JP3308325B2 - Method for manufacturing nickel-hydrogen secondary battery - Google Patents

Method for manufacturing nickel-hydrogen secondary battery

Info

Publication number
JP3308325B2
JP3308325B2 JP01872193A JP1872193A JP3308325B2 JP 3308325 B2 JP3308325 B2 JP 3308325B2 JP 01872193 A JP01872193 A JP 01872193A JP 1872193 A JP1872193 A JP 1872193A JP 3308325 B2 JP3308325 B2 JP 3308325B2
Authority
JP
Japan
Prior art keywords
discharge
secondary battery
capacity
nickel
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01872193A
Other languages
Japanese (ja)
Other versions
JPH06231799A (en
Inventor
英明 小澤
和夫 古嶋
浩章 柳川
幸治 田口
伴幸 小野
秀明 北爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP01872193A priority Critical patent/JP3308325B2/en
Priority to US08/095,429 priority patent/US5372897A/en
Publication of JPH06231799A publication Critical patent/JPH06231799A/en
Priority to US08/298,662 priority patent/US5490867A/en
Priority to US08/298,670 priority patent/US5537733A/en
Application granted granted Critical
Publication of JP3308325B2 publication Critical patent/JP3308325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はニッケル水素二次電池の
製造方法に関し、特に前記二次電池の活性化工程を改良
した製造方法に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a nickel-hydrogen secondary battery, and more particularly to a method of manufacturing a secondary battery having an improved activation step.

【0002】[0002]

【従来の技術】ニッケルカドミウム二次電池に代表され
るアルカリ二次電池の製造においては、正極及び負極を
化成処理により活性化して外装缶内に組み込み、その
後、所望のエージングを行い、充放電工程を経ることに
より容量の選別を行う方法が採用されていた。
2. Description of the Related Art In the manufacture of an alkaline secondary battery typified by a nickel cadmium secondary battery, a positive electrode and a negative electrode are activated by chemical conversion treatment and incorporated into an outer can, and then subjected to a desired aging and a charge / discharge process. A method of selecting the capacity by passing through the process.

【0003】一方、ニッケル水素二次電池の場合、水素
吸蔵合金負極は外装缶内に組み込む前に化成処理をせず
未活性のまま外装缶内に組み込み初回の充放電により活
性化させる電池内化成を行うことができる。ところが、
前記電池内化成では前記負極の活性化度を十分に高くす
ることができないため、使用初期は放電電圧及び放電容
量が低いという問題点があった。従って、前記二次電池
を充放電工程により容量選別する際に、活性化度が低い
ことに起因して放電容量が低下した二次電池であるの
か、不良品であるために放電容量が低下した二次電池で
あるのかを判定することが困難であった。換言すれば、
精度の高い容量選別検査を行うことが困難になる。ま
た、前記二次電池は充放電サイクルを繰り返すに従い活
性化されて放電容量が向上するが、前記電池内化成を施
した各二次電池はその向上の度合いが異なるため、組電
池とした場合、素電池の放電容量にばらつきが生じると
いう問題点があった。
On the other hand, in the case of a nickel-metal hydride secondary battery, the hydrogen storage alloy negative electrode is not subjected to a chemical conversion treatment before being incorporated in the outer can, but is incorporated into the outer can in an inactive state and activated by the first charge / discharge. It can be performed. However,
Since the degree of activation of the negative electrode cannot be sufficiently increased by the formation in the battery, there is a problem that the discharge voltage and the discharge capacity are low in the initial stage of use. Therefore, when the capacity of the secondary battery is selected in the charging / discharging process, the secondary battery has a reduced discharge capacity due to a low degree of activation, or has a reduced discharge capacity due to a defective product. It was difficult to determine whether the battery was a secondary battery. In other words,
It becomes difficult to perform a high-accuracy capacity selection inspection. Further, the secondary battery is activated as the charge / discharge cycle is repeated to be activated and the discharge capacity is improved.However, since each of the secondary batteries subjected to the chemical conversion in the battery has a different degree of improvement, when the battery is an assembled battery, There is a problem that the discharge capacity of the unit cell varies.

【0004】[0004]

【発明が解決しようとする課題】本発明は従来の問題を
解決するためになされたもので、容量選別検査前に放電
容量及び放電電圧を十分に向上することが可能なニッケ
ル水素二次電池の製造方法を提供しようとするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the conventional problems, and is intended to provide a nickel-hydrogen secondary battery capable of sufficiently improving a discharge capacity and a discharge voltage before a capacity screening test. It is intended to provide a manufacturing method.

【0005】[0005]

【課題を解決するための手段】本発明に係るニッケル水
素二次電池の製造方法は、ニッケル酸化物を活物質とし
て含む正極と、水素吸蔵合金を活物質として含む負極
と、セパレータと、電解液とを備えたニッケル水素二次
電池を組み立てる工程と、 前記二次電池に充放電サイク
ルを少なくとも1サイクル施す際、放置エージング前の
放電は、0.2C以上の放電レートにて前記二次電池の
残存容量が全放電容量の20%以下に達するまで行われ
る工程と、 前記残存容量を有する二次電池を放置する
置エージングを施す工程と、 前記二次電池に満充電
電の操作により容量選別試験を施す工程とを具備する
とを特徴とするものである。
Means for Solving the Problems Nickel water according to the present invention
A method of manufacturing a nickel-metal hydride secondary battery includes a positive electrode including nickel oxide as an active material, a negative electrode including a hydrogen storage alloy as an active material, a separator, and a step of assembling a nickel-metal hydride secondary battery including an electrolyte . when at least one cycle facilities charge-discharge cycle to the secondary battery, standing before aging
The discharge of the secondary battery was performed at a discharge rate of 0.2 C or more.
It is performed until the remaining capacity reaches 20% or less of the total discharge capacity.
That step and said the step of subjecting the remaining capacity release <br/> location aging on standing secondary battery having a step of subjecting the capacitance selection test by full charge and discharge <br/> electric operation in the secondary battery and it is characterized in the this <br/> comprising and.

【0006】前記放置エージングは、前記水素吸蔵合金
負極を十分に活性化させるために行う。このため、前記
放置エージングは、25℃〜60℃の温度下で行うこと
が望ましい。
The leaving aging is performed to sufficiently activate the hydrogen storage alloy negative electrode. For this reason, it is desirable that the standing aging is performed at a temperature of 25 ° C to 60 ° C.

【0007】前記残存容量が小さい状態とは、電池を
0.2C以上の放電レートにて所定の電圧に至るまで全
放電容量の20%以下に放電することによって得られる
容量を意味するものである。
The state in which the remaining capacity is small means a capacity obtained by discharging the battery to a predetermined voltage at a discharge rate of 0.2 C or more to 20% or less of the total discharge capacity. .

【0008】[0008]

【作用】本発明によれば、ニッケル酸化物を活物質とし
て含む正極と、水素吸蔵合金を活物質として含む負極
と、セパレータと、電解液とを備えたニッケル水素二次
電池に充放電サイクルを少なくとも1サイクル施した
後、前記二次電池に残存容量が小さい状態で放置エージ
ングを行うことによって、前記負極を十分に活性化させ
ることが可能であると共に前記負極の容量を向上させる
ことができる。その結果、放電電圧及び放電容量を十分
に向上することができるため、前記放置エージング後の
容量選別において、活性化度合いに影響されることなく
電池そのものの良否判定を行うことができる。従って、
不良品と判定される電池が減少するため、歩留りが向上
する。また、前記試験により選別された二次電池から組
電池を作製すると、前記素電池に起因する放電容量のば
らつきが低減された組電池を得ることができる。
According to the present invention, a charge / discharge cycle is performed on a nickel-metal hydride secondary battery including a positive electrode containing nickel oxide as an active material, a negative electrode containing a hydrogen storage alloy as an active material, a separator, and an electrolyte. After at least one cycle, the storage battery is subjected to standing aging with a small remaining capacity, whereby the negative electrode can be sufficiently activated and the capacity of the negative electrode can be improved. As a result, the discharge voltage and the discharge capacity can be sufficiently improved, so that the quality of the battery itself can be determined without being affected by the degree of activation in the capacity selection after the leaving aging. Therefore,
Since the number of batteries determined to be defective is reduced, the yield is improved. Further, when a battery pack is manufactured from the secondary batteries selected by the test, a battery pack with reduced variation in discharge capacity due to the unit cells can be obtained.

【0009】[0009]

【実施例】以下、図1を参照して本発明の実施例を説明
する。 実施例1〜実施例5
An embodiment of the present invention will be described below with reference to FIG. Examples 1 to 5

【0010】まず、負極端子を兼ねる金属製の有底角筒
形の外装缶1の開口部を拡口させることにより段部2を
形成した。つづいて、二つ折りにしたセパレータ3に挟
まれ、ニッケル酸化物を活物質として含む正極4と、水
素吸蔵合金を活物質として含む負極5とを積層して電極
体6を形成し、この電極体6を前記外装缶1に収納し
た。ひきつづき、前記外装缶1内にアルカリ電解液を収
容した。
First, a step portion 2 was formed by expanding an opening of a metal-made bottomed rectangular cylindrical outer can 1 also serving as a negative electrode terminal. Subsequently, an electrode body 6 is formed by laminating a positive electrode 4 containing nickel oxide as an active material and a negative electrode 5 containing a hydrogen storage alloy as an active material, sandwiched between two-folded separators 3. 6 was stored in the outer can 1. Subsequently, an alkaline electrolyte was accommodated in the outer can 1.

【0011】次いで、底部に矩形の穴7が開口された有
底角筒形の絶縁ガスケット8に防爆機能及び正極端子を
兼ねる封口蓋群9を載置した。なお、前記封口蓋群9
は、中央にガス抜き孔10が開口された封口板11と、
前記ガス抜き孔10を覆うように前記封口板11に載置
され、例えば合成ゴムからなる安全弁12と、前記安全
弁12を包囲するように前記封口板11に溶接され、ガ
ス抜き孔13を有する帽子形の端子板14とから構成さ
れている。つづいて、一端が前記正極4と接続された正
極リード15の他端を前記封口板11の下面に接続し
た。ひきつづき、前記封口蓋群9が載置された前記絶縁
ガスケット8を前記外装缶1の前記段部2上に載置し
た。次いで、前記外装缶1開口部を縮径するかしめ固定
により前記外装缶1に前記封口蓋群9を気密に取り付け
た。
Next, a group of sealing lids 9 having both an explosion-proof function and a positive electrode terminal was placed on an insulating gasket 8 having a rectangular hole with a rectangular opening at the bottom. The sealing lid group 9
Is a sealing plate 11 having a gas vent hole 10 opened in the center,
A cap which is placed on the sealing plate 11 so as to cover the gas vent hole 10 and is made of, for example, synthetic rubber; and a cap which is welded to the sealing plate 11 so as to surround the safety valve 12 and has a gas vent hole 13 And a terminal board 14 having the same shape. Subsequently, the other end of the positive electrode lead 15 having one end connected to the positive electrode 4 was connected to the lower surface of the sealing plate 11. Subsequently, the insulating gasket 8 on which the sealing lid group 9 was placed was placed on the step 2 of the outer can 1. Next, the sealing lid group 9 was airtightly attached to the outer can 1 by caulking and fixing the opening of the outer can 1.

【0012】その後、前述した方法で組み立てた二次電
池を0.1CmAで150%充電を行った。つづいて、
下記表1に示すような条件で放電、放置エージングを行
い、前記負極を活性化して容量が600mAhの二次電
池を製造した。なお、前記放電をした際の残存容量は、
前記二次電池の全放電容量に対する割合として求め、表
1に示した。 表1 放置エージング前の放電条件 放置エージング の条件 放電電流 カットオフ 残存容量 温度 時間 電圧 (CmA) (V) (%) (℃) (h) 実施例1 1 1.0 20 25 72 実施例2 1 1.0 20 45 24 実施例3 1 0.8 13 25 72 実施例4 1 0.8 13 45 24 実施例5 0.2 1.0 4 25 72 比較例1,比較例2 下記表2に示すような条件で放電、放置エージングを行
ったこと以外、実施例1〜実施例5と同様な工程により
二次電池を製造した。 表2 放置エージング前の放電条件 放置エージング の条件 放電電流 カットオフ 残存容量 温度 時間 電圧 (CmA) (V) (%) (℃) (h) 比較例1 1 1.0 20 実施しない 比較例2 1 1.1 29 25 72
Thereafter, the secondary battery assembled by the above-described method was charged at 0.1 CmA to 150%. Then,
Discharge and standing aging were performed under the conditions shown in Table 1 below, and the negative electrode was activated to produce a secondary battery having a capacity of 600 mAh. In addition, the remaining capacity at the time of the discharge is as follows:
The ratio was calculated as a percentage of the total discharge capacity of the secondary battery, and is shown in Table 1. Table 1 Discharge conditions before leaving aging Conditions for leaving aging Discharge current Cut-off Remaining capacity Temperature Time Voltage (CmA) (V) (%) (° C) (h) Example 1 1 1.0 20 25 72 Example 21 1.0 20 45 24 Example 3 1 0.8 13 25 72 Example 4 1 0.8 13 45 24 Example 5 0.2 1.0 4 25 72 Comparative Example 1, Comparative Example 2 Table 2 below shows A secondary battery was manufactured in the same manner as in Examples 1 to 5, except that discharge and standing aging were performed under such conditions. Table 2 Discharge conditions before leaving aging Conditions for leaving aging Discharge current Cut-off Remaining capacity Temperature Time Voltage (CmA) (V) (%) (° C) (h) Comparative Example 1 1 1.0 20 Not implemented Comparative Example 21 1.1 29 25 72

【0013】実施例1〜5及び比較例1,2で製造した
電池を1CmAで130%充電後1CmAで1.0Vま
で放電し放電容量を測定し、容量選別試験を行った。そ
の後、0.2Cで150%充電しカットオフ電圧を1V
とした1C放電を行った際の放電容量及び平均放電電圧
を測定した。
The batteries produced in Examples 1 to 5 and Comparative Examples 1 and 2 were charged at 130% at 1 CmA and then discharged to 1.0 V at 1 CmA, the discharge capacity was measured, and a capacity selection test was performed. After that, charge 150% at 0.2C and cut off voltage to 1V
The discharge capacity and average discharge voltage at the time of performing the 1C discharge described above were measured.

【0014】これらの結果のうち容量選別検査時の放電
容量並びに次サイクル目の放電容量については、実施例
1の電池の選別検査時の放電容量を100としこれを基
準として放電容量比を求め、図2のグラフに示した。ま
た、次サイクル目の平均放電電圧については、下記表3
に示した。
Among these results, regarding the discharge capacity at the time of the capacity screening and the discharge capacity at the next cycle, the discharge capacity at the time of the screening test of the battery of Example 1 was set to 100, and the discharge capacity ratio was calculated based on this. This is shown in the graph of FIG. Table 3 below shows the average discharge voltage in the next cycle.
It was shown to.

【0015】図2及び表3より実施例1〜5の電池は、
前記選別検査時及び前記次サイクル目の放電容量及び平
均放電電圧を十分に向上することができ、それらの放電
容量間の容量差が小さいため、前記選別検査の精度が良
好である。
According to FIG. 2 and Table 3, the batteries of Examples 1 to 5 are:
The discharge capacity and the average discharge voltage at the time of the screening test and at the next cycle can be sufficiently improved, and since the capacity difference between the discharge capacities is small, the accuracy of the screening test is good.

【0016】これに対し、比較例1〜2の電池は、活性
化度が不十分なために前記選別検査時の放電容量及び平
均放電電圧が極めて低くなり、前記選別検査時の放電容
量と前記次サイクル目の放電容量との容量差が大きいこ
とから、前記選別検査の精度が低下する恐れがある。
On the other hand, in the batteries of Comparative Examples 1 and 2, the discharge capacity and the average discharge voltage during the screening test were extremely low due to the insufficient degree of activation. Since the difference between the discharge capacity in the next cycle and the discharge capacity is large, the accuracy of the screening test may be reduced.

【0017】また、実施例1〜5及び比較例1,2で製
造した電池を1Cで125%充電し、カットオフ電圧を
1Vとした1C放電を行うサイクルを90サイクル行い
放電容量の変化を測定した。測定された放電容量は、実
施例1の電池の容量選別検査時の放電容量を100とし
これを基準として放電容量比を求め、その結果を図3の
グラフに示した。
Further, the batteries manufactured in Examples 1 to 5 and Comparative Examples 1 and 2 were charged at 125% with 1C, and 90 cycles of 1C discharge with a cut-off voltage of 1 V were performed for 90 cycles to measure the change in discharge capacity. did. With respect to the measured discharge capacity, the discharge capacity at the time of the capacity selection test of the battery of Example 1 was set to 100, and the discharge capacity ratio was calculated based on the discharge capacity. The result is shown in the graph of FIG.

【0018】図3より実施例1〜5の電池は、充放電サ
イクル試験初期から高い放電容量を維持し、その傾向は
90サイクル終了後も変わらないことがわかる。一方、
比較例1〜2の電池は充放電サイクル試験初期の放電容
量は実施例1〜5に比べて極めて低く90サイクル行う
と実施例1〜5の電池の充放電サイクル開始時の放電容
量レベルまで向上するものの、前記充放電サイクル開始
時と90サイクル終了後とで放電容量が著しく異なるこ
とがわかる。
FIG. 3 shows that the batteries of Examples 1 to 5 maintain a high discharge capacity from the beginning of the charge / discharge cycle test, and the tendency does not change even after the completion of 90 cycles. on the other hand,
The batteries of Comparative Examples 1 and 2 had an extremely low discharge capacity at the beginning of the charge / discharge cycle test as compared with Examples 1 to 5, and when they were subjected to 90 cycles, the batteries of Examples 1 to 5 improved to the discharge capacity level at the start of the charge / discharge cycle However, it can be seen that the discharge capacity is significantly different between the start of the charge / discharge cycle and the end of the 90 cycle.

【0019】なお、前記実施例1〜実施例5で行った充
放電工程の電流値は前述した条件に限定されるものでは
なく、また電流値を段階的に変化させたステップ充放電
も用いることができる。前記実施例1〜実施例5では、
角形ニッケル水素二次電池に適用して説明したが、円筒
形ニッケル水素二次電池にも同様に適用することができ
る。
The current value in the charging / discharging process performed in the first to fifth embodiments is not limited to the above-mentioned condition, and step charging / discharging in which the current value is changed stepwise may be used. Can be. In Examples 1 to 5,
Although the present invention has been described with reference to a prismatic nickel-metal hydride secondary battery, the present invention can be similarly applied to a cylindrical nickel-metal hydride secondary battery.

【0020】[0020]

【発明の効果】以上詳述したように本発明によれば、選
別検査前の放電容量及び放電電圧を十分に向上すること
が可能で選別検査精度を向上することができる等の効果
を有するニッケル水素二次電池の製造方法を提供するこ
とができる。
As described above in detail, according to the present invention, nickel having an effect that the discharge capacity and discharge voltage before the screening test can be sufficiently improved and the screening test accuracy can be improved. A method for manufacturing a hydrogen secondary battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法により製造されたニッケル水
素二次電池の断面図。
FIG. 1 is a cross-sectional view of a nickel-metal hydride secondary battery manufactured by the manufacturing method of the present invention.

【図2】容量選別検査時及び次サイクル目の放電容量比
を示す線図。
FIG. 2 is a diagram showing a discharge capacity ratio at the time of a capacity selection test and at the next cycle.

【図3】サイクル数の変化に伴う放電容量比の変化を示
す線図。
FIG. 3 is a diagram showing a change in a discharge capacity ratio with a change in the number of cycles.

【符号の説明】 3…セパレータ、4…正極、5…負極。[Explanation of Symbols] 3 ... separator, 4 ... positive electrode, 5 ... negative electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田口 幸治 東京都品川区南品川3丁目4番10号 東 芝電池株式会社内 (72)発明者 小野 伴幸 東京都品川区南品川3丁目4番10号 東 芝電池株式会社内 (72)発明者 北爪 秀明 東京都品川区南品川3丁目4番10号 東 芝電池株式会社内 (56)参考文献 特開 平2−267872(JP,A) 特開 平4−126370(JP,A) 特開 平5−303981(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/24 - 10/34 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Taguchi, the inventor 3- 4-10 Minamishinagawa, Shinagawa-ku, Tokyo Inside Toshiba Battery Co., Ltd. (72) Tomoyuki Ono 3-4-1, Minamishinagawa, Shinagawa-ku, Tokyo No. Toshiba Battery Co., Ltd. (72) Inventor Hideaki Kitazume 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Co., Ltd. (56) Reference JP-A-2-267872 (JP, A) JP JP-A-4-126370 (JP, A) JP-A-5-303981 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/24-10/34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ニッケル酸化物を活物質として含む正極
と、水素吸蔵合金を活物質として含む負極と、セパレー
タと、電解液とを備えたニッケル水素二次電池を組み立
てる工程と、 前記二次電池に 充放電サイクルを少なくとも1サイクル
す際、放置エージング前の放電は、0.2C以上の放
電レートにて前記二次電池の残存容量が全放電容量の2
0%以下に達するまで行われる工程と、 前記残存容量を有する二次電池を放置する 放置エージン
グを施す工程と、 前記二次電池に 満充電放電の操作により容量選別試験
施す工程とを具備することを特徴とするニッケル水素
二次電池の製造方法。
A positive electrode containing a 1. A nickel oxide as an active material, assembly and the negative electrode containing a hydrogen absorbing alloy as an active material, a separator, a nickel-hydrogen secondary battery comprising an electrolyte solution
And teru step, when to at least one cycle <br/> facilities discharge cycle to the secondary battery, standing before aging discharge, release of more than 0.2C
At the power rate, the remaining capacity of the secondary battery is 2% of the total discharge capacity.
A step performed to reach 0% or less, a step of performing left aging to leave a rechargeable battery having the remaining capacity, and a step of subjecting the capacitor screening test by the operation of full charge and discharge to the battery comprises A method for manufacturing a nickel-metal hydride secondary battery.
JP01872193A 1992-07-24 1993-02-05 Method for manufacturing nickel-hydrogen secondary battery Expired - Fee Related JP3308325B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP01872193A JP3308325B2 (en) 1993-02-05 1993-02-05 Method for manufacturing nickel-hydrogen secondary battery
US08/095,429 US5372897A (en) 1992-07-24 1993-07-23 Rectangular nickel-metal hydride secondary cell
US08/298,662 US5490867A (en) 1992-07-24 1994-08-31 Method of making a rectangular nickel-metal hydride secondary cell
US08/298,670 US5537733A (en) 1992-07-24 1994-08-31 Method of manufacturing a nickel-metal hydride secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01872193A JP3308325B2 (en) 1993-02-05 1993-02-05 Method for manufacturing nickel-hydrogen secondary battery

Publications (2)

Publication Number Publication Date
JPH06231799A JPH06231799A (en) 1994-08-19
JP3308325B2 true JP3308325B2 (en) 2002-07-29

Family

ID=11979530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01872193A Expired - Fee Related JP3308325B2 (en) 1992-07-24 1993-02-05 Method for manufacturing nickel-hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JP3308325B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040053114A1 (en) * 2001-03-05 2004-03-18 Kengo Furukawa Method for manufacturing nickel hydrogen battery

Also Published As

Publication number Publication date
JPH06231799A (en) 1994-08-19

Similar Documents

Publication Publication Date Title
EP2782181A1 (en) Layer cell, assembled battery including layer cell, and method for assembling layer cell
JP3943822B2 (en) Battery spiral electrode group and battery
US20040142237A1 (en) Alkaline storage battery and method
KR100189808B1 (en) Wound electrode plate
US6669742B2 (en) Method for producing a nickel metal-hydride storage battery
CN112018456A (en) Method for manufacturing secondary battery and nickel-hydrogen secondary battery
US6649303B2 (en) Alkaline storage battery with group of spiral electrodes
JP2000323117A (en) Cylindrical storage battery
JP3308325B2 (en) Method for manufacturing nickel-hydrogen secondary battery
KR100210502B1 (en) Separator for spiral electrode
JP5383154B2 (en) Cylindrical secondary battery
JP2007280743A (en) Cylindrical storage battery
JP3902330B2 (en) Cylindrical battery
JP3619706B2 (en) Storage battery
JPH09129264A (en) Manufacture of nonaqueous electrolyte secondary battery
JP3695868B2 (en) Square alkaline storage battery
CN114300759B (en) Method for manufacturing nickel-hydrogen storage battery
JP3176214B2 (en) Activation method of nickel-metal hydride secondary battery
JPH08124595A (en) Activating method for alkaline secondary battery
JPH06349461A (en) Alkaline storage battery
JP2000251867A (en) Cylindrical storage battery
JPS60167277A (en) Lead-acid battery
JPH06290776A (en) Manufacture of alkaline secondary battery
JP2002286819A (en) Method for measuring internal resistance of secondary battery
JP2000133319A (en) Inspection method for alkaline secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees