JPH09129264A - Manufacture of nonaqueous electrolyte secondary battery - Google Patents

Manufacture of nonaqueous electrolyte secondary battery

Info

Publication number
JPH09129264A
JPH09129264A JP7281662A JP28166295A JPH09129264A JP H09129264 A JPH09129264 A JP H09129264A JP 7281662 A JP7281662 A JP 7281662A JP 28166295 A JP28166295 A JP 28166295A JP H09129264 A JPH09129264 A JP H09129264A
Authority
JP
Japan
Prior art keywords
unit cell
aging
voltage
cell
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7281662A
Other languages
Japanese (ja)
Inventor
Minoru Inagaki
稔 稲垣
Takashi Fukuhara
敬司 福原
Tomoya Murata
知也 村田
Masatake Nishio
昌武 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP7281662A priority Critical patent/JPH09129264A/en
Publication of JPH09129264A publication Critical patent/JPH09129264A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To restrain the deterioration of the charge and discharge cycle characteristic of a cell after aging, regarding a nonaqueous electrolyte secondary battery. SOLUTION: A power generation element formed out of a negative electrode using a carbon material as a negative electrode active material, a positive electrode and a separator, is sealed into a battery jar, together with a nonaqueous electrolyte, to assemble a cell. The cell is, then, initially charged up to the prescribed voltage V1 and initially discharged to the prescribed voltage V2. Thereafter, the cell is subjected to an aging process during the prescribed period (e.g. one month) and finally charged up to the prescribed voltage V4. As a result, the cell comes to be aged in the condition where the voltage of the cell is lowered, due to the initial discharge.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、エージング後に良
好な充放電サイクル特性を発揮する非水電解液二次電池
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-aqueous electrolyte secondary battery that exhibits good charge / discharge cycle characteristics after aging.

【0002】[0002]

【従来の技術】図4は従来の非水電解液二次電池の製造
方法を電圧曲線で表わしたグラフである。
2. Description of the Related Art FIG. 4 is a graph showing a voltage curve in a conventional method for manufacturing a non-aqueous electrolyte secondary battery.

【0003】従来、非水電解液二次電池を製造する際に
は、素電池を組み立てた後、図4に示すように、所定の
電圧V1まで初期充電を行なってから常温で1か月間程
度エージングを行ない、エージングによって電圧V3ま
で低下した素電池を出荷前に所定電圧V4まで充電して
いた。
Conventionally, when manufacturing a non-aqueous electrolyte secondary battery, after assembling the unit cells, as shown in FIG. 4, after initial charging to a predetermined voltage V1, it takes about one month at room temperature. Aging was performed, and the unit cell whose voltage had dropped to V3 due to aging was charged to a predetermined voltage V4 before shipment.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これで
は素電池が満充電に近い状態でエージングが行なわれる
ため、エージング後の素電池の充放電サイクル特性が劣
化してしまうという不都合があった。
However, in this case, since the aging is performed in a state where the unit cell is almost fully charged, there is a disadvantage that the charge / discharge cycle characteristics of the unit cell after aging are deteriorated.

【0005】本発明は、上記事情に鑑み、エージング後
の充放電サイクル特性の劣化を抑制することができる非
水電解液二次電池の製造方法を提供することを目的とす
るものである。
In view of the above circumstances, it is an object of the present invention to provide a method for manufacturing a non-aqueous electrolyte secondary battery which can suppress deterioration of charge / discharge cycle characteristics after aging.

【0006】[0006]

【課題を解決するための手段】すなわち本発明による非
水電解液二次電池の製造方法は、炭素材料を負極活物質
とする負極、正極およびセパレータからなる発電要素を
非水電解液と共に電池缶内に封入して素電池を組み立
て、次に、この素電池の初期充電を行ない、その後、こ
の素電池の初期放電を行ない、次いで、この素電池のエ
ージングを行ない、最後に、この素電池を所定電圧まで
充電するようにして構成される。
That is, a method of manufacturing a non-aqueous electrolyte secondary battery according to the present invention is directed to a battery can including a non-aqueous electrolyte and a power-generating element including a negative electrode having a carbon material as a negative electrode active material, a positive electrode and a separator. Assemble the unit cell by enclosing it inside, then perform the initial charge of this unit cell, then perform the initial discharge of this unit cell, then perform the aging of this unit cell, and finally, It is configured to be charged to a predetermined voltage.

