JP2002352864A - Method for testing secondary battery - Google Patents

Method for testing secondary battery

Info

Publication number
JP2002352864A
JP2002352864A JP2001154199A JP2001154199A JP2002352864A JP 2002352864 A JP2002352864 A JP 2002352864A JP 2001154199 A JP2001154199 A JP 2001154199A JP 2001154199 A JP2001154199 A JP 2001154199A JP 2002352864 A JP2002352864 A JP 2002352864A
Authority
JP
Japan
Prior art keywords
charging
secondary battery
discharging
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001154199A
Other languages
Japanese (ja)
Other versions
JP4179528B2 (en
Inventor
Norikazu Adachi
安達  紀和
Satoru Suzuki
覚 鈴木
Manabu Yamada
学 山田
Junji Sugie
順次 杉江
Katsuyoshi Kawai
勝由 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2001154199A priority Critical patent/JP4179528B2/en
Publication of JP2002352864A publication Critical patent/JP2002352864A/en
Application granted granted Critical
Publication of JP4179528B2 publication Critical patent/JP4179528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method for testing a secondary battery by which the secondary battery can be tested safely at low cost. SOLUTION: The method for testing the secondary battery of this invention includes a step of discharging and charging that carries out discharging and charging in the secondary battery treated initial discharging and charging treatment under a discharging and charging current larger than that of the initial discharging and charging current of the initial discharging and charging treatment. The test of the secondary battery is carried out in a short time so that the lowering of battery characteristics is induced by short-circuited a minute place and a place with a possibility of short-circuit in future in the battery are short-circuited by carrying out discharging and charging with a discharging and charging current larger than that of the initial discharging and charging current in the method of testing of the secondary battery of this invention.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池の検査方
法に関し、詳しくは、不良電池を検査できる二次電池の
検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery inspection method, and more particularly, to a secondary battery inspection method capable of inspecting a defective battery.

【0002】[0002]

【従来の技術】二次電池の製作は、まず、セパレータを
介した状態の正極と負極とを電池ケース内に挿入し、こ
の電池ケース内に電解液を注入する。その後、このケー
スの開口部を封止して電池ケースを密閉することで製作
される。なお、電池ケースの開口部が封止された状態の
電池は、化成処理が施されていないことから、初期充放
電処理が施されて充放電が可能な二次電池となる。
2. Description of the Related Art To manufacture a secondary battery, first, a positive electrode and a negative electrode with a separator interposed are inserted into a battery case, and an electrolytic solution is injected into the battery case. Thereafter, the battery case is manufactured by sealing the opening of the case and sealing the battery case. Note that the battery in which the opening of the battery case is sealed is not subjected to the chemical conversion treatment, and thus is a secondary battery that is subjected to the initial charge / discharge treatment and can be charged / discharged.

【0003】通常の二次電池は、電池を製作した後に充
放電を行い、電池容量の検査を行っている。さらに、あ
る程度充電した状態で長期間保存し、電池電圧や電池容
量の低下を測定する検査が施されていた。すなわち、二
次電池としての信頼性を向上させるために、電池容量が
低い電池、保存時に電池電圧の低下や自己放電が大きい
二次電池を排除することが必須であるためである。
[0003] A normal secondary battery is charged and discharged after the battery is manufactured, and the battery capacity is inspected. Further, the battery has been stored for a long time while being charged to some extent, and an inspection for measuring a decrease in battery voltage or battery capacity has been performed. That is, in order to improve the reliability of the secondary battery, it is essential to eliminate a battery having a low battery capacity and a secondary battery having a large decrease in battery voltage and a large self-discharge during storage.

【0004】たとえば、複数の二次電池を電気的に接続
して組電池を形成したときに、組み合わせた二次電池の
中に、不良電池があると、組電池の性能や安全性にきわ
めて大きな問題が生じるためである。
For example, when a battery pack is formed by electrically connecting a plurality of secondary batteries, if there is a defective battery in the combined secondary batteries, the performance and safety of the battery pack will be extremely large. This is because a problem arises.

【0005】従来の二次電池の電池電圧や電池容量の低
下を調べる検査は、ある程度充電した状態で長期間保存
することで行われていたため、充電状態での二次電池の
保存が数週間にもおよび、多大な保存設備費と保存期間
とが要求されていた。この保存に要するコストが、二次
電池のコストを上昇させていた。
[0005] Conventional inspections for checking a decrease in the battery voltage or battery capacity of a secondary battery have been performed by storing the battery in a charged state for a long period of time. In addition, large storage equipment costs and storage periods have been required. The cost required for this preservation has increased the cost of the secondary battery.

【0006】また、リチウム二次電池においては、負極
での被膜形成をともなう不可逆反応があること、充放電
にともない正負極の電池材料の状態が変化して容量特性
や内部抵抗が変化すること、などの理由から、初期に数
サイクルに及ぶ電池充放電試験が施されている。
In addition, in a lithium secondary battery, there is an irreversible reaction accompanied by the formation of a film on the negative electrode, and the state of the battery material of the positive and negative electrodes changes due to charging and discharging, so that the capacity characteristics and internal resistance change. For such reasons, a battery charge / discharge test for several cycles is initially performed.

【0007】ある程度充電した状態で二次電池を長期間
保存する評価方法においては、充電状態での保存時間を
短縮させることを目的として、二次電池の保存温度を高
温とする保存方法がある。すなわち、高温とすることで
二次電池の電極反応を促進する評価方法である。
In an evaluation method for storing a secondary battery for a long time in a state of being charged to some extent, there is a storage method in which the storage temperature of the secondary battery is set to a high temperature for the purpose of shortening the storage time in a charged state. That is, this is an evaluation method for promoting the electrode reaction of the secondary battery by increasing the temperature.

【0008】しかしながら、高温での二次電池の保存
は、大きなエネルギーを持つ電池に熱エネルギーを加え
ることから、安全上の問題を有していた。すなわち、電
池に充電されたエネルギーだけでなく、熱エネルギーに
よる電解液と電極材料の反応のエネルギーが加わるた
め、短絡等の異常があった場合、電池の発熱や内部圧力
の上昇に至る可能性が高くなる。また、加熱により電解
液と電極材料の間で副反応が起こり、電池容量の低下や
抵抗上昇が起きる可能性がある。
However, storage of a secondary battery at a high temperature has a safety problem since thermal energy is applied to a battery having a large energy. In other words, not only the energy charged in the battery but also the energy of the reaction between the electrolyte and the electrode material due to the thermal energy is added, and if there is an abnormality such as a short circuit, the battery may generate heat or increase in internal pressure. Get higher. In addition, the heating may cause a side reaction between the electrolyte and the electrode material, which may cause a decrease in battery capacity or an increase in resistance.

【0009】さらに、高温での二次電池の保存には、ヒ
ーター等の加熱装置が必要となり、保存設備の設備費を
増大させるという問題を有していた。
Further, storage of the secondary battery at a high temperature requires a heating device such as a heater, which has a problem of increasing equipment cost of storage equipment.

【0010】[0010]

【発明が解決しようとする課題】本発明は上記実情に鑑
みてなされたものであり、安全かつ低コストで二次電池
を検査できる二次電池の検査方法を提供することを課題
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a secondary battery inspection method capable of inspecting a secondary battery safely and at low cost.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に本発明者等は二次電池の検査方法について検討を重ね
た結果、初期充放電処理が施された二次電池に特定の充
放電条件で充放電を行う充放電工程を有する検査方法と
することでことで上記課題を解決できることを見出し
た。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have repeatedly studied a method for inspecting a secondary battery, and as a result, a specific charge / discharge has been performed on a secondary battery which has been subjected to an initial charge / discharge process. It has been found that the above problem can be solved by using an inspection method having a charge / discharge step of performing charge / discharge under conditions.

【0012】すなわち、本発明の二次電池の検査方法
は、初期充放電処理が施された二次電池に、初期充放電
処理の初期充放電電流より大きな電流値を有する充放電
電流での充放電を行う充放電工程と、充放電工程が施さ
れた二次電池の電池特性の変化を測定する測定工程と、
を有することを特徴とする。
That is, the inspection method of a secondary battery according to the present invention provides a method of charging a secondary battery that has been subjected to an initial charge / discharge process with a charge / discharge current having a current value larger than the initial charge / discharge current of the initial charge / discharge process. A charge / discharge step of performing discharge, and a measurement step of measuring a change in battery characteristics of the secondary battery subjected to the charge / discharge step,
It is characterized by having.

【0013】本発明の二次電池の検査方法は、初期充放
電電流より大きな電流値を有する充放電電流で充放電を
行うことで、電池内の微小な短絡箇所および将来短絡に
つながる可能性がある部分が短絡する。この短絡は、電
池特性の低下を引き起こすため、短時間で二次電池の検
査を行うことができる。
According to the inspection method for a secondary battery of the present invention, by performing charging / discharging with a charging / discharging current having a current value larger than the initial charging / discharging current, there is a possibility that a minute short-circuit portion in the battery and a short-circuit in the future may occur. Some parts are short-circuited. Since this short circuit causes deterioration of the battery characteristics, the inspection of the secondary battery can be performed in a short time.

【0014】[0014]

【発明の実施の形態】本発明の二次電池の検査方法は、
充放電工程と、測定工程と、を有する。
BEST MODE FOR CARRYING OUT THE INVENTION A method for inspecting a secondary battery according to the present invention comprises:
It has a charge / discharge step and a measurement step.

【0015】充放電工程は、初期充放電処理が施された
二次電池に、初期充放電処理の充放電電流より大きな電
流値を有する充放電電流で充放電を行う工程である。す
なわち、充放電工程は、充放電電流で充放電を行うこと
で、電池内のより電流が流れやすい部分に充放電電流が
集中し、この部分を強制的に短絡させる工程である。こ
の結果、充放電工程が施された二次電池は、短絡により
特性が低下する。
The charging / discharging step is a step of charging / discharging the secondary battery which has been subjected to the initial charging / discharging process with a charging / discharging current having a current value larger than the charging / discharging current in the initial charging / discharging process. In other words, the charging / discharging step is a step of performing charging / discharging with the charging / discharging current, whereby the charging / discharging current concentrates on a portion of the battery where the current flows more easily, and forcibly short-circuits this portion. As a result, the characteristics of the secondary battery subjected to the charge / discharge process are deteriorated due to the short circuit.

【0016】詳しくは、充放電工程は、電池内の微小な
短絡箇所および将来短絡につながる可能性がある部分を
強制的に短絡させる。
More specifically, the charging / discharging step forcibly short-circuits a small short-circuit portion in the battery and a portion which may be short-circuited in the future.

【0017】ここで、電池内の微小な短絡箇所とは、製
造された段階や初期充放電により短絡を生じている箇所
を示し、将来短絡につながる可能性がある部分とは、二
次電池を使用して充放電を繰り返したときに短絡を生じ
るような部分を示す。
Here, the minute short-circuited portion in the battery refers to a portion where a short-circuit occurs due to the stage of manufacture or initial charging / discharging, and the portion that may lead to a short-circuit in the future refers to a portion of the secondary battery. This indicates a portion that causes a short circuit when used and repeated charging and discharging.

【0018】この電池内の微小な短絡箇所としては、た
とえば、二次電池の製造時に二次電池内に残留した異物
や電極からの剥落物により生じた短絡箇所をあげること
ができる。また、将来短絡につながる可能性がある部分
とは、充放電を行うことで電極の表面に電解質や不純物
が析出することで、この析出物が短絡を生じさせる部分
や、電極が体積変化を生じることで短絡が生じる部分を
示す。
Examples of the minute short-circuited portion in the battery include a short-circuited portion caused by a foreign substance remaining in the secondary battery at the time of manufacturing the secondary battery or a substance detached from the electrode. In addition, the portion that may lead to a short circuit in the future is that the electrolyte and impurities are deposited on the surface of the electrode by performing charging and discharging, and the portion where this precipitate causes a short circuit and the electrode causes a volume change This indicates a portion where a short circuit occurs.

【0019】測定工程は、充放電工程が施された二次電
池の電池特性の変化を測定する工程である。すなわち、
測定工程が二次電池の電池特性の変化を測定すること
で、充放電工程において短絡が生じた二次電池を、電池
特性の変化から検出することができる。
The measuring step is a step of measuring a change in battery characteristics of the secondary battery subjected to the charging / discharging step. That is,
By measuring the change in the battery characteristics of the secondary battery in the measurement step, the secondary battery in which the short circuit has occurred in the charge / discharge step can be detected from the change in the battery characteristics.

【0020】すなわち、充放電工程において短絡を生じ
た二次電池は、短絡が生じていない二次電池と比較する
と電池特性が低下している。このため、測定工程では、
電池特性の変化を測定することで、電池特性が低下した
電池を短絡が生じた二次電池として判別することができ
る。
That is, the battery characteristics of a secondary battery that has short-circuited in the charging / discharging process are lower than those of a secondary battery that has not short-circuited. For this reason, in the measurement process,
By measuring the change in the battery characteristics, the battery having the deteriorated battery characteristics can be determined as the short-circuited secondary battery.

