of the container under the conditions shown in Table 1 below, or constant current charging with a reduced charging current is performed. Did one or both. Then, the secondary battery was discharged with a current of 1 CmA until the battery operating voltage became 1V. Comparative Example 1 100 secondary batteries having the same configuration as in Examples 1 to 8 were activated under the same conditions as in Examples 1 to 8 except that the temperature control was not performed during the charging process.

【0022】このようにして活性化された実施例1〜8
及び比較例1の二次電池それぞれについて充電中の最大
温度を求め、それらのうちの最大値と最小値を下記表1
に併記する。また、充電中の最大温度が最も大きい二次
電池と最も小さい二次電池それぞれについて初期容量を
測定した。比較例1の二次電池で、充電中の最大温度が
最も小さいものの初期容量を1.00とし、これを基準
にして初期容量比を求め、その結果を下記表1に併記す
る。
Examples 1 to 8 thus activated
Also, the maximum temperature during charging was obtained for each of the secondary batteries of Comparative Example 1, and the maximum value and the minimum value thereof are shown in Table 1 below.
Also described in. In addition, the initial capacities of the secondary battery having the highest maximum temperature during charging and the secondary battery having the lowest maximum temperature were measured. In the secondary battery of Comparative Example 1, although the maximum temperature during charging was the smallest, the initial capacity was set to 1.00, and the initial capacity ratio was determined based on this, and the results are also shown in Table 1 below.

【0023】[0023]

【表1】 [Table 1]

【0024】表1から明らかなように、充電工程中に容
器内の温度を0℃〜40℃に制御する活性化が施された
実施例1〜8の二次電池は、初期容量が高く、かつその
ばらつきが少ないことがわかる。これに対し、充電工程
中に温度制御を行わずに活性化が施された比較例1の二
次電池は、充電工程中の容器内の温度が35℃〜82℃
とばらつき、初期容量がばらつくことがわかる。
As is clear from Table 1, the secondary batteries of Examples 1 to 8 which were activated during the charging process to control the temperature in the container to 0 ° C to 40 ° C had a high initial capacity, Moreover, it can be seen that the variation is small. On the other hand, in the secondary battery of Comparative Example 1 that was activated without performing temperature control during the charging process, the temperature in the container during the charging process was 35 ° C to 82 ° C.
It can be seen that the initial capacity varies as well.

【0025】[0025]

【発明の効果】以上詳述したように本発明のアルカリ二
次電池の活性化方法によれば、アルカリ二次電池の活性
化度合いを向上することができ、放電容量を向上するこ
とができるという顕著な効果を奏する。
As described in detail above, according to the method for activating an alkaline secondary battery of the present invention, the degree of activation of the alkaline secondary battery can be improved and the discharge capacity can be improved. Has a remarkable effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法により活性化されるアルカリ二次
電池を示す斜視図。
FIG. 1 is a perspective view showing an alkaline secondary battery activated by the method of the present invention.

【符号の説明】[Explanation of symbols]

1…正極、2…負極、3…セパレータ、4…容器、6…
封口板。
1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator, 4 ... Container, 6 ...
Seal plate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極との間にセパレータを介装し
て作製された電極群と、アルカリ電解液とを容器内に収
納した構造を有するアルカリ二次電池の活性化方法にお
いて、充電工程中、前記容器内の温度を0℃〜40℃に
制御することを特徴とするアルカリ二次電池の活性化方
法。
1. A method of activating an alkaline secondary battery, which has a structure in which an electrode group made by interposing a separator between a positive electrode and a negative electrode and an alkaline electrolyte are housed in a container. In the method for activating an alkaline secondary battery, the temperature in the container is controlled to 0 ° C to 40 ° C.
【請求項2】 前記容器内の温度の制御を前記容器への
送風により行うことを特徴とする請求項1記載のアルカ
リ二次電池の活性化方法。
2. The method for activating an alkaline secondary battery according to claim 1, wherein the temperature inside the container is controlled by blowing air into the container.
JP25542294A 1994-10-20 1994-10-20 Activating method for alkaline secondary battery Pending JPH08124595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25542294A JPH08124595A (en) 1994-10-20 1994-10-20 Activating method for alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25542294A JPH08124595A (en) 1994-10-20 1994-10-20 Activating method for alkaline secondary battery

Publications (1)

Publication Number Publication Date
JPH08124595A true JPH08124595A (en) 1996-05-17

Family

ID=17278547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25542294A Pending JPH08124595A (en) 1994-10-20 1994-10-20 Activating method for alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPH08124595A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313067A (en) * 2000-04-28 2001-11-09 Matsushita Electric Ind Co Ltd Manufacturing method of nickel hydrogen storage battery and manufacturing equipment of nickel hydrogen storage battery
JP2002260719A (en) * 2001-03-05 2002-09-13 Matsushita Electric Ind Co Ltd Manufacturing method of nickel hydrogen battery
JP2011129389A (en) * 2009-12-18 2011-06-30 Toyota Motor Corp Air-cell conditioning method and air-cell manufacturing method
JP2021002464A (en) * 2019-06-21 2021-01-07 プライムアースEvエナジー株式会社 Manufacturing method of nickel hydrogen secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313067A (en) * 2000-04-28 2001-11-09 Matsushita Electric Ind Co Ltd Manufacturing method of nickel hydrogen storage battery and manufacturing equipment of nickel hydrogen storage battery
JP4679690B2 (en) * 2000-04-28 2011-04-27 パナソニック株式会社 Nickel metal hydride storage battery manufacturing method and nickel metal hydride storage battery manufacturing apparatus
JP2002260719A (en) * 2001-03-05 2002-09-13 Matsushita Electric Ind Co Ltd Manufacturing method of nickel hydrogen battery
JP4589550B2 (en) * 2001-03-05 2010-12-01 パナソニック株式会社 Manufacturing method of nickel metal hydride storage battery
JP2011129389A (en) * 2009-12-18 2011-06-30 Toyota Motor Corp Air-cell conditioning method and air-cell manufacturing method
JP2021002464A (en) * 2019-06-21 2021-01-07 プライムアースEvエナジー株式会社 Manufacturing method of nickel hydrogen secondary battery

Similar Documents

Publication Publication Date Title
EP0354966B1 (en) Alkaline secondary battery and process for its production
US4994334A (en) Sealed alkaline storage battery and method of producing negative electrode thereof
JPH08124595A (en) Activating method for alkaline secondary battery
US6649303B2 (en) Alkaline storage battery with group of spiral electrodes
US5131920A (en) Method of manufacturing sealed rechargeable batteries
US5718988A (en) Alkaline storage battery
JP2975249B2 (en) Manufacturing method of alkaline secondary battery
JP3567021B2 (en) Alkaline secondary battery
JPH06349461A (en) Alkaline storage battery
JP3377576B2 (en) Manufacturing method of alkaline secondary battery
JPH06290776A (en) Manufacture of alkaline secondary battery
JP3176214B2 (en) Activation method of nickel-metal hydride secondary battery
JP3308325B2 (en) Method for manufacturing nickel-hydrogen secondary battery
JPS6346957B2 (en)
JP3504350B2 (en) Manufacturing method of alkaline secondary battery
JPH11297353A (en) Manufacture of nickel-hydrogen secondary battery
JPH04160763A (en) Nickel hydrogen secondary battery
JPH10199565A (en) Manufacture of alkaline secondary battery and alkaline secondary battery manufactured thereby
JPH1040950A (en) Alkaline secondary battery
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3011386B2 (en) Paste type electrode for alkaline secondary battery
JPH09199160A (en) Sealed alkaline storage battery
JP2000012073A (en) Manufacture of nickel-hydrogen secondary battery
JPH09213316A (en) Hydrogen storage alloy electrode, alkaline secondary battery, and manufacture of the electrode and the secondary battery
JPH11162469A (en) Electrode, alkaline secondary battery, and manufacture of alkaline secondary battery