【0007】また、上記素電池の初期充電の終止電圧を
4.2Vとし、上記素電池の初期放電の終止電圧を3.
0〜3.8Vとして構成される。
The cutoff voltage of the initial charge of the unit cell is 4.2 V, and the cutoff voltage of the initial discharge of the unit cell is 3.
Configured as 0-3.8V.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1は本発明による非水電解液二次
電池の製造方法を電圧曲線で表わしたグラフである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a graph showing a voltage curve in the method for producing a non-aqueous electrolyte secondary battery according to the present invention.

【0009】本発明による非水電解液二次電池の製造方
法は次の手順で行なわれる。
The manufacturing method of the non-aqueous electrolyte secondary battery according to the present invention is performed in the following procedure.

【0010】まず最初に、炭素材料を負極活物質とする
負極、正極およびセパレータからなる発電要素を非水電
解液と共に電池缶内に封入して素電池を組み立てる。
First, a unit cell is assembled by encapsulating a power generating element consisting of a negative electrode using a carbon material as a negative electrode active material, a positive electrode and a separator together with a non-aqueous electrolyte in a battery can.

【0011】こうして素電池が組み立てられたところ
で、この素電池に対して、図1に示すように、初期充
電、初期放電、エージング及び充電を順に行なう。即
ち、まず素電池を所定の電圧V1まで初期充電し、次に
所定の電圧V2まで初期放電する。その後、所定の期間
だけエージングを行なう。すると、素電池の電圧が電圧
V3まで低下するので、所定電圧V4まで充電する。
When the unit cell is assembled in this manner, initial charging, initial discharge, aging and charging are sequentially performed on the unit cell as shown in FIG. That is, the unit cell is initially charged to a predetermined voltage V1 and then initially discharged to a predetermined voltage V2. After that, aging is performed for a predetermined period. Then, since the voltage of the unit cell drops to the voltage V3, the unit cell is charged to the predetermined voltage V4.

【0012】このように、エージングを行なうときには
素電池の電圧が所定の電圧V2まで低下した状態となっ
ているので、素電池が満充電に近い状態でエージングを
行なう場合と比べて、エージング後の素電池の充放電サ
イクル特性の劣化が抑制される。
As described above, since the voltage of the unit cell is lowered to the predetermined voltage V2 when aging is performed, compared with the case where the aging is performed in a state in which the unit cell is close to full charge, the aging after the aging is performed. The deterioration of the charge / discharge cycle characteristics of the unit cell is suppressed.

【0013】[0013]

【実施例】以下、本発明の実施例について説明する。図
2は非水電解液二次電池の充放電サイクル特性を示すグ
ラフ、図3はエージング前の終止電圧と100サイクル
後の放電容量との関係を示すグラフである。
Embodiments of the present invention will be described below. FIG. 2 is a graph showing the charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery, and FIG. 3 is a graph showing the relationship between the final voltage before aging and the discharge capacity after 100 cycles.

【0014】素電池の組立 正極シートは次のようにして作製した。即ち、正極活物
質であるLiCoO2 粉末90.5重量部と、導電剤と
してグラファイト4.5重量部と、結着剤としてポリフ
ッ化ビニリデン5重量部とを混合し、これにn−メチル
ピロリドンを分散剤として添加して正極スラリーを調製
した。この正極スラリーを厚さ20μmのアルミニウム
箔集電体の両面に均一に塗布して乾燥した後、ローラー
プレスを行なうことで正極シートを得た。更に、この正
極シートの端部にアルミニウムの正極リード板を溶接に
よって取り付けた。
Assembly of Unit Cell A positive electrode sheet was prepared as follows. That is, 90.5 parts by weight of LiCoO 2 powder as a positive electrode active material, 4.5 parts by weight of graphite as a conductive agent, and 5 parts by weight of polyvinylidene fluoride as a binder were mixed, and n-methylpyrrolidone was added thereto. A positive electrode slurry was prepared by adding it as a dispersant. The positive electrode slurry was uniformly applied to both surfaces of an aluminum foil current collector having a thickness of 20 μm, dried, and then roller pressed to obtain a positive electrode sheet. Further, an aluminum positive electrode lead plate was attached to the end of this positive electrode sheet by welding.

【0015】負極シートは次のようにして作製した。即
ち、負極活物質であるガラス状カーボン90重量部と、
結着剤としてポリフッ化ビニリデン10とを混合し、こ
れにn−メチルピロリドンを分散剤として添加して負極
スラリーを調製した。この負極スラリーを厚さ10μm
の銅箔集電体の両面に均一に塗布して乾燥した後、ロー
ラープレスを行なうことで負極シートを得た。更に、こ
の負極シートの端部にニッケルの負極リード板を溶接に
よって取り付けた。
The negative electrode sheet was manufactured as follows. That is, 90 parts by weight of glassy carbon as the negative electrode active material,
Polyvinylidene fluoride 10 was mixed as a binder, and n-methylpyrrolidone was added as a dispersant to the mixture to prepare a negative electrode slurry. This negative electrode slurry has a thickness of 10 μm
The copper foil current collector was evenly coated on both sides and dried, and then roller pressed to obtain a negative electrode sheet. Further, a nickel negative electrode lead plate was attached to the end of this negative electrode sheet by welding.

【0016】上記正極シート及び負極シートをポリエチ
レン製のセパレータを介して積層し、渦巻状に巻回して
発電要素を得た。そして、この発電要素を電池缶内に収
納した後、正極リード板および負極リード板をそれぞれ
封口部および電池缶に溶接した。更に、非水電解液を注
入し、封口部を電池缶の開口部に嵌着し、かしめて密封
することにより、外径14.3mm、高さ50.5mmの円
筒形の素電池を組み立てた。
The positive electrode sheet and the negative electrode sheet were laminated with a polyethylene separator interposed therebetween and spirally wound to obtain a power generating element. After accommodating the power generating element in the battery can, the positive electrode lead plate and the negative electrode lead plate were welded to the sealing portion and the battery can, respectively. Further, a non-aqueous electrolytic solution was injected, the sealing portion was fitted into the opening of the battery can, and caulking and sealing were performed to assemble a cylindrical unit cell having an outer diameter of 14.3 mm and a height of 50.5 mm. .

【0017】充放電サイクル試験 上記のようにして組み立てた素電池について、充電電流
400mA、終止電圧4.2Vで定電流充電を行ない、次
に放電電流400mA、終止電圧3.5Vまで定電流放電
を行なった後、1か月間エージングを行なった(本発明
による方法)。
Charge / Discharge Cycle Test The unit cells assembled as described above were subjected to constant current charging at a charging current of 400 mA and a final voltage of 4.2 V, and then a constant current discharge up to a discharge current of 400 mA and a final voltage of 3.5 V. After that, it was aged for 1 month (method according to the invention).

【0018】一方、上記のようにして組み立てた素電池
について、充電電流400mA、終止電圧4.2Vで定電
流充電を行なった後、直ちに(即ち、放電を行なうこと
なく)1か月間エージングを行なった(従来法)。
On the other hand, the unit cells assembled as described above were subjected to constant current charging at a charging current of 400 mA and a final voltage of 4.2 V, and then immediately (that is, without discharging) for one month. (Conventional method).

【0019】エージング後は、電流400mA、充電終止
電圧4.2V、放電終止電圧2.8Vで定電流充放電サ
イクルを200回行なった。
After aging, a constant current charge / discharge cycle was performed 200 times at a current of 400 mA, a charge end voltage of 4.2 V, and a discharge end voltage of 2.8 V.

【0020】サイクル数と放電容量との関係を図2に示
す。図2から明らかなように、本発明による方法は従来
法と比べて充放電サイクル特性に優れている。
The relationship between the number of cycles and the discharge capacity is shown in FIG. As is apparent from FIG. 2, the method according to the present invention is superior in charge / discharge cycle characteristics as compared with the conventional method.

【0021】また、エージング前の終止電圧がエージン
グ後の充放電サイクル特性に及ぼす影響について調べる
ため、エージング前の終止電圧と100サイクル後の放
電容量との関係を求めた。その結果を図3に示す。
Further, in order to investigate the influence of the final voltage before aging on the charge / discharge cycle characteristics after aging, the relationship between the final voltage before aging and the discharge capacity after 100 cycles was obtained. The result is shown in FIG.

【0022】図3から明らかなように、従来法の場合
(エージング前の終止電圧が4.2Vである場合)には
100サイクル後の放電容量が約300mAH となったの
に対して、エージング前の終止電圧が2.8〜3.8V
である場合には100サイクル後の放電容量が約360
mAH 以上となり、エージング後の充放電サイクル特性の
改善が著しい。
As is clear from FIG. 3, in the case of the conventional method (when the final voltage before aging is 4.2 V), the discharge capacity after 100 cycles was about 300 mAH, whereas in the case of before aging. Final voltage of 2.8-3.8V
In this case, the discharge capacity after 100 cycles is about 360
Since it is above mAH, the charge / discharge cycle characteristics after aging are significantly improved.

【0023】更に、エージング前の終止電圧がエージン
グ後の内部ショート品の検出能力に及ぼす影響について
調べるため、セパレータに0.5mm角の孔を故意にあけ
た内部ショート品を組み立て、30日間エージングを行
ない、不良品として検出できるか否かを調べた。良否の
判定は、電池の開路電圧が基準開路電圧(具体的数値は
表1参照)に達しているか否かと、電池の内部抵抗が基
準内部抵抗範囲(具体的数値は表1参照)の範囲内にあ
るか否かによって行なった。その結果を表1に示す。
Further, in order to investigate the influence of the cut-off voltage before aging on the detection capability of the internal short-circuited product after aging, an internal short-circuited product with a 0.5 mm square hole intentionally opened in the separator was assembled and aged for 30 days. Then, it was investigated whether it could be detected as a defective product. Whether or not the open circuit voltage of the battery has reached the reference open circuit voltage (see Table 1 for specific numerical values) and whether the internal resistance of the battery is within the standard internal resistance range (see Table 1 for specific numerical values) Or not. Table 1 shows the results.

【0024】[0024]

【表1】 [Table 1]

【0025】表1から明らかなように、エージング前の
終止電圧が3.0V以上である場合にはエージング後の
内部ショート品の検出能力が100%となったのに対し
て、エージング前の終止電圧が2.8Vである場合には
エージング後の内部ショート品の検出能力が98%と低
下した。
As is clear from Table 1, when the final voltage before aging was 3.0 V or more, the detection capability of the internal short-circuited product after aging was 100%, whereas the final voltage before aging was terminated. When the voltage was 2.8 V, the detectability of the internal short-circuited product after aging decreased to 98%.

【0026】従って、エージング前の終止電圧(即ち、
初期放電の終止電圧)が3.0〜3.8Vである場合に
は、エージング後に内部ショート品の検出能力が低下す
る事態を招来することなく充放電サイクル特性の劣化を
大幅に抑制することができる。
Therefore, the final voltage before aging (that is,
When the final discharge end voltage) is 3.0 to 3.8 V, deterioration of charge-discharge cycle characteristics can be significantly suppressed without causing a situation in which the detection capability of the internal short-circuited product is deteriorated after aging. it can.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、炭
素材料を負極活物質とする負極、正極およびセパレータ
からなる発電要素を非水電解液と共に電池缶内に封入し
て素電池を組み立て、次に、この素電池の初期充電を行
ない、その後、この素電池の初期放電を行ない、次い
で、この素電池のエージングを行ない、最後に、この素
電池を所定電圧まで充電するようにして構成したので、
エージング前に素電池を充放電させることで放電容量を
確認することができることに加えて、初期放電によって
素電池の電圧が低下した状態でエージングが行なわれる
ことから、エージング後の素電池の充放電サイクル特性
の劣化を抑制することが可能な非水電解液二次電池の製
造方法を提供することができる。
As described above, according to the present invention, a power generating element consisting of a negative electrode having a carbon material as a negative electrode active material, a positive electrode and a separator is enclosed in a battery can together with a non-aqueous electrolyte to assemble a unit cell. Then, the initial charging of the unit cell is performed, then the initial discharging of the unit cell is performed, then the aging of the unit cell is performed, and finally the unit cell is charged to a predetermined voltage. Because I did
In addition to being able to confirm the discharge capacity by charging and discharging the unit cell before aging, since the aging is performed with the unit cell voltage dropping due to the initial discharge, charging and discharging of the unit cell after aging It is possible to provide a method for manufacturing a non-aqueous electrolyte secondary battery capable of suppressing deterioration of cycle characteristics.

【0028】また、上記素電池の初期充電の終止電圧を
4.2Vとし、上記素電池の初期放電の終止電圧を3.
0〜3.8Vとして構成すると、上述した充放電サイク
ル特性の劣化の抑制効果が顕著となると同時に、エージ
ング後の内部ショート品の検出能力が低下する事態を回
避することが可能となる。
The cutoff voltage of the initial charge of the unit cell is 4.2 V, and the cutoff voltage of the initial discharge of the unit cell is 3.
When configured as 0 to 3.8 V, the effect of suppressing the deterioration of the charge and discharge cycle characteristics described above becomes remarkable, and at the same time, it becomes possible to avoid a situation in which the ability to detect an internal short-circuited product after aging decreases.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による非水電解液二次電池の製造方法を
電圧曲線で表わしたグラフである。
FIG. 1 is a graph showing a voltage curve in a method for manufacturing a non-aqueous electrolyte secondary battery according to the present invention.

【図2】非水電解液二次電池の充放電サイクル特性を示
すグラフである。
FIG. 2 is a graph showing charge / discharge cycle characteristics of a non-aqueous electrolyte secondary battery.

【図3】エージング前の終止電圧と100サイクル後の
放電容量との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the final voltage before aging and the discharge capacity after 100 cycles.

【図4】従来の非水電解液二次電池の製造方法を電圧曲
線で表わしたグラフである。
FIG. 4 is a graph showing a voltage curve in a conventional method for manufacturing a non-aqueous electrolyte secondary battery.

フロントページの続き (72)発明者 西尾 昌武 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内Front page continuation (72) Inventor Masatake Nishio 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素材料を負極活物質とする負極、正極
およびセパレータからなる発電要素を非水電解液と共に
電池缶内に封入して素電池を組み立て、 次に、この素電池の初期充電を行ない、 その後、この素電池の初期放電を行ない、 次いで、この素電池のエージングを行ない、 最後に、この素電池を所定電圧まで充電するようにして
構成した非水電解液二次電池の製造方法。
1. A unit cell is assembled by encapsulating a power generation element including a negative electrode using a carbon material as a negative electrode active material, a positive electrode and a separator in a battery can together with a non-aqueous electrolyte, and then performing initial charging of the unit cell. After that, the initial discharge of the unit cell is performed, then the aging of the unit cell is performed, and finally, the method for manufacturing a non-aqueous electrolyte secondary battery configured to charge the unit cell to a predetermined voltage .
【請求項2】 素電池の初期充電の終止電圧を4.2V
とし、素電池の初期放電の終止電圧を3.0〜3.8V
としたことを特徴とする請求項1記載の非水電解液二次
電池の製造方法。
2. The final voltage of the initial charge of the unit cell is 4.2 V
And the final voltage of the initial discharge of the unit cell is 3.0 to 3.8V.
The method for manufacturing a non-aqueous electrolyte secondary battery according to claim 1, wherein
JP7281662A 1995-10-30 1995-10-30 Manufacture of nonaqueous electrolyte secondary battery Pending JPH09129264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7281662A JPH09129264A (en) 1995-10-30 1995-10-30 Manufacture of nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7281662A JPH09129264A (en) 1995-10-30 1995-10-30 Manufacture of nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09129264A true JPH09129264A (en) 1997-05-16

Family

ID=17642235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7281662A Pending JPH09129264A (en) 1995-10-30 1995-10-30 Manufacture of nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09129264A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352864A (en) * 2001-05-23 2002-12-06 Denso Corp Method for testing secondary battery
JP2003036887A (en) * 2001-07-24 2003-02-07 Shin Kobe Electric Mach Co Ltd Inspection method for lithium secondary battery
JP2004288515A (en) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd Inspection method of cylinder-shaped battery
JP2009004389A (en) * 2008-10-02 2009-01-08 Panasonic Corp Inspection method of battery
JP2014002009A (en) * 2012-06-18 2014-01-09 Toyota Motor Corp Method of inspecting secondary battery
KR101419747B1 (en) * 2010-12-27 2014-07-16 주식회사 엘지화학 Method for manufacturing secondary electric cell and secondary electric cell thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352864A (en) * 2001-05-23 2002-12-06 Denso Corp Method for testing secondary battery
JP2003036887A (en) * 2001-07-24 2003-02-07 Shin Kobe Electric Mach Co Ltd Inspection method for lithium secondary battery
JP2004288515A (en) * 2003-03-24 2004-10-14 Matsushita Electric Ind Co Ltd Inspection method of cylinder-shaped battery
JP4529364B2 (en) * 2003-03-24 2010-08-25 パナソニック株式会社 Cylindrical battery inspection method
JP2009004389A (en) * 2008-10-02 2009-01-08 Panasonic Corp Inspection method of battery
KR101419747B1 (en) * 2010-12-27 2014-07-16 주식회사 엘지화학 Method for manufacturing secondary electric cell and secondary electric cell thereof
JP2014002009A (en) * 2012-06-18 2014-01-09 Toyota Motor Corp Method of inspecting secondary battery

Similar Documents

Publication Publication Date Title
US5534369A (en) Battery having divided electrode portions
KR100387339B1 (en) A method of manufacturing a battery including a non-circular spiral electrode body
WO2013094383A1 (en) Layer cell, assembled battery including layer cell, and method for assembling layer cell
JP2005353519A (en) Electrochemical element
US20120007564A1 (en) Nonaqueous electrolyte secondary battery and method for charging the same
JP2001110453A (en) Nonaqueous electrolytic solution secondary battery
JPH09129264A (en) Manufacture of nonaqueous electrolyte secondary battery
JP2000090974A (en) Lithium ion secondary battery and manufacture thereof
JP3336672B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2005158643A (en) Inspection method for lithium secondary battery
JP2000357505A (en) Nonaqueous electrolyte secondary battery
JP2003036887A (en) Inspection method for lithium secondary battery
JP6227168B1 (en) Lithium ion battery and manufacturing method thereof
JP3438301B2 (en) Non-aqueous electrolyte secondary battery
JP3511966B2 (en) Cylindrical lithium-ion battery
JP4688527B2 (en) Lithium secondary battery
JPH10162809A (en) Secondary battery
JP3906872B2 (en) Battery device
JPH09306443A (en) Non-aqueous electrolyte battery
JPH07142089A (en) Lithium ion battery
JPH1027584A (en) Cylindrical battery
JP2000306607A (en) Nonaqueous electrolyte battery
WO2019000861A1 (en) Lithium-ion battery positive electrode and preparation method therefor and method for preparing lithium-ion battery
WO2021100272A1 (en) Secondary battery and method for producing same
JPH07249404A (en) Battery