【0021】本発明の二次電池の検査方法は、充放電工
程において二次電池内の微小な短絡箇所および将来短絡
につながる可能性がある部分を強制的に短絡させ、測定
工程において短絡を電池特性の低下として検知する検査
方法である。本発明の二次電池の検査方法は、二次電池
を強制的に短絡させているため、短絡による電池特性の
変化が生じやすくなっている。すなわち、短時間で電池
特性の変化が得られるため、従来の検査方法に要求され
た長時間の保存が必要なくなっている。この結果、本発
明の二次電池の検査方法は、短時間で二次電池の検査を
行うことができる。
According to the inspection method for a secondary battery of the present invention, in the charging / discharging process, a minute short-circuit portion in the secondary battery and a portion that may lead to a short-circuit in the future are forcibly short-circuited, and the short-circuit is detected in the measuring process. This is an inspection method that detects a deterioration in characteristics. In the method for inspecting a secondary battery according to the present invention, the secondary battery is forcibly short-circuited, so that a change in battery characteristics due to the short-circuit easily occurs. That is, since the change in the battery characteristics can be obtained in a short time, the long-term storage required in the conventional inspection method is not required. As a result, the inspection method of the secondary battery of the present invention can inspect the secondary battery in a short time.

【0022】電池特性の変化は、二次電池の電池電圧の
変化または自己放電量の変化であることが好ましい。こ
こで、自己放電容量の変化は、保存の前後での容量の変
化を示す。すなわち、測定工程において測定される電池
特性の変化が、従来の検査方法において測定された電池
電圧の変化または自己放電量の変化であることで、測定
工程において二次電池の内部での短絡を検知できる。
The change in the battery characteristics is preferably a change in the battery voltage of the secondary battery or a change in the amount of self-discharge. Here, the change in the self-discharge capacity indicates a change in the capacity before and after storage. That is, the change in the battery characteristics measured in the measurement process is a change in the battery voltage or a change in the amount of self-discharge measured by the conventional inspection method, so that a short circuit inside the secondary battery is detected in the measurement process. it can.

【0023】本発明の検査方法は、二次電池の検査方法
であり、特にリチウム二次電池の検査に有効である。
The test method of the present invention is a test method for a secondary battery, and is particularly effective for testing a lithium secondary battery.

【0024】このリチウム二次電池としては、リチウム
金属酸化物を有しているリチウム二次電池であれば、特
に限定されるものではなく、通常のリチウム二次電池を
用いることができる。
The lithium secondary battery is not particularly limited as long as it is a lithium secondary battery having a lithium metal oxide, and an ordinary lithium secondary battery can be used.

【0025】また、リチウム金属酸化物についても、特
に限定されるものではない。リチウム金属酸化物として
は、たとえば、LiCoO2、LiNiO2、LiMnO
2、LiMn24等の化合物をあげることができる。
The lithium metal oxide is not particularly limited. Examples of the lithium metal oxide include LiCoO 2 , LiNiO 2 , and LiMnO.
2 , compounds such as LiMn 2 O 4 .

【0026】リチウム二次電池の正極は、特に限定され
るものではなく、通常のリチウム二次電池に用いられる
正極を用いることができる。たとえば、Liの挿入脱挿
入の機能を持つ正極活物質、電子の導電性を持たせるた
めのカーボン等の導電剤、電極形状を保持するためのP
VDF等のバインダをNMP等の溶剤と混合して、ペー
スト化し、アルミニウムの集電体に塗工して乾燥させ、
電池形状に合わせるためのスリットを形成し、粒子間と
集電体との接触状態をよくしたり、電極密度を上げるた
めにプレスを行う工程を施すことで製造された正極をあ
げることができる。
The positive electrode of the lithium secondary battery is not particularly limited, and a positive electrode used for a normal lithium secondary battery can be used. For example, a positive electrode active material having a function of inserting and removing Li, a conductive agent such as carbon for imparting electron conductivity, and a P for maintaining an electrode shape.
A binder such as VDF is mixed with a solvent such as NMP to form a paste, applied to an aluminum current collector and dried,
A positive electrode manufactured by forming a slit for adjusting to the shape of the battery, improving the contact state between the particles and the current collector, or performing a pressing step to increase the electrode density can be given.

【0027】リチウム二次電池の負極は、特に限定され
るものではなく、通常のリチウム二次電池に用いられる
負極を用いることができる。たとえば、Liの挿入脱挿
入あるいは析出、溶出の機能を持つ炭素等の負極活物
質、電極形状を保持するためのPVDF等のバインダを
NMP等の溶剤と混合、ペースト化した後、Cuの集電
体に塗工して乾燥させ、電池形状に合わせるためのスリ
ットを形成し、粒子間と集電体との接触状態をよくした
り、電極密度を上げるためにプレスを行う工程を施すこ
とで製造された負極をあげることができる。
The negative electrode of the lithium secondary battery is not particularly limited, and a negative electrode used for a normal lithium secondary battery can be used. For example, a negative electrode active material such as carbon having a function of inserting / desorbing or depositing and eluting Li, and a binder such as PVDF for maintaining the electrode shape are mixed with a solvent such as NMP to form a paste, and then the current collection of Cu is performed. It is manufactured by applying a process of applying to the body, drying it, forming slits to match the battery shape, improving the contact state between the particles and the current collector, and pressing to increase the electrode density Negative electrode.

【0028】さらに、リチウム二次電池としては、上述
のように製造された正負両極を、セパレータを介して巻
回や積層し、集電体と電極端子を溶接し、電池ケースに
挿入し、電解液を注入し、レーザーやカシメにより電池
ケースを封止する等の工程を施すことで製造された電池
をあげることができる。
Further, as the lithium secondary battery, the positive and negative electrodes manufactured as described above are wound or laminated with a separator interposed therebetween, and the current collector and the electrode terminal are welded, inserted into the battery case, and then subjected to electrolysis. A battery manufactured by injecting a liquid and performing a process such as sealing the battery case by laser or caulking can be given.

【0029】上述のように製造されたリチウム二次電池
において、周囲から混入した異物、集電体スリット時の
バリや切りくず、正極および負極の活物質が集電体の表
面や端面から剥離した物質が、初期および使用時にセパ
レータを貫通し、正負極間が接触し短絡を生じさせる。
In the lithium secondary battery manufactured as described above, foreign substances mixed in from the surroundings, burrs and chips at the time of slitting the current collector, and the active materials of the positive electrode and the negative electrode peeled off from the surface and the end face of the current collector. The substance penetrates through the separator in the initial stage and at the time of use, and the contact between the positive and negative electrodes causes a short circuit.

【0030】また、リチウム二次電池は、層構造を有す
るLiCoO2、LiNiO2、LiMnO2、炭素等、
スピネル構造を有するLiMn24等を主骨格とし、充
放電時の結晶の変化を抑制するために種々の遷移金属を
添加して形成された活物質が用いられる。
The lithium secondary battery has a layer structure of LiCoO 2 , LiNiO 2 , LiMnO 2 , carbon, etc.
An active material formed by using LiMn 2 O 4 having a spinel structure as a main skeleton and adding various transition metals to suppress a change in crystal during charge and discharge is used.

【0031】リチウム二次電池に主に用いられる正極活
物質は、Liの移動にともなう電圧の変化は異なるが、
電池として使用する電位はおよそ3〜4.1Vである。
また、リチウム二次電池に用いられる正極活物質は、L
iの移動を行わない初期の正極の電位は約3.2Vだ
が、充電(Liを脱挿入)を開始すると電圧が急勾配で
上昇し、その後、3.6〜4V程度の範囲で電圧は平坦
に近いなだらかな上昇カーブを描く、さらに充電する
と、4.1V付近で再び電圧の上昇カーブが急勾配とな
ることが知られている。
The positive electrode active material mainly used for the lithium secondary battery has a different voltage change due to the movement of Li.
The potential used as a battery is about 3 to 4.1V.
The positive electrode active material used for the lithium secondary battery is L
The initial potential of the positive electrode without moving i is about 3.2 V, but when charging (de-insertion / re-insertion of Li) is started, the voltage rises steeply, and thereafter, the voltage is flat in the range of about 3.6 to 4 V. It is known that when the battery is further charged, the voltage rise curve becomes steeper again at around 4.1V.

【0032】この電圧の変化は、正極活物質の結晶系の
変化によることも知られている。すなわち、リチウム二
次電池の正極活物質は、充放電の途中で結晶系が変化を
生じるためである。
It is also known that this change in voltage is caused by a change in the crystal system of the positive electrode active material. That is, the crystal system of the positive electrode active material of the lithium secondary battery is changed during charging and discharging.

【0033】たとえば、LiCoO2系の活物質は、L
iを充電末期まで脱挿入(充電)すると、その結晶系が
六方晶から単斜晶へと、それぞれの結晶系の共存領域を
経て変化する。また、LiNiO2系の活物質は、初期
の状態からLiが脱挿入(充電)するのにともない、六
方晶から単斜晶を経て六方晶に、それぞれの結晶系の共
存領域を経て変化する。さらに、LiMn24系の活物
質は、Li金属電位に対して4V付近(対極カーボンを
使用した電池の電位は3.7〜4V)において、2相の
立方晶が存在する領域があらわれる。
For example, a LiCoO 2 -based active material is L
When i is deinserted (charged) until the end of charging, its crystal system changes from hexagonal to monoclinic through the coexistence region of each crystal system. In addition, the LiNiO 2 -based active material changes from a hexagonal system to a monoclinic system to a hexagonal system through a coexistence region of each crystal system as Li is desorbed (charged) from an initial state. Further, in the LiMn 2 O 4 -based active material, a region where a two-phase cubic crystal is present appears around 4 V with respect to the Li metal potential (the potential of a battery using counter electrode carbon is 3.7 to 4 V).

【0034】このようなリチウム二次電池の正極活物質
の結晶系の変化は、電池の耐久特性を悪化させることが
知られている。この結晶系の変化を抑制するために、遷
移金属等の元素を添加する方法があるが、X線回折等で
詳細に評価すると、結晶系の変化を完全になくすことは
できなかった。
It is known that such a change in the crystal system of the positive electrode active material of the lithium secondary battery deteriorates the durability characteristics of the battery. In order to suppress the change of the crystal system, there is a method of adding an element such as a transition metal. However, when the evaluation was performed in detail by X-ray diffraction or the like, the change of the crystal system could not be completely eliminated.

【0035】さらに、リチウム二次電池において、負極
活物質として用いられる炭素も、Liの挿入量が少ない
初期状態および放電状態の領域では、急激な電位変化を
生じることが知られている。
Further, in a lithium secondary battery, it is known that carbon used as a negative electrode active material also causes a rapid change in potential in the initial state and the discharge state where the amount of inserted Li is small.

【0036】リチウム二次電池の電極活物質の電位変化
が大きい領域では、電極内で電位の分布が起こりやすい
ため、充放電を行うと電流の流れやすい電位部分に電流
が集中することになる。また、結晶系が変化している電
位では、微視的に見ると、電極内、活物質粒子内で結晶
系の異なる部分が混在することとなり、電極内の電池反
応に偏りが起こり、微視的な電流の集中が起きやすくな
る。また、電極が突出している部分では、電極間隔が狭
くなり、さらに電流の集中が起きやすくなる。
In a region where the potential change of the electrode active material of the lithium secondary battery is large, the potential distribution is likely to occur in the electrode. Therefore, when the charge and discharge are performed, the current concentrates on the potential portion where the current flows easily. At a potential where the crystal system is changing, microscopically, different portions of the crystal system are mixed in the electrode and the active material particles, and the battery reaction in the electrode is biased, resulting in a microscopic effect. Current concentration is likely to occur. Further, in a portion where the electrode protrudes, the electrode interval is narrowed, and the current is more likely to be concentrated.

【0037】このように、電極内で微視的に見て局所的
な電流の集中が起きると、たとえば、局所的な発熱が生
じて正負極間を絶縁しているセパレータが溶解して、短
絡が起こりやすくなる。
As described above, when a local current concentration occurs microscopically in the electrode, for example, local heat generation occurs, and the separator that insulates between the positive electrode and the negative electrode is melted and short-circuited. Is more likely to occur.

【0038】また、充電時には、負極の電位が局所的に
低下することで、負極上へLiや不純物の析出が起こ
り、セパレータを貫通した析出物により短絡が起こるよ
うになる。
In addition, during charging, the potential of the negative electrode is locally reduced, so that Li and impurities are deposited on the negative electrode, and a short circuit is caused by the precipitate penetrating the separator.

【0039】さらに、結晶構造の変化が起きる電位で急
激な充放電を行うと、結晶の格子定数の変化および活物
質の体積変化を生じさせるため、セパレータに物理的な
ストレスが加わり、セパレータの破損が生じることによ
る短絡が起こりやすくなる。
Further, if a rapid charge / discharge is performed at a potential at which a change in the crystal structure occurs, a change in the lattice constant of the crystal and a change in the volume of the active material occur. Short-circuits are likely to occur due to the occurrence of cracks.

【0040】本発明の二次電池の検査方法は、上述の現
象を利用して、電池電圧の変化が大きい特定の電圧領域
や、活物質の結晶系が変化する電圧領域で、局所的な電
流の集中が起きる特定の電流で充放電することで、電池
内での活物質の脱落物や、異物が付着し、微小短絡が起
きている電池や、使用中に短絡に陥る可能性が高い電池
を、強制的に短絡させるため、短期間の保存で検査をす
ることができる検査方法である。
The method for inspecting a secondary battery according to the present invention utilizes the above-mentioned phenomenon to make local current change in a specific voltage region where the battery voltage changes greatly or in a voltage region where the crystal system of the active material changes. Battery that has a small short circuit due to charge or discharge of the active material in the battery or foreign matter attached to it by charging and discharging with a specific current that causes concentration of the battery, or a battery that is likely to short circuit during use Is an inspection method that can be inspected in a short-term storage to forcibly short-circuit the data.

【0041】充放電工程は、リチウム二次電池の電圧変
化ΔE/ΔQ(E:リチウム二次電池の電池電圧、Q:
リチウム金属酸化物中のLi移動量)が1.0以上とな
る範囲を少なくともまたがった電圧範囲であり、かつ3
C以上の電荷を有する充放電電流で充放電を行うことが
好ましい。ここで、ΔE/ΔQが1.0以上となる範囲
は、リチウム金属酸化物が異なる2相以上の結晶相を混
在した範囲であり、電極内で電位の偏りが存在する範囲
である。この範囲で3C以上の電荷を有する充放電電流
で充放電を行うと、電極のより電流の流れやすい電位部
分、すなわち、電極材料の滑落物や導電性の異物が付着
し微小に短絡している部分や使用中に短絡となり得る部
分に電流が集中し、この集中した部分で短絡が生じるよ
うになる。この結果、その後の測定工程で短絡が検知で
きる。
In the charging / discharging step, the voltage change ΔE / ΔQ (E: battery voltage of the lithium secondary battery, Q:
(The amount of Li transfer in the lithium metal oxide) is at least 1.0,
It is preferable to perform charging and discharging with a charging and discharging current having a charge of C or more. Here, the range where ΔE / ΔQ is 1.0 or more is a range in which two or more crystal phases of different lithium metal oxides are mixed, and is a range where there is a potential bias in the electrode. When charge / discharge is performed with a charge / discharge current having an electric charge of 3 C or more in this range, a potential portion where the current flows more easily in the electrode, that is, a sliding object of the electrode material or a conductive foreign matter is attached and short-circuited minutely. The current concentrates on a portion or a portion that can be short-circuited during use, and a short-circuit occurs at the concentrated portion. As a result, a short circuit can be detected in the subsequent measurement process.

【0042】充放電工程は、充放電時に電極活物質の結
晶系の変化が起きる範囲を少なくともまたがった電圧範
囲であり、かつ3C以上の電荷を有する充放電電流で充
放電を行うことが好ましい。すなわち、この範囲で3C
以上の電荷を有する充放電電流で充放電を行うと、電極
のより電流の流れやすい電位部分、すなわち、電極材料
の滑落物や導電性の異物が付着し微小に短絡している部
分や使用中に短絡となり得る部分に電流が集中し、この
集中した部分で短絡が生じるようになる。この結果、そ
の後の測定工程で短絡が検知できる。
In the charging / discharging step, it is preferable to perform charging / discharging with a charging / discharging current having a charge range of at least 3 C which is a voltage range that at least straddles a range in which the crystal system of the electrode active material changes during charging / discharging. That is, 3C in this range
When charge / discharge is performed with the charge / discharge current having the above charge, the potential portion of the electrode where the current flows more easily, that is, the portion where the sliding material of the electrode material or the conductive foreign matter adheres and is slightly short-circuited or used The current concentrates on a portion where a short circuit may occur, and a short circuit occurs at the concentrated portion. As a result, a short circuit can be detected in the subsequent measurement process.

【0043】充放電工程は、充電状態が充電深度(SO
C)が20%以下となる範囲を少なくともまたがった電
圧範囲であり、かつ3C以上の電荷を有する充放電電流
で充放電を行うことが好ましい。すなわち、この範囲で
3C以上の電荷を有する充放電電流で充放電を行うと、
電極のより電流の流れやすい電位部分、すなわち、電極
材料の滑落物や導電性の異物が付着し微小に短絡してい
る部分や使用中に短絡となり得る部分に電流が集中し、
この集中した部分で短絡が生じるようになる。この結
果、その後の測定工程で短絡が検知できる。
In the charge / discharge step, the state of charge is the state of charge (SO
It is preferable that the charging and discharging be performed with a charging and discharging current having a charge range of at least 3 C, which is a voltage range that at least straddles a range where C) is 20% or less. That is, when charging and discharging are performed with a charging and discharging current having a charge of 3 C or more in this range,
The current concentrates on the potential portion of the electrode where the current flows more easily, that is, the portion where the sliding material of the electrode material or the conductive foreign matter adheres and the portion is short-circuited minutely or the portion that can be short-circuited during use,
A short circuit occurs at this concentrated portion. As a result, a short circuit can be detected in the subsequent measurement process.

【0044】充放電工程は、充電状態が充電深度(SO
C)が80%以上となる範囲を少なくともまたがった電
圧範囲であり、かつ3C以上の電荷を有する充放電電流
で充放電を行うことが好ましい。すなわち、この範囲で
3C以上の電荷を有する充放電電流で充放電を行うと、
電極のより電流の流れやすい電位部分、すなわち、電極
材料の滑落物や導電性の異物が付着し微小に短絡してい
る部分や使用中に短絡となり得る部分に電流が集中し、
この集中した部分で短絡が生じるようになる。この結
果、その後の測定工程で短絡が検知できる。
In the charging / discharging step, the state of charge is the state of charge (SO
It is preferable that the charging / discharging be performed with a charging / discharging current having a charge of 3 C or more, which is a voltage range at least straddling the range where C) is 80% or more. That is, when charge / discharge is performed with a charge / discharge current having a charge of 3 C or more in this range,
The current concentrates on the potential portion of the electrode where the current flows more easily, that is, the portion where the sliding material of the electrode material or the conductive foreign matter adheres and the portion is short-circuited minutely or the portion that can be short-circuited during use,
A short circuit occurs at this concentrated portion. As a result, a short circuit can be detected in the subsequent measurement process.

【0045】二次電池が、正極にリチウムニッケル酸化
物を有し、充放電工程が、Li金属に対する正極の電位
が3.7〜3.9Vの範囲を少なくともまたがった電圧
範囲であり、かつ3C以上の電荷を有する充放電電流で
充放電を行うことが好ましい。すなわち、Li金属に対
する正極の電位が3.7〜3.9Vの範囲は、リチウム
ニッケル酸化物が六方晶と単斜晶の2相が混在する範囲
であり、電極内で電位の偏りが存在する範囲である。こ
の範囲で3C以上の電荷を有する充放電電流で充放電を
行うと、電極のより電流の流れやすい電位部分、すなわ
ち、電極材料の滑落物や導電性の異物が付着し微小に短
絡している部分や使用中に短絡となり得る部分に電流が
集中し、この集中した部分で短絡が生じるようになる。
この結果、その後の測定工程で短絡が検知できる。
The secondary battery has a lithium nickel oxide in the positive electrode, and the charge / discharge step is a voltage range in which the potential of the positive electrode with respect to Li metal is at least over a range of 3.7 to 3.9 V; It is preferable to perform charging and discharging with a charging and discharging current having the above-mentioned charge. That is, the potential of the positive electrode with respect to Li metal in the range of 3.7 to 3.9 V is a range in which lithium nickel oxide has two phases of hexagonal and monoclinic, and there is a potential bias in the electrode. Range. When charge / discharge is performed with a charge / discharge current having an electric charge of 3 C or more in this range, a potential portion where the current flows more easily in the electrode, that is, a sliding object of the electrode material or a conductive foreign matter is attached and short-circuited minutely. The current concentrates on a portion or a portion that can be short-circuited during use, and a short-circuit occurs at the concentrated portion.
As a result, a short circuit can be detected in the subsequent measurement process.

【0046】二次電池が、正極にリチウムニッケル酸化
物を、負極にカーボンを、有し、充放電工程が、二次電
池の電池電圧が0.8〜3.9Vの範囲を少なくともま
たがった電圧範囲であり、かつ3C以上の電荷を有する
充放電電流で充放電を行うことが好ましい。すなわち、
二次電池の電池電圧が0.8〜3.9Vの範囲は、リチ
ウムニッケル酸化物が六方晶と単斜晶の2相が混在する
範囲であり、電極内で電位の偏りが存在する範囲であ
る。この範囲で3C以上の電荷を有する充放電電流で充
放電を行うと、電極のより電流の流れやすい電位部分、
すなわち、電極材料の滑落物や導電性の異物が付着し微
小に短絡している部分や使用中に短絡となり得る部分に
電流が集中し、この集中した部分で短絡が生じるように
なる。この結果、その後の測定工程で短絡が検知でき
る。
The secondary battery has a lithium nickel oxide for the positive electrode and carbon for the negative electrode, and the charging and discharging step is performed so that the battery voltage of the secondary battery at least straddles the range of 0.8 to 3.9 V. It is preferable to perform charging / discharging with a charging / discharging current having a range of 3C or more. That is,
The range of the battery voltage of the secondary battery in the range of 0.8 to 3.9 V is a range in which lithium nickel oxide has two phases of hexagonal and monoclinic, and a range in which a potential bias exists in the electrode. is there. When charge / discharge is performed with a charge / discharge current having a charge of 3 C or more in this range, a potential portion where the current flows more easily in the electrode,
In other words, current concentrates on a portion where a slip-off object of the electrode material or a conductive foreign substance is attached and a short circuit occurs, or a portion where a short circuit may occur during use, and a short circuit occurs at the concentrated portion. As a result, a short circuit can be detected in the subsequent measurement process.

【0047】二次電池が、正極にリチウムマンガン酸化
物を有し、充放電工程が、Li金属に対する正極の電位
が3.9〜4.1Vの範囲を少なくともまたがった電圧
範囲であり、かつ3C以上の電荷を有する充放電電流で
充放電を行うことが好ましい。すなわち、Li金属に対
する正極の電位が3.9〜4.1Vの範囲は、リチウム
マンガン酸化物が六方晶と単斜晶の2相が混在する範囲
であり、電極内で電位の偏りが存在する範囲である。こ
の範囲で3C以上の電荷を有する充放電電流で充放電を
行うと、電極のより電流の流れやすい電位部分、すなわ
ち、電極材料の滑落物や導電性の異物が付着し微小に短
絡している部分や使用中に短絡となり得る部分に電流が
集中し、この集中した部分で短絡が生じるようになる。
この結果、その後の測定工程で短絡が検知できる。
The secondary battery has a lithium manganese oxide in the positive electrode, and the charge / discharge step is a voltage range in which the potential of the positive electrode with respect to Li metal is at least 3.9 to 4.1 V, and 3 C It is preferable to perform charging and discharging with a charging and discharging current having the above-mentioned charge. That is, the range of the potential of the positive electrode with respect to Li metal of 3.9 to 4.1 V is a range in which the lithium manganese oxide has two phases of hexagonal system and monoclinic system, and a potential bias exists in the electrode. Range. When charge / discharge is performed with a charge / discharge current having an electric charge of 3 C or more in this range, a potential portion where the current flows more easily in the electrode, that is, a sliding object of the electrode material or a conductive foreign matter is attached and short-circuited minutely. The current concentrates on a portion or a portion that can be short-circuited during use, and a short-circuit occurs at the concentrated portion.
As a result, a short circuit can be detected in the subsequent measurement process.

【0048】二次電池が、正極にリチウムマンガン酸化
物を、負極にカーボンを、有し、充放電工程が、二次電
池の電池電圧が3.6〜4.1Vの範囲を少なくともま
たがった電圧範囲であり、かつ3C以上の電荷を有する
充放電電流で充放電を行うことが好ましい。すなわち、
二次電池の電池電圧が3.6〜4.1Vの範囲は、リチ
ウムニッケル酸化物が六方晶と単斜晶の2相が混在する
範囲であり、電極内で電位の偏りが存在する範囲であ
る。この範囲で3C以上の電荷を有する充放電電流で充
放電を行うと、電極のより電流の流れやすい電位部分、
すなわち、電極材料の滑落物や導電性の異物が付着し微
小に短絡している部分や使用中に短絡となり得る部分に
電流が集中し、この集中した部分で短絡が生じるように
なる。この結果、その後の測定工程で短絡が検知でき
る。
The secondary battery has a lithium manganese oxide for the positive electrode and carbon for the negative electrode, and the charge and discharge step is such that the battery voltage of the secondary battery at least straddles the range of 3.6 to 4.1 V. It is preferable to perform charging / discharging with a charging / discharging current having a range of 3C or more. That is,
The range of the battery voltage of the secondary battery in the range of 3.6 to 4.1 V is a range in which lithium nickel oxide has two phases of hexagonal system and monoclinic system, and a range in which a potential bias exists in the electrode. is there. When charge / discharge is performed with a charge / discharge current having a charge of 3 C or more in this range, a potential portion where the current flows more easily in the electrode,
In other words, current concentrates on a portion where a slip-off object of the electrode material or a conductive foreign substance is attached and a short circuit occurs, or a portion where a short circuit may occur during use, and a short circuit occurs at the concentrated portion. As a result, a short circuit can be detected in the subsequent measurement process.

【0049】充放電工程は、10℃以下で施されること
が好ましい。充放電工程が10℃以下で施されること
で、電解液の抵抗が高くなる、電解液と電極材料との反
応面積が減少することから、より局所的な電流が流れや
すくなり、短絡が生じやすくなる。この結果、その後の
測定工程で短絡が検知できるようになる。
The charge / discharge step is preferably performed at 10 ° C. or lower. When the charge and discharge process is performed at a temperature of 10 ° C. or less, the resistance of the electrolytic solution increases, and the reaction area between the electrolytic solution and the electrode material decreases. It will be easier. As a result, a short circuit can be detected in the subsequent measurement process.

【0050】測定工程は、25℃以上で施されることが
好ましい。すなわち、測定工程が25℃以上で施される
ことで、二次電池の自己放電が促進され、電池特性の変
化がより促進される。この結果、測定工程において、電
池特性の変化がより検知しやすくなる。なお、測定工程
の温度の上限は、二次電池が過熱されることにより損傷
を生じない程度の温度でよい。
The measuring step is preferably performed at 25 ° C. or higher. That is, by performing the measurement process at 25 ° C. or higher, self-discharge of the secondary battery is promoted, and the change in battery characteristics is further promoted. As a result, in the measurement step, a change in battery characteristics is more easily detected. Note that the upper limit of the temperature in the measurement step may be a temperature that does not cause damage due to overheating of the secondary battery.

【0051】本発明の二次電池の検査方法は、充放電工
程において初期充放電より大きな電流値を有する充放電
電流で充放電を行うことで電池内の微小な短絡箇所およ
び将来短絡につながる可能性がある部分を短絡させ、こ
の短絡による電池特性の低下を測定工程において測定す
ることで、短時間で二次電池の検査を行うことができ
る。
According to the inspection method of the secondary battery of the present invention, by performing charging / discharging with a charging / discharging current having a current value larger than the initial charging / discharging in the charging / discharging process, a minute short-circuit portion in the battery and a short-circuit in the future may be caused. By short-circuiting a potential part and measuring the deterioration of the battery characteristics due to the short-circuit in the measuring step, the inspection of the secondary battery can be performed in a short time.

【0052】[0052]

【実施例】以下、実施例を用いて本発明を説明する。The present invention will be described below with reference to examples.

【0053】本発明の実施例として、正極活物質にリチ
ウムニッケル酸化物、負極活物質にグラファイトを用い
た18650サイズのリチウム二次電池を製造し、充放
電工程及び測定工程を施した。
As an example of the present invention, a 18650 size lithium secondary battery using lithium nickel oxide as a positive electrode active material and graphite as a negative electrode active material was manufactured, and subjected to a charge / discharge step and a measurement step.

【0054】(リチウム二次電池の製造)まず、正極活
物質としてLiNi0.8Co0.15Al0.052を85重量
部、導電剤としてカーボンを10重量部、結着剤として
PVDFを5重量部の配合でN−メチル−2−ピロリド
ン(NMP)溶液に溶解させ、正極活物質ペーストを作
製した。このペーストをコンマコータにてアルミ箔の両
面に塗布した。
(Production of lithium secondary battery) First, 85 parts by weight of LiNi 0.8 Co 0.15 Al 0.05 O 2 as a positive electrode active material, 10 parts by weight of carbon as a conductive agent, and 5 parts by weight of PVDF as a binder Was dissolved in an N-methyl-2-pyrrolidone (NMP) solution to prepare a positive electrode active material paste. This paste was applied to both sides of an aluminum foil using a comma coater.

【0055】次に、この電極をロールプレス機に通して
荷重をかけ、電極密度を向上させた正極板を作成した。
その後、この正極板は、電極面積が900cm2となる
ように所定の大きさにカットされ、電流取り出し用のリ
ードタブ溶接部となる部分の電極合剤を掻き取ることで
シート状正極が製造された。
Next, a load was applied to the electrode by passing it through a roll press machine to prepare a positive electrode plate having an improved electrode density.
Thereafter, the positive electrode plate was cut into a predetermined size so that the electrode area became 900 cm 2, and a sheet-shaped positive electrode was manufactured by scraping off the electrode mixture at a portion to be a lead tab weld for current extraction. .

【0056】つづいて、負極活物質としてグラファイト
を92.5重量部、結着剤としてPVDFを7.5重量
部、をNMP溶液に溶解させ、負極活物質ペーストを作
製した。このペーストを、正極と同様にコンマコータを
用いて銅箔表面の両面に塗布した。その後、このペース
トが塗布された銅箔をロールプレス機に通して荷重をか
け、電極密度を上昇させた負極板を作製した。
Subsequently, 92.5 parts by weight of graphite as a negative electrode active material and 7.5 parts by weight of PVDF as a binder were dissolved in an NMP solution to prepare a negative electrode active material paste. This paste was applied to both surfaces of the copper foil surface using a comma coater in the same manner as the positive electrode. Thereafter, the copper foil to which the paste was applied was passed through a roll press to apply a load, thereby producing a negative electrode plate having an increased electrode density.

【0057】次に、この負極板を所定の大きさにカット
し、電流取り出し用のリードタブ溶接部となる部分の電
極合剤を掻き取ることでシート状負極が製造された。
Next, the negative electrode plate was cut into a predetermined size, and the electrode mixture was scraped off at a portion to be a lead tab welding portion for extracting a current, thereby producing a sheet-shaped negative electrode.

【0058】つづいて、シート状正極およびシート状負
極を、厚さが25μmのポリエチレン製の微孔フィルム
よりなるセパレータを介した状態で巻回させて、巻回型
電極体を形成した。得られた巻回型電極体は、ケースの
内部に挿入され、ケース内に保持された。このとき、シ
ート状正極およびシート状負極のリードタブ溶接部に一
端が溶接された集電リードは、ケースの正極端子あるい
は負極端子に接合された。
Subsequently, the sheet-shaped positive electrode and the sheet-shaped negative electrode were wound with a separator made of a 25 μm-thick polyethylene microporous film interposed therebetween to form a wound electrode body. The obtained wound electrode body was inserted into the case and held in the case. At this time, the current collecting lead having one end welded to the lead tab welding portion of the sheet-shaped positive electrode and the sheet-shaped negative electrode was joined to the positive electrode terminal or the negative electrode terminal of the case.

【0059】その後、30vol%のエチレンカーボネ
ートと70vol%のジエチルカーボネートとの混合溶
媒に、電解質であるLiPF6が1mol/Lとなるよ
うに溶解した電解液が、巻回型電極体が保持されたケー
ス内に注入され、ケースが密閉、封止された。
Thereafter, the wound electrode body was held by an electrolytic solution obtained by dissolving LiPF 6 as an electrolyte at a concentration of 1 mol / L in a mixed solvent of 30 vol% ethylene carbonate and 70 vol% diethyl carbonate. It was injected into the case, and the case was hermetically sealed.

【0060】以上の手順により、φ18mm、軸方向の
長さ65mmの円筒形リチウム二次電池が製造された。
なお、通常のリチウム二次電池の製作においては、通常
電極の切断や、プレス等の後に、清掃、異物除去を行う
が、本実施例のリチウム二次電池においては、清掃、異
物除去は行わなかった。
By the above procedure, a cylindrical lithium secondary battery having a diameter of 18 mm and an axial length of 65 mm was manufactured.
In the manufacture of a normal lithium secondary battery, cleaning and foreign matter removal are usually performed after cutting or pressing an electrode, but in the lithium secondary battery of this embodiment, cleaning and foreign matter removal are not performed. Was.

【0061】また、本実施例において、電池の1Cは1
000mAとした。上記手段で製作したリチウム二次電
池を、実施例および比較例に示された条件で初期充放電
処理および検査を行った。
In this embodiment, 1 C of the battery is 1
000 mA. The lithium secondary battery manufactured by the above-mentioned means was subjected to initial charge / discharge treatment and inspection under the conditions shown in Examples and Comparative Examples.

【0062】(実施例1)まず、実施例の電池に、初期
充放電処理を施した。
Example 1 First, the battery of the example was subjected to an initial charge / discharge treatment.

【0063】初期充放電処理は、5サイクルの充放電を
行うことでなされた。詳しくは、1サイクル目は、定電
流−定電圧充電(電流1/4C、電圧4.1V、充電時
間6H)、定電流放電(電流1/3C、電圧3Vまで)
の充放電を、2〜3サイクル目は、定電流−定電圧充電
(電流1C、電圧4.1V、充電時間2.5H)、定電
流放電(電流1C、電圧3Vまで)を、4サイクル目
は、定電流−定電圧充電(電流1C、電圧4.1V、充
電時間2.5H)、定電流放電(電流1/3C、電圧3
Vまで)を、5サイクル目は、定電流−定電圧充電(電
流1C、電圧4.1V、充電時間2.5H)、定電流放
電(電流1/3C、電圧3Vまで)を行った。なお、そ
れぞれの充放電後には、10分間の無負荷期間を設け
た。4サイクル目放電後電池の開回路電圧は約3.1V
を示した。
The initial charge / discharge process was performed by performing charge / discharge of 5 cycles. Specifically, in the first cycle, constant current-constant voltage charging (current 1 / 4C, voltage 4.1V, charging time 6H), constant current discharging (current 1 / 3C, voltage 3V)
Charge and discharge in the second and third cycles, constant current-constant voltage charge (current 1C, voltage 4.1V, charge time 2.5H), constant current discharge (current 1C, voltage 3V) in the fourth cycle Are constant current-constant voltage charging (current 1C, voltage 4.1V, charging time 2.5H), constant current discharging (current 1 / 3C, voltage 3)
In the fifth cycle, constant current-constant voltage charging (current 1 C, voltage 4.1 V, charging time 2.5 H) and constant current discharging (current 1/3 C, voltage 3 V) were performed. After each charge and discharge, a no-load period of 10 minutes was provided. After discharging the fourth cycle, the open circuit voltage of the battery is about 3.1 V
showed that.

【0064】上述の初期充放電処理が施された実施例の
リチウム二次電池を、本発明の検査方法で検査した。
The lithium secondary battery of the embodiment which had been subjected to the initial charge / discharge treatment described above was inspected by the inspection method of the present invention.

【0065】詳しくは、リチウム二次電池に、6Cの大
電流で2分間充電した後、1Cで定電流−定電圧充電
(電流1C、電圧3.75V、充電時間6H)の処理を
施した。なお、6Cの大電流で2分間充電した後の開回
路電圧を測定すると3.47Vとなり、SOC(充電震
度)は約20%を示した。また、3.75Vの充電によ
りSOCは約60%を示した。
Specifically, the lithium secondary battery was charged with a large current of 6 C for 2 minutes, and then subjected to a constant current-constant voltage charge (current 1 C, voltage 3.75 V, charge time 6 H) treatment at 1 C. The open circuit voltage measured after charging with a large current of 6 C for 2 minutes was 3.47 V, and the SOC (charge seismic intensity) was about 20%. In addition, the SOC showed about 60% by charging at 3.75 V.

【0066】この充放電が施されたリチウム二次電池3
0個を25℃の恒温槽内に放置し、放置時間と電池電圧
を測定した。測定結果を表1および図1に示した。
The charged and discharged lithium secondary battery 3
0 were left in a constant temperature bath at 25 ° C., and the standing time and the battery voltage were measured. The measurement results are shown in Table 1 and FIG.

【0067】なお、電池電圧の測定は、デジタルマルチ
メータ(アドバンテスト)により電池の開回路電圧を測
定した。
The battery voltage was measured using a digital multimeter (Advantest) to measure the open circuit voltage of the battery.

【0068】また、比較例1として、以下に示した初期
充放電工程を施した実施例の電池を、従来の検査方法で
検査した。
Further, as Comparative Example 1, the battery of the example subjected to the following initial charge / discharge process was inspected by a conventional inspection method.

【0069】(比較例1)まず、実施例の電池に、初期
充放電処理を施した。
(Comparative Example 1) First, the batteries of the examples were subjected to an initial charge / discharge treatment.

【0070】初期充放電処理は、4サイクルの充放電を
行うことでなされた。詳しくは、1サイクル目は、定電
流−定電圧充電(電流1/4C、電圧4.1V、充電時
間6H)、定電流放電(電流1/3C、電圧3Vまで)
を、2〜3サイクル目は、定電流−定電圧充電(電流1
C、電圧4.1V、充電時間2.5H)、定電流放電
(電流1C、電圧3Vまで)を、4サイクル目は、定電
流−定電圧充電(電流1C、電圧4.1V、充電時間
2.5H)、定電流放電(電流1C、電圧3Vまで)の
処理を施した。なお、それぞれの充放電後には、10分
間の無負荷期間を設けた。また、4サイクル目の放電後
の電池の開回路電圧は約3.1Vを示した。
The initial charge / discharge process was performed by performing charge / discharge of four cycles. Specifically, in the first cycle, constant current-constant voltage charging (current 1 / 4C, voltage 4.1V, charging time 6H), constant current discharging (current 1 / 3C, voltage 3V)
In the second and third cycles, constant current-constant voltage charging (current 1
C, voltage 4.1 V, charging time 2.5 H), constant current discharge (current 1 C, voltage 3 V), the fourth cycle, constant current-constant voltage charging (current 1 C, voltage 4.1 V, charging time 2) .5H) and constant current discharge (current 1C, voltage 3V). After each charge and discharge, a no-load period of 10 minutes was provided. The open circuit voltage of the battery after the discharge in the fourth cycle was about 3.1 V.

【0071】上述の初期充放電処理が施された実施例の
リチウム二次電池を、従来の二次電池の検査方法で検査
した。
The lithium secondary battery of the embodiment which had been subjected to the above-mentioned initial charge / discharge treatment was inspected by a conventional secondary battery inspection method.

【0072】詳しくは、初期充放電処理が施されたリチ
ウム二次電池に、1Cで定電流−定電圧充電(電流1
C、電圧3.75V、充電時間1.5H)を行い、実施
例1の検査方法と同様に、30個の電池を25℃の恒温
槽内に放置し、放置時間と電池電圧を測定した。この電
池電圧の測定は、実施例1と同様の手段で行われた。測
定結果を表1および図1にあわせて示した。
More specifically, a constant current-constant voltage charge (current 1
C, a voltage of 3.75 V and a charging time of 1.5 H), and 30 batteries were left in a thermostat at 25 ° C. in the same manner as in the inspection method of Example 1, and the time and battery voltage were measured. The measurement of the battery voltage was performed by the same means as in Example 1. The measurement results are shown in Table 1 and FIG.

【0073】[0073]

【表1】 [Table 1]

【0074】表1および図1より、実施例1の検査方法
を用いるた電池は、30セル中3セルの電池に、急激な
電圧の低下が見られ、その電圧の低下量は、約3日で8
0mV以上であった。すなわち、これら電池は、6Cの
大電流で2分間充電したことにより、電池内の微小な短
絡箇所および将来短絡につながる可能性がある部分が強
制的に短絡させられ、電圧が低下している。また、この
3セル以外の27セルの電池は、30日以上放置して
も、電池電圧に大きな低下は見られず、リチウム二次電
池として十分な性能を示す。
As shown in Table 1 and FIG. 1, in the battery using the test method of Example 1, a sharp decrease in voltage was observed in three out of thirty cells, and the amount of decrease in the voltage was about three days. At 8
It was 0 mV or more. That is, when these batteries are charged with a large current of 6 C for 2 minutes, short-circuited portions in the batteries and portions that may be short-circuited in the future are forcibly short-circuited, and the voltage is reduced. In addition, a battery of 27 cells other than the three cells does not show a significant decrease in battery voltage even after being left for 30 days or more, and shows sufficient performance as a lithium secondary battery.

【0075】また、比較例1の条件で検査を行った電池
は、電圧が徐々に低下した電池が30セル中2セル存在
した。これらの電池は、電圧の低下は微量であるが、3
0日で約100mVも電池電圧が低下した。すなわち、
放置されたことで、電池内の微小な短絡箇所および将来
短絡につながる可能性がある部分が短絡を生じ、電池電
圧が低下した。また、この2セル以外の28セルの電池
は、30日以上放置しても、電池電圧に大きな低下は見
られず、リチウム二次電池として十分な性能を示した。
In the batteries tested under the conditions of Comparative Example 1, two out of thirty cells whose voltage gradually decreased existed. These batteries have only a small voltage drop,
On day 0, the battery voltage dropped by about 100 mV. That is,
As a result of being left unattended, a short-circuit portion in the battery and a portion likely to be short-circuited in the future caused a short-circuit, and the battery voltage dropped. In addition, a battery of 28 cells other than the two cells did not show a significant decrease in battery voltage even after being left for 30 days or more, and showed sufficient performance as a lithium secondary battery.

【0076】以上のことから、従来の検査方法である比
較例1の検査方法ではおよそ30日と長時間を有する
が、本発明の検査方法である実施例1の検査方法を用い
ることで、良品電池と不良品電池を短時間で選別するこ
とができることがわかる。
From the above, the inspection method of Comparative Example 1, which is the conventional inspection method, has a long time of about 30 days, but using the inspection method of Example 1 which is the inspection method of the present invention, It can be seen that batteries and defective batteries can be sorted in a short time.

【0077】(実施例2)まず、実施例の電池に、初期
充放電処理を施した。
(Example 2) First, the battery of the example was subjected to an initial charge / discharge treatment.

【0078】初期充放電処理は、実施例1の4サイクル
目までの初期充放電と同様な充放電を行うことでなされ
た。詳しくは、1サイクル目は、定電流−定電圧充電
(電流1/4C、電圧4.1V、充電時間6H)、定電
流放電(電流1/3C、電圧3Vまで)の充放電を、2
〜3サイクル目は、定電流−定電圧充電(電流1C、電
圧4.1V、充電時間2.5H)、定電流放電(電流1
C、電圧3Vまで)を、4サイクル目は、定電流−定電
圧充電(電流1C、電圧4.1V、充電時間2.5H)
を行った。なお、それぞれの充放電後には、10分間の
無負荷期間を設けた。4サイクル目放電後電池の開回路
電圧は約3.1Vを示した。
The initial charge / discharge treatment was performed by performing the same charge / discharge as the initial charge / discharge up to the fourth cycle in Example 1. Specifically, in the first cycle, constant-current-constant-voltage charging (current 1 / 4C, voltage 4.1V, charging time 6H), constant-current discharging (current 1 / 3C, voltage 3V) is defined as 2
In the third cycle, constant current-constant voltage charging (current 1 C, voltage 4.1 V, charging time 2.5 H), constant current discharging (current 1
C, voltage up to 3 V), and in the fourth cycle, constant current-constant voltage charging (current 1 C, voltage 4.1 V, charging time 2.5 H)
Was done. After each charge and discharge, a no-load period of 10 minutes was provided. After the discharge in the fourth cycle, the open circuit voltage of the battery was about 3.1 V.

【0079】上述の初期充放電処理が施された実施例の
リチウム二次電池を、本発明の検査方法で検査した。
The lithium secondary battery of the embodiment which had been subjected to the above-mentioned initial charge / discharge treatment was inspected by the inspection method of the present invention.

【0080】詳しくは、初期充放電処理が施されたリチ
ウム二次電池に、1Cで定電流−定電圧充電(電流1
C、電圧3.8V(SOC70%)、充電時間1.5
H)を行った後、6Cの大電流で2分間充電し、1Cで
3Vまで定電流放電後、1Cで定電流−定電圧充電(電
流1C、電圧3.75V、充電時間1H)を行った。
In detail, a constant current-constant voltage charge (current 1
C, voltage 3.8 V (SOC 70%), charging time 1.5
H), charged with a large current of 6 C for 2 minutes, discharged at a constant current of 1 C to 3 V, and then charged at a constant current-constant voltage at 1 C (current 1 C, voltage 3.75 V, charging time 1 H). .

【0081】なお、6Cの大電流で2分間充電した後の
開回路電圧を測定すると3.98Vとなり、SOCは約
90%を示した。この電池は、約3.8〜3.98Vの
電圧範囲においては電池電圧の変化が生じ、電圧の変化
をΔE/ΔQ(E:電池電圧、Q:リチウム金属酸化物
中のLi移動量)で計算すると、この電圧範囲では、
1.1〜1.7であった。
When the open circuit voltage after charging with a large current of 6 C for 2 minutes was measured, it was 3.98 V, and the SOC was about 90%. In this battery, a change in the battery voltage occurs in a voltage range of about 3.8 to 3.98 V, and the change in the voltage is represented by ΔE / ΔQ (E: battery voltage, Q: Li movement amount in lithium metal oxide). Calculating, in this voltage range,
1.1 to 1.7.

【0082】この充放電が施されたリチウム二次電池3
0個を25℃の恒温槽内に放置し、放置時間と電池電圧
を測定した。測定結果を表1にあわせて示した。
The charged and discharged lithium secondary battery 3
0 were left in a constant temperature bath at 25 ° C., and the standing time and the battery voltage were measured. The measurement results are shown in Table 1.

【0083】(比較例2)まず、実施例の電池に、初期
充放電処理を施した。
(Comparative Example 2) First, the batteries of the examples were subjected to an initial charge / discharge treatment.

【0084】初期充放電処理は、実施例1の4サイクル
目までの初期充放電と同様な充放電を行うことでなされ
た。詳しくは、1サイクル目は、定電流−定電圧充電
(電流1/4C、電圧4.1V、充電時間6H)、定電
流放電(電流1/3C、電圧3Vまで)の充放電を、2
〜3サイクル目は、定電流−定電圧充電(電流1C、電
圧4.1V、充電時間2.5H)、定電流放電(電流1
C、電圧3Vまで)を、4サイクル目は、定電流−定電
圧充電(電流1C、電圧4.1V、充電時間2.5H)
を行った。なお、それぞれの充放電後には、10分間の
無負荷期間を設けた。4サイクル目放電後電池の開回路
電圧は約3.1Vを示した。
The initial charging / discharging process was performed by performing the same charging / discharging as the initial charging / discharging up to the fourth cycle in Example 1. Specifically, in the first cycle, constant-current-constant-voltage charging (current 1 / 4C, voltage 4.1V, charging time 6H), constant-current discharging (current 1 / 3C, voltage 3V) is defined as 2
In the third cycle, constant current-constant voltage charging (current 1 C, voltage 4.1 V, charging time 2.5 H), constant current discharging (current 1
C, voltage up to 3 V), and in the fourth cycle, constant current-constant voltage charging (current 1 C, voltage 4.1 V, charging time 2.5 H)
Was done. After each charge and discharge, a no-load period of 10 minutes was provided. After the discharge in the fourth cycle, the open circuit voltage of the battery was about 3.1 V.

【0085】上述の初期充放電処理が施された実施例の
リチウム二次電池を、以下に示した検査方法で検査し
た。
The lithium secondary battery of the embodiment which had been subjected to the above initial charge / discharge treatment was inspected by the following inspection method.

【0086】詳しくは、初期充放電処理が施されたリチ
ウム二次電池に、1Cで定電流−定電圧充電(電流1
C、電圧3.6V(SOC60%)、充電時間1H)を
行った後、6Cの大電流で2分間充電し、1Cで定電流
−定電圧充電(電流1C、電圧3.75V、充電時間1
H)を行った。この電池を25℃の恒温槽内に放置し、
放置時間と電圧を測定した。なお、6Cの大電流で2分
間充電した後の開回路電圧を測定すると3.75Vであ
り、SOCは約60%を示した。
More specifically, a constant current-constant voltage charge (current 1
C, a voltage of 3.6 V (SOC 60%), a charging time of 1 H), a 2 minute charge with a large current of 6 C, and a constant current-constant voltage charging at 1 C (current 1 C, voltage 3.75 V, charging time 1).
H) was performed. Leave this battery in a 25 ° C constant temperature bath,
The standing time and voltage were measured. The open circuit voltage after charging with a large current of 6 C for 2 minutes was 3.75 V, and the SOC was about 60%.

【0087】この電池は、約3.6〜3.8Vの電圧範
囲においては電池電圧の変化は小さく、電圧の変化をΔ
E/ΔQ(E:電池電圧、Q:リチウム金属酸化物中の
Li移動量)で計算すると、この電圧範囲では、1.0
未満であった。
In this battery, the change in the battery voltage is small in the voltage range of about 3.6 to 3.8 V, and the change in the voltage is Δ
Calculated from E / ΔQ (E: battery voltage, Q: Li movement amount in lithium metal oxide), this voltage range is 1.0
Was less than.

【0088】この充放電が施されたリチウム二次電池3
0個を25℃の恒温槽内に放置し、放置時間と電池電圧
を測定した。測定結果を表1に示した。
The charged / discharged lithium secondary battery 3
0 were left in a constant temperature bath at 25 ° C., and the standing time and the battery voltage were measured. Table 1 shows the measurement results.

【0089】表1より、実施例2の検査方法を用いた電
池は、30セル中4セルの電池に、急激な電圧の低下が
見られ、その電圧の低下量は、約3日で80mV以上で
あった。また、この4セル以外の26セルの電池は、3
0日以上放置しても、電池電圧に大きな低下は見られ
ず、リチウム二次電池として十分な性能を示すことがわ
かる。
As shown in Table 1, the batteries using the test method of Example 2 showed a sharp drop in the voltage of 4 cells out of 30 cells, and the voltage drop was 80 mV or more in about 3 days. Met. The 26-cell battery other than the 4-cell battery has a capacity of 3
Even when left for more than 0 days, no significant decrease in battery voltage was observed, indicating that the lithium secondary battery exhibited sufficient performance.

【0090】また、比較例2の条件で検査を行った電池
は、電圧の低下量が約3日で80mV以上低下する電池
が30セル中1セル存在したが、電圧が徐々に低下して
くる電池も30セル中2セル存在した。また、この3セ
ル以外の27セルの電池は、30日以上放置しても、電
池電圧に大きな低下は見られず、リチウム二次電池とし
て十分な性能を示した。電圧の低下量が約3日で80m
V以上低下する電池が30セル中1セル存在したが、電
圧が徐々に低下してくる電池も30セル中2セル存在し
た。
In the batteries tested under the conditions of Comparative Example 2, one out of every 30 cells had a voltage drop of 80 mV or more in about 3 days, but the voltage gradually dropped. There were also 2 cells out of 30 cells. In addition, a battery of 27 cells other than the three cells did not show a significant decrease in battery voltage even after being left for 30 days or more, and showed sufficient performance as a lithium secondary battery. Voltage drop is 80m in about 3 days
Although one cell out of 30 cells had a voltage drop of V or more, there were also two cells out of 30 cells whose voltage gradually decreased.

【0091】以上のことから、ΔE/ΔQが1.0以上
の電圧範囲において、大電流を流すことで、短時間で良
品電池と不良品電池と祖検査できることがわかった。
From the above, it was found that a good battery and a defective battery can be inspected in a short time by applying a large current in a voltage range where ΔE / ΔQ is 1.0 or more.

【0092】(実施例3)まず、実施例の電池に、初期
充放電処理を施した。
(Example 3) First, the battery of the example was subjected to an initial charge / discharge treatment.

【0093】初期充放電処理は、実施例1の4サイクル
目までの初期充放電と同様な充放電を行うことでなされ
た。詳しくは、1サイクル目は、定電流−定電圧充電
(電流1/4C、電圧4.1V、充電時間6H)、定電
流放電(電流1/3C、電圧3Vまで)の充放電を、2
〜3サイクル目は、定電流−定電圧充電(電流1C、電
圧4.1V、充電時間2.5H)、定電流放電(電流1
C、電圧3Vまで)を、4サイクル目は、定電流−定電
圧充電(電流1C、電圧4.1V、充電時間2.5H)
を行った。なお、それぞれの充放電後には、10分間の
無負荷期間を設けた。4サイクル目放電後電池の開回路
電圧は約3.1Vを示した。
The initial charge / discharge treatment was performed by performing the same charge / discharge as the initial charge / discharge up to the fourth cycle in Example 1. Specifically, in the first cycle, constant-current-constant-voltage charging (current 1 / 4C, voltage 4.1V, charging time 6H), constant-current discharging (current 1 / 3C, voltage 3V) is defined as 2
In the third cycle, constant current-constant voltage charging (current 1 C, voltage 4.1 V, charging time 2.5 H), constant current discharging (current 1
C, voltage up to 3 V), and in the fourth cycle, constant current-constant voltage charging (current 1 C, voltage 4.1 V, charging time 2.5 H)
Was done. After each charge and discharge, a no-load period of 10 minutes was provided. After the discharge in the fourth cycle, the open circuit voltage of the battery was about 3.1 V.

【0094】上述の初期充放電処理が施された実施例の
リチウム二次電池を、以下に示した各条件での充電を行
う検査方法で検査した。
The lithium secondary battery of the embodiment, which had been subjected to the above-mentioned initial charge / discharge treatment, was inspected by an inspection method for charging under the following conditions.

【0095】詳しくは、初期充放電処理が施されたリチ
ウム二次電池に、2Cで6分間、4Cで4分間、6Cで
2分間、12Cで1分間の大電流で充電した後、1Cで
定電流−定電圧充電(電流1C、電圧3.75V、充電
時間1H)を行った。なお、各条件の大電流で充電した
後の開回路電圧は、約3.73V(SOC約60%)を
示した。
More specifically, the lithium secondary battery which has been subjected to the initial charge / discharge treatment is charged with a large current of 2C for 6 minutes, 4C for 4 minutes, 6C for 2 minutes and 12C for 1 minute, and then charged at 1C. Current-constant voltage charging (current 1C, voltage 3.75V, charging time 1H) was performed. The open circuit voltage after charging with a large current under each condition showed about 3.73 V (SOC about 60%).

【0096】各条件の充放電が施されたリチウム二次電
池それぞれ30個を25℃の恒温槽内に放置し、放置時
間と電池電圧を測定した。測定結果を表1にあわせて示
した。
Each of the 30 lithium secondary batteries charged and discharged under each condition was allowed to stand in a constant temperature bath at 25 ° C., and the standing time and battery voltage were measured. The measurement results are shown in Table 1.

【0097】表1より、充電電流が2Cの条件で行った
電池の中には、電圧の低下量が約3日で80mV以上低
下する電池は存在せず、電圧が徐々に低下してくる電池
も30セル中2セル存在した。また、充電電流が4Cの
条件では30セル中2セルが3日で80mV以上低下し
た。電圧が徐々に低下してくる電池も30セル中1セル
存在した。6Cと12Cでは、電圧の低下量が3日で8
0mV以上低下する電池はともに30セル中3セルで、
電圧が徐々に低下する電池はなかった。
From Table 1, it can be seen that among the batteries which were charged under the condition that the charging current was 2 C, there was no battery whose voltage drop decreased by 80 mV or more in about 3 days, and the battery whose voltage gradually dropped There were also 2 cells out of 30 cells. In addition, under the condition that the charging current was 4C, 2 cells out of 30 cells dropped by 80 mV or more in 3 days. There was also one battery out of 30 cells whose voltage gradually decreased. In 6C and 12C, the amount of voltage drop is 8 in 3 days.
The batteries that drop 0 mV or more are 3 out of 30 cells,
There was no battery whose voltage gradually decreased.

【0098】これにより、電流値は大きいほど効果があ
り、好ましくは4C以上必要であることがわかった。
As a result, it was found that the larger the current value was, the more effective it was.

【0099】(実施例4)まず、実施例の電池に、初期
充放電処理を施した。
(Example 4) First, the battery of the example was subjected to an initial charge / discharge treatment.

【0100】初期充放電処理は、実施例1の4サイクル
目までの初期充放電と同様な充放電を行うことでなされ
た。詳しくは、1サイクル目は、定電流−定電圧充電
(電流1/4C、電圧4.1V、充電時間6H)、定電
流放電(電流1/3C、電圧3Vまで)の充放電を、2
〜3サイクル目は、定電流−定電圧充電(電流1C、電
圧4.1V、充電時間2.5H)、定電流放電(電流1
C、電圧3Vまで)を、4サイクル目は、定電流−定電
圧充電(電流1C、電圧4.1V、充電時間2.5H)
を行った。なお、それぞれの充放電後には、10分間の
無負荷期間を設けた。4サイクル目放電後電池の開回路
電圧は約3.1Vを示した。
The initial charging / discharging process was performed by performing the same charging / discharging as the initial charging / discharging up to the fourth cycle in Example 1. Specifically, in the first cycle, charging and discharging of constant current-constant voltage charging (current 1 / 4C, voltage 4.1V, charging time 6H), and constant current discharging (current 1 / 3C, voltage 3V) are performed in two cycles.
In the third cycle, constant current-constant voltage charging (current 1 C, voltage 4.1 V, charging time 2.5 H), constant current discharging (current 1
C, voltage up to 3V), and in the fourth cycle, constant current-constant voltage charging (current 1C, voltage 4.1V, charging time 2.5H)
Was done. After each charge and discharge, a no-load period of 10 minutes was provided. After the discharge in the fourth cycle, the open circuit voltage of the battery was about 3.1 V.

【0101】上述の初期充放電処理が施された実施例の
リチウム二次電池を、以下に示した各条件での充電を行
う検査方法で検査した。
The lithium secondary battery of the embodiment which had been subjected to the above-mentioned initial charge / discharge treatment was inspected by an inspection method for charging under the following conditions.

【0102】詳しくは、初期充放電処理が施されたリチ
ウム二次電池に、6Cで、10秒、20秒、40秒、1
分間、2分間、4分間のそれぞれの時間で充電し、1C
で定電流−定電圧充電(電流1C、電圧3.75V、充
電時間1H)を行った。なお、各条件の大電流で充電し
た後の開回路電圧は、充電時間が10秒の電池では約
3.15V(SOC約1.7%)、20秒の電池では約
3.2V(SOC約3.3%)、40秒の電池では約
3.25V(SOC約6.7%)、1分の電池では約
3.4V(SOC約10%)、2分の電池では約3.5
V(SOC約20%)、4分の電池では約3.6V(S
OC約40%)を示した。
More specifically, a lithium secondary battery that has been subjected to an initial charge / discharge treatment is treated at 6C for 10 seconds, 20 seconds, 40 seconds, and 1 second.
Charge for 2 minutes, 2 minutes and 4 minutes
To perform constant current-constant voltage charging (current 1C, voltage 3.75V, charging time 1H). The open circuit voltage after charging with a large current under each condition is about 3.15 V (about 1.7% SOC) for a battery with a charging time of 10 seconds, and about 3.2 V (SOC about 1.7%) for a battery with a charging time of 20 seconds. 3.3%), about 3.25 V (about 6.7% SOC) for a 40 second battery, about 3.4 V (about 10% SOC) for a 1 minute battery, and about 3.5 for a 2 minute battery.
V (SOC about 20%), about 3.6 V (S
OC about 40%).

【0103】各条件の充放電が施されたリチウム二次電
池それぞれ30個を25℃の恒温槽内に放置し、放置時
間と電池電圧を測定した。測定結果を表1にあわせて示
した。
Each of the 30 lithium secondary batteries charged and discharged under each condition was left in a thermostat at 25 ° C., and the time and battery voltage were measured. The measurement results are shown in Table 1.

【0104】表1より、充電時間が10秒の条件で行っ
た電池の中には、電圧の低下量が約3日で80mV以上
低下する電池が存在しなかったが、充電時間が20秒の
条件では、30セル中2セルが3日で80mV以上低下
した。さらに、40秒、1分間、2分間、4分間で充電
した電池においても、電圧の低下量が3日で80mV以
上低下する電池はともに30セル中2〜4セルで、電圧
が徐々に低下する電池はなかった。これにより、大電流
での充電容量は、電池容量の1/30C以上必要である
ことがわかった。
From Table 1, it was found that among the batteries which were charged under the condition of the charging time of 10 seconds, there was no battery whose voltage drop decreased by 80 mV or more in about 3 days. Under the conditions, 2 cells out of 30 cells dropped by 80 mV or more in 3 days. Further, even in the batteries charged for 40 seconds, 1 minute, 2 minutes, and 4 minutes, the amount of the voltage drop of 80 mV or more in 3 days is 2 to 4 cells out of 30 cells, and the voltage gradually decreases. There were no batteries. Thus, it was found that the charge capacity at a large current was required to be 1/30 C or more of the battery capacity.

【0105】(実施例5)まず、実施例の電池に、初期
充放電処理を施した。
(Example 5) First, the battery of the example was subjected to an initial charge / discharge treatment.

【0106】初期充放電処理は、実施例1の4サイクル
目までの初期充放電と同様な充放電を行うことでなされ
た。詳しくは、1サイクル目は、定電流−定電圧充電
(電流1/4C、電圧4.1V、充電時間6H)、定電
流放電(電流1/3C、電圧3Vまで)の充放電を、2
〜3サイクル目は、定電流−定電圧充電(電流1C、電
圧4.1V、充電時間2.5H)、定電流放電(電流1
C、電圧3Vまで)を、4サイクル目は、定電流−定電
圧充電(電流1C、電圧4.1V、充電時間2.5H)
を行った。なお、それぞれの充放電後には、10分間の
無負荷期間を設けた。4サイクル目放電後電池の開回路
電圧は約3.1Vを示した。
The initial charge / discharge process was performed by performing the same charge / discharge as the initial charge / discharge up to the fourth cycle of the first embodiment. Specifically, in the first cycle, constant-current-constant-voltage charging (current 1 / 4C, voltage 4.1V, charging time 6H), constant-current discharging (current 1 / 3C, voltage 3V) is defined as 2
In the third cycle, constant current-constant voltage charging (current 1 C, voltage 4.1 V, charging time 2.5 H), constant current discharging (current 1
C, voltage up to 3 V), and in the fourth cycle, constant current-constant voltage charging (current 1 C, voltage 4.1 V, charging time 2.5 H)
Was done. After each charge and discharge, a no-load period of 10 minutes was provided. After the discharge in the fourth cycle, the open circuit voltage of the battery was about 3.1 V.

【0107】上述の初期充放電処理が施された実施例の
リチウム二次電池を、以下に示した各条件での充電を行
う検査方法で検査した。
The lithium secondary battery of the embodiment, which had been subjected to the above-mentioned initial charge / discharge treatment, was inspected by an inspection method for charging under the following conditions.

【0108】詳しくは、初期充放電処理が施されたリチ
ウム二次電池に、6Cの定電流で2分間充電した後、6
Cの定電流で2分間の放電、さらに6Cの定電流で2分
間充電を行っ後、1Cで定電流−定電圧充電(電流1
C、電圧3.75V、充電時間1H)を行った。
More specifically, after charging a lithium secondary battery subjected to an initial charge / discharge treatment at a constant current of 6 C for 2 minutes,
After discharging for 2 minutes at a constant current of C and further charging for 2 minutes at a constant current of 6C, constant current-constant voltage charging at 1C (current 1
C, voltage 3.75 V, charging time 1 H).

【0109】上述の充放電が施されたリチウム二次電池
30個を25℃の恒温槽内に放置し、放置時間と電池電
圧を測定した。測定結果を表1にあわせて示した。
Thirty lithium batteries thus charged and discharged were left in a thermostat at 25 ° C., and the time and battery voltage were measured. The measurement results are shown in Table 1.

【0110】表1より、電圧の低下量が約3日で80m
V以上低下する電池が30セル中2セル存在し、その他
の電池は電圧の低下は起きなかった。これより、大電流
での充電だけでなく、放電を交えた検査方法であって
も、短絡を生じさせる効果が得られることがわかった。
From Table 1, it can be seen that the amount of voltage drop was 80 m in about 3 days.
There were 2 cells out of 30 cells that dropped by more than V, and the other cells did not drop in voltage. From this, it was found that the effect of causing a short circuit can be obtained not only by charging with a large current but also by an inspection method involving discharge.

【0111】(実施例6)まず、実施例の電池に、初期
充放電処理を施した。
(Example 6) First, the battery of the example was subjected to an initial charge / discharge treatment.

【0112】初期充放電処理は、実施例1の4サイクル
目までの初期充放電と同様な充放電を行うことでなされ
た。詳しくは、1サイクル目は、定電流−定電圧充電
(電流1/4C、電圧4.1V、充電時間6H)、定電
流放電(電流1/3C、電圧3Vまで)の充放電を、2
〜3サイクル目は、定電流−定電圧充電(電流1C、電
圧4.1V、充電時間2.5H)、定電流放電(電流1
C、電圧3Vまで)を、4サイクル目は、定電流−定電
圧充電(電流1C、電圧4.1V、充電時間2.5H)
を行った。なお、それぞれの充放電後には、10分間の
無負荷期間を設けた。4サイクル目放電後電池の開回路
電圧は約3.1Vを示した。
The initial charge / discharge treatment was performed by performing the same charge / discharge as the initial charge / discharge up to the fourth cycle of the first embodiment. Specifically, in the first cycle, constant-current-constant-voltage charging (current 1 / 4C, voltage 4.1V, charging time 6H), constant-current discharging (current 1 / 3C, voltage 3V) is defined as 2
In the third cycle, constant current-constant voltage charging (current 1 C, voltage 4.1 V, charging time 2.5 H), constant current discharging (current 1
C, voltage up to 3 V), and in the fourth cycle, constant current-constant voltage charging (current 1 C, voltage 4.1 V, charging time 2.5 H)
Was done. After each charge and discharge, a no-load period of 10 minutes was provided. After the discharge in the fourth cycle, the open circuit voltage of the battery was about 3.1 V.

【0113】上述の初期充放電処理が施された実施例の
リチウム二次電池を、以下に示した各条件での充電を行
う検査方法で検査した。
The lithium secondary battery of the embodiment, which had been subjected to the above-mentioned initial charge / discharge treatment, was inspected by an inspection method for charging under the following conditions.

【0114】詳しくは、初期充放電処理が施されたリチ
ウム二次電池に、0℃の恒温槽内で6Cの定電流で2分
間充電した後、1Cで定電流−定電圧充電(電流1C、
電圧3.75V、充電時間1H)を行った。この電池を
ふたたび、室温で放置し、放置時間と電圧の低下量を測
定した。
More specifically, a lithium secondary battery that has been subjected to an initial charge / discharge process is charged at a constant current of 6 C for 2 minutes in a constant temperature bath at 0 ° C., and then charged at a constant current-constant voltage at 1 C (current 1 C,
Voltage 3.75 V, charging time 1 H). The battery was left again at room temperature, and the time and the amount of decrease in voltage were measured.

【0115】表1より、実施例6の条件で充放電した電
池の電圧低下は、電圧の低下量が室温で大電流充電した
物よりも電圧の低下量が大きくなり、約3日で100m
V以上低下する電池が30セル中2セル存在し、その他
の電池は電圧の低下は起きなかった。これより、低温で
大電流を流すとさらに電流の部分的な集中が起きやすく
なり、電池の選別がより短時間で行うことができた。
From Table 1, it can be seen that the voltage drop of the battery charged and discharged under the conditions of Example 6 was larger than that of the battery charged with a large current at room temperature, and the voltage drop was 100 m in about 3 days.
There were 2 cells out of 30 cells that dropped by more than V, and the other cells did not drop in voltage. As a result, when a large current is applied at a low temperature, the current is more likely to be partially concentrated, so that the batteries can be sorted in a shorter time.

【0116】(実施例7)まず、実施例の電池に、初期
充放電処理を施した。
Example 7 First, the battery of the example was subjected to an initial charge / discharge treatment.

【0117】初期充放電処理は、実施例1の4サイクル
目までの初期充放電と同様な充放電を行うことでなされ
た。詳しくは、1サイクル目は、定電流−定電圧充電
(電流1/4C、電圧4.1V、充電時間6H)、定電
流放電(電流1/3C、電圧3Vまで)の充放電を、2
〜3サイクル目は、定電流−定電圧充電(電流1C、電
圧4.1V、充電時間2.5H)、定電流放電(電流1
C、電圧3Vまで)を、4サイクル目は、定電流−定電
圧充電(電流1C、電圧4.1V、充電時間2.5H)
を行った。なお、それぞれの充放電後には、10分間の
無負荷期間を設けた。4サイクル目放電後電池の開回路
電圧は約3.1Vを示した。
The initial charge / discharge treatment was performed by performing the same charge / discharge as the initial charge / discharge up to the fourth cycle of the first embodiment. Specifically, in the first cycle, constant-current-constant-voltage charging (current 1 / 4C, voltage 4.1V, charging time 6H), constant-current discharging (current 1 / 3C, voltage 3V) is defined as 2
In the third cycle, constant current-constant voltage charging (current 1 C, voltage 4.1 V, charging time 2.5 H), constant current discharging (current 1
C, voltage up to 3 V), and in the fourth cycle, constant current-constant voltage charging (current 1 C, voltage 4.1 V, charging time 2.5 H)
Was done. After each charge and discharge, a no-load period of 10 minutes was provided. After the discharge in the fourth cycle, the open circuit voltage of the battery was about 3.1 V.

【0118】初期充放電処理が施された実施例のリチウ
ム二次電池を、以下に示した各条件での充電を行う検査
方法で検査した。
The lithium secondary battery of the embodiment which had been subjected to the initial charge / discharge treatment was inspected by the inspection method for charging under the following conditions.

【0119】3.75Vに電池電圧を調整した電池を、
45℃で放置し、放置時間と電圧の低下量を測定した。
A battery whose battery voltage was adjusted to 3.75 V was
The sample was left at 45 ° C., and the standing time and the amount of decrease in voltage were measured.

【0120】表1より、実施例7の条件で充放電した電
池の電圧低下は、電圧の低下量が室温で大電流充電した
電池よりも電圧の低下量が大きくなり、約3日で100
mV以上低下する電池が30セル中2セル存在した。そ
の他の電池は、電圧の低下は起きなかった。これより、
高温で保存することにより電池反応が活性化し、電池の
選別をより短時間で行うことができた。
From Table 1, it can be seen that the voltage drop of the battery charged / discharged under the conditions of Example 7 was larger than that of the battery charged with a large current at room temperature.
There were 2 cells out of 30 cells that dropped by mV or more. The other batteries did not drop in voltage. Than this,
By storing at a high temperature, the battery reaction was activated, and the batteries could be sorted in a shorter time.

【0121】(実施例8)まず、実施例の電池に、初期
充放電処理を施した。
(Example 8) First, the battery of the example was subjected to an initial charge / discharge treatment.

【0122】初期充放電処理は、実施例1の4サイクル
目までの初期充放電と同様な充放電を行うことでなされ
た。詳しくは、1サイクル目は、定電流−定電圧充電
(電流1/4C、電圧4.1V、充電時間6H)、定電
流放電(電流1/3C、電圧3Vまで)の充放電を、2
〜3サイクル目は、定電流−定電圧充電(電流1C、電
圧4.1V、充電時間2.5H)、定電流放電(電流1
C、電圧3Vまで)を、4サイクル目は、定電流−定電
圧充電(電流1C、電圧4.1V、充電時間2.5H)
を行った。なお、それぞれの充放電後には、10分間の
無負荷期間を設けた。4サイクル目放電後電池の開回路
電圧は約3.1Vを示した。
The initial charge / discharge treatment was performed by performing the same charge / discharge as the initial charge / discharge up to the fourth cycle of the first embodiment. Specifically, in the first cycle, charging and discharging of constant current-constant voltage charging (current 1 / 4C, voltage 4.1V, charging time 6H), and constant current discharging (current 1 / 3C, voltage 3V) are performed in two cycles.
In the third cycle, constant current-constant voltage charging (current 1 C, voltage 4.1 V, charging time 2.5 H), constant current discharging (current 1
C, voltage up to 3V), and in the fourth cycle, constant current-constant voltage charging (current 1C, voltage 4.1V, charging time 2.5H)
Was done. After each charge and discharge, a no-load period of 10 minutes was provided. After the discharge in the fourth cycle, the open circuit voltage of the battery was about 3.1 V.

【0123】上述の初期充放電処理が施された実施例の
リチウム二次電池を、以下に示した各条件での充電を行
う検査方法で検査した。
The lithium secondary battery of the embodiment, which had been subjected to the above-mentioned initial charge / discharge treatment, was inspected by an inspection method for charging under the following conditions.

【0124】詳しくは、初期充放電処理が施された実施
例のリチウム二次電池を、6Cの定電流で2分間充電し
た後、1Cで定電流−定電圧充電(電流1C、電圧3.
75V、充電時間1H)を行った。
More specifically, the lithium secondary battery of the embodiment which had been subjected to the initial charge / discharge treatment was charged at a constant current of 6 C for 2 minutes, and then charged at a constant current-constant voltage at 1 C (current 1 C, voltage 3.
75V, charging time 1H).

【0125】上述の充放電が施されたリチウム二次電池
30個を25℃の恒温槽内に放置し、放置時間と電池電
圧を測定した。測定結果を表1にあわせて示した。
Thirty lithium batteries thus charged and discharged were left in a thermostat at 25 ° C., and the time and battery voltage were measured. The measurement results are shown in Table 1.

【0126】表1より、電圧の低下量が約3日で80m
V以上低下する電池が30セル中2セル存在し、その他
の電池は電圧の低下は起きなかった。しかし、電池組み
付け後に大電流で充電した電池は、電圧の低下量が多く
なり、その後に容量測定したところ約3%の低下が起き
ていることがわかった。これは、大電流で充電したた
め、充電初期に負極の被膜形成反応が不均一となり、副
反応の増加による容量低下、被膜生成物の分解反応等に
よる電圧低下が起きたためと考えられる。
From Table 1, it can be seen that the amount of voltage drop was 80 m in about 3 days.
There were 2 cells out of 30 cells that dropped by more than V, and the other cells did not drop in voltage. However, in the battery charged with a large current after the battery was assembled, the amount of voltage decrease was large, and the capacity was measured thereafter. As a result, it was found that the decrease was about 3%. This is presumably because, since the battery was charged with a large current, the reaction of forming a film on the negative electrode became non-uniform at the initial stage of charging, and a decrease in capacity due to an increase in side reactions and a voltage decrease due to a decomposition reaction of a film product occurred.

【0127】[0127]

【発明の効果】本発明の二次電池の検査方法は、電池内
の微小な短絡箇所および将来短絡につながる可能性があ
る部分が短絡させることで、電池特性の低下を引き起こ
している。このため、短時間で二次電池の検査を行うこ
とができる効果を有する。
According to the method for inspecting a secondary battery of the present invention, the battery characteristics are degraded by short-circuiting a minute short-circuit portion in the battery and a portion that may lead to a short-circuit in the future. Therefore, there is an effect that the inspection of the secondary battery can be performed in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1の検査結果を示した図である。FIG. 1 is a diagram showing inspection results of Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 覚 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 山田 学 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 杉江 順次 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 河合 勝由 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 2G016 CB05 CB11 CB12 CB21 CB31 CC01 CC23 CF06 5G003 BA01 CA03 DA07 EA09 5H029 AJ14 AK03 AL06 AL07 AM03 AM05 AM07 BJ02 BJ14 HJ14 HJ18 HJ19 5H030 AA06 AA10 AS20 BB01 BB21 FF22 FF41 FF42 FF43 FF44 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Satoru Suzuki 1-1-1, Showa-cho, Kariya-shi, Aichi Pref. (72) Inventor Sugie sequentially 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Katsuyoshi Kawai 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation F-term (reference) 2G016 CB05 CB11 CB12 CB21 CB31 CC01 CC23 CF06 5G003 BA01 CA03 DA07 EA09 5H029 AJ14 AK03 AL06 AL07 AM03 AM05 AM07 BJ02 BJ14 HJ14 HJ18 HJ19 5H030 AA06 AA10 AS20 BB01 BB21 FF22 FF41 FF42FF43

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 初期充放電処理が施された二次電池に、
該初期充放電処理の初期充放電電流より大きな電流値を
有する充放電電流での充放電を行う充放電工程と、 該充放電工程が施された該二次電池の電池特性の変化を
測定する測定工程と、を有することを特徴とする二次電
池の検査方法。
1. A secondary battery that has been subjected to an initial charge / discharge process is:
A charging / discharging step of performing charging / discharging with a charging / discharging current having a current value larger than the initial charging / discharging current of the initial charging / discharging process; and measuring a change in battery characteristics of the secondary battery subjected to the charging / discharging step. A method for inspecting a secondary battery, comprising: a measuring step.
【請求項2】 前記電池特性の変化は、前記二次電池の
電池電圧の変化および/または自己放電量の変化である
請求項1記載の二次電池の検査方法。
2. The inspection method for a secondary battery according to claim 1, wherein the change in the battery characteristics is a change in a battery voltage and / or a change in a self-discharge amount of the secondary battery.
【請求項3】 前記二次電池は、リチウム金属酸化物を
有するリチウム二次電池である請求項1〜2記載の二次
電池の検査方法。
3. The inspection method for a secondary battery according to claim 1, wherein the secondary battery is a lithium secondary battery having a lithium metal oxide.
【請求項4】 前記充放電工程は、前記リチウム二次電
池の電圧変化ΔE/ΔQ(E:該リチウム二次電池の電
池電圧、Q:リチウム金属酸化物中のLi移動量)が
1.0以上となる範囲を少なくともまたがった電圧範囲
であり、かつ3C以上の電荷を有する前記充放電電流で
充放電を行う請求項1〜3記載の二次電池の検査方法。
4. The charge / discharge step, wherein a voltage change ΔE / ΔQ of the lithium secondary battery (E: battery voltage of the lithium secondary battery, Q: Li movement amount in lithium metal oxide) is 1.0. The inspection method for a secondary battery according to claim 1, wherein the charging and discharging are performed with the charging and discharging current having a charge of 3 C or more, which is a voltage range at least straddling the above range.
【請求項5】 前記充放電工程は、充放電時に電極活物
質の結晶系の変化が起きる範囲を少なくともまたがった
電圧範囲であり、かつ3C以上の電荷を有する前記充放
電電流で充放電を行う請求項1〜3記載の二次電池の検
査方法。
5. The charging / discharging step includes performing charging / discharging with the charging / discharging current having a voltage range that at least straddles a range in which the crystal system of the electrode active material changes during charging / discharging and having a charge of 3 C or more. The inspection method for a secondary battery according to claim 1.
【請求項6】 前記充放電工程は、充電状態が充電深度
(SOC)が20%以下となる範囲を少なくともまたが
った電圧範囲であり、かつ3C以上の電荷を有する前記
充放電電流で充放電を行う請求項1〜3記載の二次電池
の検査方法。
6. The charging / discharging step includes performing charging / discharging with a charging / discharging current having a charge state of at least 3C or more in a voltage range that at least straddles a range where a state of charge (SOC) is 20% or less. The inspection method for a secondary battery according to claim 1, wherein the inspection is performed.
【請求項7】 前記充放電工程は、充電状態が充電深度
(SOC)が80%以上となる範囲を少なくともまたが
った電圧範囲であり、かつ3C以上の電荷を有する前記
充放電電流で充放電を行う請求項1〜3記載の二次電池
の検査方法。
7. The charging / discharging step includes performing charging / discharging with the charging / discharging current having a charge state of at least 3% or more in a voltage range over a range where a state of charge (SOC) is 80% or more. The inspection method for a secondary battery according to claim 1, wherein the inspection is performed.
【請求項8】 前記二次電池が、正極にリチウムニッケ
ル酸化物を有し、 前記充放電工程が、Li金属に対する該正極の電位が
3.7〜3.9Vの範囲を少なくともまたがった電圧範
囲であり、かつ3C以上の電荷を有する前記充放電電流
で充放電を行う請求項1〜7記載の二次電池の検査方
法。
8. The voltage range in which the secondary battery has a lithium nickel oxide in a positive electrode, and the charge / discharge step is such that a potential of the positive electrode with respect to Li metal at least spans a range of 3.7 to 3.9V. The inspection method for a secondary battery according to claim 1, wherein charging and discharging are performed with the charging and discharging current having a charge of 3 C or more.
【請求項9】 前記二次電池が、正極にリチウムニッケ
ル酸化物を、負極にカーボンを、有し、 前記充放電工程が、該二次電池の電池電圧が0.8〜
3.9Vの範囲を少なくともまたがった電圧範囲であ
り、かつ3C以上の電荷を有する前記充放電電流で充放
電を行う請求項1〜8記載の二次電池の検査方法。
9. The secondary battery has a lithium nickel oxide for a positive electrode and a carbon for a negative electrode, and the charge and discharge step includes a step of setting the battery voltage of the secondary battery to 0.8 to 0.8.
The method for inspecting a secondary battery according to claim 1, wherein the charging and discharging are performed with the charging and discharging current having a charge range of at least 3 C and a voltage range which at least straddles a range of 3.9 V.
【請求項10】 前記二次電池が、正極にリチウムマン
ガン酸化物を有し、 前記充放電工程が、Li金属に対する該正極の電位が
3.9〜4.1Vの範囲を少なくともまたがった電圧範
囲であり、かつ3C以上の電荷を有する前記充放電電流
で充放電を行う請求項1〜7記載の二次電池の検査方
法。
10. A voltage range in which the secondary battery has a lithium manganese oxide in a positive electrode, and the charge / discharge step is such that a potential of the positive electrode with respect to Li metal at least spans a range of 3.9 to 4.1 V. The inspection method for a secondary battery according to claim 1, wherein charging and discharging are performed with the charging and discharging current having a charge of 3 C or more.
【請求項11】 前記二次電池が、正極にリチウムマン
ガン酸化物を、負極にカーボンを、有し、 前記充放電工程が、該二次電池の電池電圧が3.6〜
4.1Vの範囲を少なくともまたがった電圧範囲であ
り、かつ3C以上の電荷を有する前記充放電電流で充放
電を行う請求項1〜7、10記載の二次電池の検査方
法。
11. The secondary battery has a lithium manganese oxide for a positive electrode and carbon for a negative electrode, and the charge and discharge step is such that the battery voltage of the secondary battery is 3.6 to
The method for inspecting a secondary battery according to claim 1, wherein the charging and discharging are performed with the charging and discharging current having a charge of 3 C or more, which is a voltage range that at least spans a range of 4.1 V.
【請求項12】 前記充放電工程は、10℃以下で施さ
れる請求項1〜11記載の二次電池の検査方法。
12. The inspection method for a secondary battery according to claim 1, wherein the charging / discharging step is performed at 10 ° C. or less.
【請求項13】 前記測定工程は、25℃以上で施され
る請求項1〜12記載の二次電池の検査方法。
13. The method according to claim 1, wherein the measuring step is performed at 25 ° C. or higher.
JP2001154199A 2001-05-23 2001-05-23 Secondary battery inspection method Expired - Fee Related JP4179528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001154199A JP4179528B2 (en) 2001-05-23 2001-05-23 Secondary battery inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001154199A JP4179528B2 (en) 2001-05-23 2001-05-23 Secondary battery inspection method

Publications (2)

Publication Number Publication Date
JP2002352864A true JP2002352864A (en) 2002-12-06
JP4179528B2 JP4179528B2 (en) 2008-11-12

Family

ID=18998585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001154199A Expired - Fee Related JP4179528B2 (en) 2001-05-23 2001-05-23 Secondary battery inspection method

Country Status (1)

Country Link
JP (1) JP4179528B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100591441B1 (en) 2005-04-29 2006-06-22 삼성에스디아이 주식회사 Test device of secondary battery and method the same
JP2008098149A (en) * 2006-09-15 2008-04-24 Toshiba Corp Power source system, and electric motor vehicle
WO2008072456A1 (en) * 2006-12-15 2008-06-19 Panasonic Corporation Method for evaluating internal short circuit of battery, device for evaluating internal short circuit of battery, battery, battery pack and their manufacturing methods
WO2008132837A1 (en) * 2007-04-24 2008-11-06 Panasonic Corporation Battery internal short-circuit safety evaluating method, battery whose safety determined by internal short-circuit safety evaluating method, battery pack, and their manufacturing method
KR100962819B1 (en) 2007-02-06 2010-06-10 파나소닉 주식회사 Method for evaluating battery safety under internal short-circuit condition, method for producing battery, and method for producing battery pack
WO2011036705A1 (en) * 2009-09-24 2011-03-31 トヨタ自動車株式会社 Process for producing secondary battery
WO2012090930A1 (en) * 2010-12-27 2012-07-05 Baba Mamoru Manufacturing method for all-solid lithium secondary battery, and inspection method for all-solid lithium secondary battery
WO2012117448A1 (en) * 2011-03-02 2012-09-07 トヨタ自動車株式会社 Secondary battery testing method
JP2012181976A (en) * 2011-03-01 2012-09-20 Hitachi Ltd Lithium secondary battery abnormally charged state detection device and inspection method
JP2014017056A (en) * 2012-07-05 2014-01-30 Nissan Motor Co Ltd Inspection method of lithium ion secondary battery
WO2014112420A1 (en) 2013-01-17 2014-07-24 ソニー株式会社 Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool, and electronic device
US9577294B2 (en) 2013-10-02 2017-02-21 Toyota Jidosha Kabushiki Kaisha Manufacturing method for secondary battery
EP3320355A4 (en) * 2015-07-08 2019-03-06 Algolion Ltd. Lithium-ion battery safety monitoring
CN113602147A (en) * 2021-08-05 2021-11-05 肇庆小鹏汽车有限公司 Battery fault detection method and battery fault detection device
EP3995844A1 (en) * 2020-11-05 2022-05-11 Samsung SDI Co., Ltd. Battery defect screening device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060180959A1 (en) 2005-02-17 2006-08-17 Stant Manufacturing Inc. Method of coupling a component to a fuel fill tube

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343101A (en) * 1992-06-10 1993-12-24 Sony Corp Non-aqueous electrolyte secondary battery and manufacture thereof
JPH06290811A (en) * 1993-03-30 1994-10-18 Sony Corp Manufacture of non-aqueous electrolyte secondary battery
JPH09129264A (en) * 1995-10-30 1997-05-16 Fuji Elelctrochem Co Ltd Manufacture of nonaqueous electrolyte secondary battery
JP2001176560A (en) * 1999-12-17 2001-06-29 Denso Corp Method of adjusting characteristics of lithium ion secondary battery
JP2001228224A (en) * 2000-02-17 2001-08-24 Nec Mobile Energy Kk Inferiority selection method of non-aqueous electrolyte battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343101A (en) * 1992-06-10 1993-12-24 Sony Corp Non-aqueous electrolyte secondary battery and manufacture thereof
JPH06290811A (en) * 1993-03-30 1994-10-18 Sony Corp Manufacture of non-aqueous electrolyte secondary battery
JPH09129264A (en) * 1995-10-30 1997-05-16 Fuji Elelctrochem Co Ltd Manufacture of nonaqueous electrolyte secondary battery
JP2001176560A (en) * 1999-12-17 2001-06-29 Denso Corp Method of adjusting characteristics of lithium ion secondary battery
JP2001228224A (en) * 2000-02-17 2001-08-24 Nec Mobile Energy Kk Inferiority selection method of non-aqueous electrolyte battery

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100591441B1 (en) 2005-04-29 2006-06-22 삼성에스디아이 주식회사 Test device of secondary battery and method the same
JP2008098149A (en) * 2006-09-15 2008-04-24 Toshiba Corp Power source system, and electric motor vehicle
WO2008072456A1 (en) * 2006-12-15 2008-06-19 Panasonic Corporation Method for evaluating internal short circuit of battery, device for evaluating internal short circuit of battery, battery, battery pack and their manufacturing methods
US8168314B2 (en) 2006-12-15 2012-05-01 Panasonic Corporation Method for evaluating internal short-circuit of battery, device for evaluating internal short-circuit of battery, battery, battery pack and their manufacturing methods
KR100962819B1 (en) 2007-02-06 2010-06-10 파나소닉 주식회사 Method for evaluating battery safety under internal short-circuit condition, method for producing battery, and method for producing battery pack
US8444717B2 (en) 2007-04-24 2013-05-21 Panasonic Corporation Method for evaluating battery safety under internal short-circuit condition, battery and battery pack whose safety is identified by internal short-circuit safety evaluation method, and method for producing the same
WO2008132837A1 (en) * 2007-04-24 2008-11-06 Panasonic Corporation Battery internal short-circuit safety evaluating method, battery whose safety determined by internal short-circuit safety evaluating method, battery pack, and their manufacturing method
CN102576895A (en) * 2009-09-24 2012-07-11 丰田自动车株式会社 Process for producing secondary battery
JP5541288B2 (en) * 2009-09-24 2014-07-09 トヨタ自動車株式会社 Manufacturing method of secondary battery
JPWO2011036705A1 (en) * 2009-09-24 2013-02-14 トヨタ自動車株式会社 Manufacturing method of secondary battery
WO2011036705A1 (en) * 2009-09-24 2011-03-31 トヨタ自動車株式会社 Process for producing secondary battery
US9157964B2 (en) 2009-09-24 2015-10-13 Toyota Jidosha Kabushiki Kaisha Method for producing secondary battery
JP2012138299A (en) * 2010-12-27 2012-07-19 Ulvac Japan Ltd Method for manufacturing all-solid lithium secondary battery, and method for inspecting all-solid lithium secondary battery
US9257721B2 (en) 2010-12-27 2016-02-09 Mamoru Baba Method for manufacturing all solid-state lithium-ion rechargeable battery, and method for testing all solid-state lithium-ion rechargeable battery
WO2012090930A1 (en) * 2010-12-27 2012-07-05 Baba Mamoru Manufacturing method for all-solid lithium secondary battery, and inspection method for all-solid lithium secondary battery
JP2012181976A (en) * 2011-03-01 2012-09-20 Hitachi Ltd Lithium secondary battery abnormally charged state detection device and inspection method
CN103403941A (en) * 2011-03-02 2013-11-20 丰田自动车株式会社 Secondary battery testing method
JP5585718B2 (en) * 2011-03-02 2014-09-10 トヨタ自動車株式会社 Secondary battery inspection method
US9255972B2 (en) 2011-03-02 2016-02-09 Toyota Jidosha Kabushiki Kaisha Method of testing secondary battery
WO2012117448A1 (en) * 2011-03-02 2012-09-07 トヨタ自動車株式会社 Secondary battery testing method
JP2014017056A (en) * 2012-07-05 2014-01-30 Nissan Motor Co Ltd Inspection method of lithium ion secondary battery
WO2014112420A1 (en) 2013-01-17 2014-07-24 ソニー株式会社 Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool, and electronic device
KR20150106883A (en) 2013-01-17 2015-09-22 소니 주식회사 Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool, and electronic device
US9899670B2 (en) 2013-01-17 2018-02-20 Murata Manufacturing Co., Ltd. Secondary battery-use active material, secondary battery-use electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
US9577294B2 (en) 2013-10-02 2017-02-21 Toyota Jidosha Kabushiki Kaisha Manufacturing method for secondary battery
EP3320355A4 (en) * 2015-07-08 2019-03-06 Algolion Ltd. Lithium-ion battery safety monitoring
EP3995844A1 (en) * 2020-11-05 2022-05-11 Samsung SDI Co., Ltd. Battery defect screening device and method
US11656287B2 (en) 2020-11-05 2023-05-23 Samsung Sdi Co., Ltd. Battery defect screening device and method
CN113602147A (en) * 2021-08-05 2021-11-05 肇庆小鹏汽车有限公司 Battery fault detection method and battery fault detection device

Also Published As

Publication number Publication date
JP4179528B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP5464116B2 (en) Method for producing lithium ion secondary battery
JP5464119B2 (en) Method for producing lithium ion secondary battery
JP4179528B2 (en) Secondary battery inspection method
WO2015068013A1 (en) Manufacturing method for non-aqueous secondary battery
JP2009145137A (en) Inspection method of secondary battery
JP6478121B2 (en) Secondary battery recovery processing method and reuse processing method
JP2016100117A (en) Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP5464117B2 (en) Method for producing lithium ion secondary battery
JP2013114986A (en) Secondary battery manufacturing method
JP5224083B2 (en) Secondary battery and manufacturing method thereof
JP4887581B2 (en) Battery inspection method and inspection apparatus
US9692083B2 (en) Lithium-ion battery having organic-inorganic hybrid solid electrolyte
JP2008097857A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2012038463A (en) State determination method for lithium ion secondary battery
CN104868170A (en) Manufacturing Method For Nonaqueous Electrolyte Secondary Battery
JP6120083B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2012252839A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP4724972B2 (en) Inspection method for lithium secondary battery
JP2014238961A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2012221648A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2005251538A (en) Inspection method and device of secondary cell
CN115825765A (en) Battery cell lithium separation detection method and device and battery management system
EP4287313A1 (en) Charging method for non-aqueous electrolyte secondary battery, charging/discharging method, and charging system for non-aqueous electrolyte secondary battery
CN115792617A (en) All-solid-state battery pole piece short circuit detection method
JP2012221782A (en) Manufacturing method of nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4179528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees