JP4679690B2 - Nickel metal hydride storage battery manufacturing method and nickel metal hydride storage battery manufacturing apparatus - Google Patents

Nickel metal hydride storage battery manufacturing method and nickel metal hydride storage battery manufacturing apparatus Download PDF

Info

Publication number
JP4679690B2
JP4679690B2 JP2000131757A JP2000131757A JP4679690B2 JP 4679690 B2 JP4679690 B2 JP 4679690B2 JP 2000131757 A JP2000131757 A JP 2000131757A JP 2000131757 A JP2000131757 A JP 2000131757A JP 4679690 B2 JP4679690 B2 JP 4679690B2
Authority
JP
Japan
Prior art keywords
battery
nickel
safety valve
metal hydride
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000131757A
Other languages
Japanese (ja)
Other versions
JP2001313067A (en
Inventor
正人 大西
克行 富岡
友春 斉藤
真治 浜田
正宣 岩瀬
和夫 戸島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000131757A priority Critical patent/JP4679690B2/en
Publication of JP2001313067A publication Critical patent/JP2001313067A/en
Application granted granted Critical
Publication of JP4679690B2 publication Critical patent/JP4679690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素吸蔵合金を用いたニッケル水素蓄電池の製造方法および製造装置に関する。
【0002】
【従来の技術】
近年、アルカリ蓄電池は、ポータブル機器や携帯機器などの電源として、また電気自動車やハイブリッド電気自動車等に至る移動用電源として注目されており、従来にも増して高性能化が要請されている。特にニッケル・水素蓄電池は、水酸化ニッケルを主体とした活物質からなる正極と、水素吸蔵合金を主材料とした負極とを備える二次電池であり、エネルギー密度が高く、信頼性に優れた二次電池として急速に普及している。
【0003】
上記ニッケル水素二次電池では、電池組立直後における水素吸蔵合金の活性が低いため、初期の放電容量が小さくなるという問題がある。この問題を解決するため、電池組立後に電池を充放電することによって水素吸蔵合金を活性化する製造方法が一般に用いられている。
【0004】
また、上記ニッケル水素蓄電池では、電池の内圧が上昇した際、内部のガスを逃がして内圧が過大になるのを防止するため、電池ケースに安全弁が形成されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の製造方法では、水素吸蔵合金を活性化するための充放電工程において、充放電レートを高くすることができず、充放電に時間がかかるという問題があった。これは、水素吸蔵合金が十分に活性化されていない状態で高い電流値で充放電を行うと安全弁の設定値以上に内圧が高くなり、安全弁が開弁して電解液の一部が電池内ガスと共に排出されるためである。したがって、従来の製造方法では、生産性および製造コストの低減が十分でないという問題があった。
【0006】
上記問題を解決するため、本発明は、生産性よく安価にニッケル水素蓄電池を製造できるニッケル水素蓄電池の製造方法および製造装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明のニッケル水素蓄電池の製造方法は、水酸化ニッケルを含む正極と、水素吸蔵合金を含む負極と、設定値以上の内圧で開弁する安全弁を備えるケースとを含むニッケル水素蓄電池の製造方法であって、正極、負極、セパレータおよび電解液をケースに封入して電池を組み立てる第1の工程と、安全弁に加圧しながら電池を前記安全弁の設定値では開弁する電流値で充放電する第2の工程とを含むことを特徴とする。上記本発明の製造方法では、第2の工程において高い電流値で充放電を行うことができるため、生産性よく安価にニッケル水素蓄電池を製造できる。
【0008】
上記製造方法では、第2の工程において、空気を用いて安全弁に加圧することが好ましい。上記構成によれば、安価かつ容易に安全弁に加圧することができる。
【0009】
上記製造方法では、第2の工程において、電池を冷媒で冷却しながら充放電することが好ましい。上記構成によれば、高い電流値で充放電を行うことができる。
【0010】
また、本発明のニッケル水素蓄電池の製造装置は、水酸化ニッケルを含む正極と水素吸蔵合金を含む負極と設定値以上の内圧で開弁する安全弁を備えるケースとを含むニッケル水素蓄電池の製造装置であって、凹部を備えた押さえ治具と、安全弁を凹部に格納するように押さえ治具をケースに押圧するための押圧手段と、凹部内に空気を供給して安全弁に加圧するための加圧手段とを備え、さらに、前記電池を前記安全弁の設定値では開弁する電流値で充放電するための充放電手段を備えることを特徴とする。上記本発明の製造装置によれば、高い電流値で充放電を行うことができるため、生産性よく安価にニッケル水素蓄電池を製造できる。
【0011】
上記本発明の製造装置では、押さえ治具がケースに押圧され凹部内が気密になった状態で押さえ治具を固定するための固定手段をさらに備えることが好ましい。上記構成によれば、押さえ治具を容易に略一定圧力で押圧することができる。また、押さえ治具がケースに押圧された状態で電池を移動できるため、充放電などの工程を行うことが容易になる。
【0012】
上記本発明の製造装置では、電池の活性化を行うために、電池を充放電するための充放電手段を備える
【0013】
上記本発明の製造装置では、電池の活性化を行うために、電池を冷却するための冷却手段をさらに備えることが好ましい。
【0014】
上記本発明の製造装置では、加圧手段が、凹部に連結された配管と配管に連結されたエアーカプラとを含むことが好ましい。上記構成によれば、凹部への加圧を容易に行うことができる。また、凹部へ加圧した状態で電池を自由に移動させることができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0016】
(実施形態1)
実施形態1では、本発明のニッケル水素蓄電池の製造方法について説明する。
【0017】
本発明のニッケル水素蓄電池の製造方法では、まず、正極、負極、セパレータおよび電解液をケースに封入して電池を組み立てる(第1の工程)。上記第1の工程において、正極、負極、セパレータ、電解液およびケースには、ニッケル水素蓄電池に一般に用いられるものを使用できる。具体的には、正極として、たとえば、水酸化ニッケルを主成分とする活物質を充填した発泡ニッケルを用いることができる。負極としては、たとえば、Mm(ミッシュメタル)、ニッケル、アルミニウム、コバルトおよびマンガンを含む水素吸蔵合金を用いることができる。セパレータとしては、たとえば、スルホン化したポリプロピレンセパレータを用いることができる。電解液としては、水酸化カリウムを主成分とするアルカリ水溶液を用いることができる。また、ケースは、設定値以上の内圧で開弁する安全弁を備える。安全弁は、ケース内の内圧が閾値よりも高くなったときに、ケース内の内圧が閾値以下になるまで内部のガスを放出する。なお、複数の単電池を組み合わせたモジュール電池についても同様である。
【0018】
その後、第1の工程によって組み立てた電池を、上記ケースの安全弁に加圧しながら前記安全弁の設定値では開弁する電流値で充放電する(第2の工程)。上記充放電は、組み立てた電池の活物質を活性化するために行う。なお、第2の工程において、空気を用いて安全弁に加圧することが好ましい。また、第2の工程において、電池を冷媒で冷却しながら充放電することが好ましい。
【0019】
上記本発明のニッケル水素蓄電池の製造方法では、第2の工程の際に、安全弁に加圧しながら充放電を行う。このため、安全弁の作動圧が、加圧した分だけ高くなる。このため、上記製造方法では、水素吸蔵合金が十分に活性化されていない状態でも高い電流値で充放電を行うことができ、活性化を短時間で行うことができる。したがって、上記製造方法によれば、生産性よく安価にニッケル水素蓄電池を製造できる。
【0020】
(実施形態2)
実施形態2では、本発明のニッケル水素蓄電池の製造装置について説明する。
【0021】
本発明のニッケル水素蓄電池の製造装置は、水酸化ニッケルを含む正極と水素吸蔵合金を含む負極と設定値以上の内圧で開弁する安全弁を備えるケースとを含むニッケル水素蓄電池の製造装置であって、凹部を備えた押さえ治具と、上記安全弁を上記凹部に格納するように上記押さえ治具を上記ケースに押圧するための押圧手段と、上記凹部内に空気を供給して上記安全弁に加圧するための加圧手段とを備え、さらに、前記電池を前記安全弁の設定値では開弁する電流値で充放電するための充放電手段を備えることを特徴とする。
【0022】
上記実施形態2の製造装置によれば、生産性よく安価にニッケル水素蓄電池を製造できる。
【0023】
【実施例】
以下、実施例を用いて本発明をさらに詳細に説明する。
【0024】
まず、本実施例で製造されたニッケル水素蓄電池について説明する。実施例1では、複数の単電池(ニッケル水素蓄電池)を連結したモジュール電池10を作製した。
【0025】
モジュール電池10の上面図および側面図を、それぞれ図1(a)および(b)に模式的に示す。また、モジュール電池10の垂直方向の断面図を図2に模式的に示す。
【0026】
図1を参照して、モジュール電池10は、一体電槽11と蓋20とを含むケース30を備える。一体電槽11の側面には、正極端子12と負極端子13とが形成されている。蓋20には、安全弁21と、内部の温度を検出するためのセンサを装着するセンサ装着孔22とが形成されている。なお、一体電槽11および蓋20は、その表面に使用時における放熱性を高めるための凹凸を備えるが、図1および図2では図示を省略している。
【0027】
一体電槽11は、ポリプロピレンからなり、内部に形成された仕切り11aを備える。すなわち、一体電槽11は、仕切り11aによって、複数の電槽11bに区切られている。それぞれの電槽11bには、極板群14と電解液(図示せず)とが封入されている。
【0028】
仕切り11aは、上方に開口部を備える。各電槽11bに収納された極板群14の集電体15(ハッチング省略)と、隣接する極板群14の集電体16(ハッチング省略)とは、開口部に配置された接続金具17によって電気的に接続されている。両端に位置する接続金具17は、正極端子12と負極端子13とに接続されている。
【0029】
安全弁21は、一体電槽11内の内部圧力が閾値以上になったときに、内部圧力が閾値以下になるまで内部のガスを放出するための弁である。この実施例では、モジュール電池10の内圧が0.5MPa以上になると開放する安全弁21を用いた。なお、蓋20には、隣接する電槽11bを接続する貫通孔(図示せず)が形成されており、各電槽11bの内圧は略等しくなっている。
【0030】
極板群14の水平方向の断面図を図3に模式的に示す。図3を参照して、極板群14は、交互に配置された正極31および負極32と、袋状のセパレータ33と、集電体15および16とを備える。正極31は袋状のセパレータ33(ハッチング省略)に挿入されている。正極31は集電体15に溶接されており、負極32は集電体16に溶接されている。また、極板群14の側面には、外周セパレータ34(ハッチング省略)が配置されている。
【0031】
このように、モジュール電池10は、極板群14を備える単電池が6セル直列接続されたものである。
【0032】
以下に、モジュール電池10の製造方法について説明する。
【0033】
正極31は、発泡ニッケルに正極活物質ペーストを充填したのち、乾燥、圧延、切断することによって作製した。正極活物質には、酸化コバルトを添加した水酸化ニッケルを用いた。また、負極32は、ニッケルからなるパンチングメタルに負極ペーストを塗布したのち、乾燥、圧延、切断することによって作製した。負極には、水素吸蔵合金を用いた。セパレータ33には、スルフォン化処理ポリプロピレンを用いた。また、電解液には、水酸化カリウムを主成分とする電解液を用いた。
【0034】
上記正極31を袋状のセパレータ33に挿入し、正極31と負極32とを交互に積層した。そして、正極31を集電体15に溶接し、負極32を集電体16に溶接することによって、極板群14を形成した。この極板群14を各電槽11bに挿入し、接続金具17によって隣接する極板群14を直列接続した。その後、電解液を注液し、蓋20によって一体電槽11を封口した。このようにして、定格容量6.5Ahのモジュール電池10を組み立てた。
【0035】
上記モジュール電池10について、初期充放電を行った。具体的には、まず、0.1C相当の電流(1C=6.5A)でSOC(State Of Charge(充電状態)。定格容量に対する充電量の割合である。)が130%相当になるまで充電したのち、4C相当の電流でSOCが0%相当になるまで放電した。この初期充放電によって、正極31に含まれているCoやCo(OH)2をCoOOHにまで酸化した。
【0036】
その後、図4に示すように、初期充放電が終了したモジュール電池10をアルミニウム製の冷却治具41に装着した。冷却治具41は、コの字状の形状をしており、その側部には、貫通孔41aを備える。冷却治具41の側部上面41bは、正極端子12および負極端子13に触れないような位置に形成した。冷却治具41はコの字状であるため、モジュール電池10の着脱が容易である。なお、冷却治具41は、モジュール電池10と接する面にモジュール電池10の表面の凹凸形状と嵌合するような凹凸形状を備えることが好ましい。
【0037】
その後、図5に示すように、モジュール電池10が装着された複数の冷却治具41を連結した。このとき、冷却治具41の側部に設けられた貫通孔41aにボルト51を通すことによって容易に固定できた。各モジュール電池10は、隣接するモジュール電池10と向きが逆になるように配置した。また、連結された冷却治具41の一方の端には、エンドプレート52を配置して全体を拘束した。
【0038】
その後、連結したモジュール電池10の各安全弁21に、押圧治具61をセットした。モジュール電池10を押圧治具61にセットする工程を、図6に模式的に示す。図6に示すように、安全弁21に押さえ治具64をセットしたのち、台座70に固定されている固定ブロック62の一定高さに位置する穴71にくさび63を入れることによって、一定圧力で押圧治具61を押圧し、安全弁21を格納する押さえ治具64をバネ68で密着させることができる。
【0039】
押圧治具61に連結される配管の構造について、モジュール電池10側から見た場合の平面図を図7に模式的に示す。図7を参照して、押圧治具61は、冷却治具41に装着されたモジュール電池10の安全弁21に対応する位置に配置された押さえ治具64と、各押さえ治具64に連結された配管65と、配管65の先端に接続されたエアーカプラ66とを備える。押さえ治具64の構造を、図8に模式的に示す。押さえ治具64は、支柱67に移動自在に連結されており、バネ68によってモジュール電池10のケース30側に押圧されるようになっている。押さえ治具64は、安全弁21が入る凹部64aと、押さえゴム64bとを備える。押圧治具61が、モジュール電池10に押圧された際には、押さえゴム64bが安全弁21の周囲に密着して気密状態となる。凹部64aは、配管65に連結される。すなわち、エアーカプラ66から圧縮空気を注入することによって、安全弁21に加圧することができる。また、固定ブロック62およびくさび63を用いて押圧治具61をモジュール電池10に固定したのち、エアーカプラ66から圧縮空気を注入し、エアーカプラ66を閉じることによって、安全弁21に加圧したままの状態で連結されたモジュール電池10を移動できる。したがって、上記治具を用いることによって、安全弁21に加圧した状態で活性化を行うことが容易になる。
【0040】
以上のように、本実施例のニッケル水素蓄電池の製造装置は、凹部64aを備えた押さえ治具64と、安全弁21を格納するように押さえ治具64をケース30側に押圧する押圧手段(バネ68など)と、凹部64a内に空気を供給して安全弁21に加圧するための加圧手段(図示しないポンプなど)とを備える。また、本実施例のニッケル水素蓄電池の製造装置は、押さえ治具64がケース30に押圧され、凹部64a内が気密になった状態で押さえ治具64を固定するための固定手段(固定ブロック62およびくさび63)をさらに備える。また、本実施例のニッケル水素蓄電池の製造装置は、電池を充放電するための充放電手段をさらに備えてもよい。また、本実施例のニッケル水素蓄電池の製造装置は、電池を冷却するための冷却手段(冷却治具41)を備える。また、本実施例のニッケル水素蓄電池の製造装置では、加圧手段が、凹部64aに連結された配管65と、配管65に連結されたエアーカプラ66とを備える。
【0041】
この実施例では、エアーカプラ66から、0.5MPaの圧縮空気を注入することによって、安全弁21に0.5MPaの圧力をかけた。この場合、モジュール電池10内の内圧が、安全弁21の作動圧である0.5MPaと加圧した0.5MPaとを合計した圧力とおなじ程度(約1.0MPa)になるまで安全弁21が作動しない。その後、エアーカプラ66を圧縮空気供給装置(図示せず)から切り離して、配管65内を気密状態にした。
【0042】
その後、連結した冷却治具41を水槽に入れ、流水(冷媒)によって冷却治具41およびモジュール電池10を冷却した。この際、流水は、モジュール電池10の正極端子12および負極端子13に接触しない高さで、かつ冷却治具41の側部上面41bを覆う高さにコントロールした。
【0043】
そして、流水を流したままの状態で、4C相当の電流でSOCが90%になるまで充電し、4C相当の電流でSOCが0%になるまで放電を行う充放電サイクルを20回繰り返した。この際、センサ装着孔22に装着したセンサで測定したモジュール電池10の内部温度は、50℃まで上昇した。
【0044】
このようにして、モジュール電池10の活性化が終了した。このとき、安全弁の開弁による電解液の排出は生じなかった。上記方法による活性化に要したトータルの時間は12時間であった。一方、従来の製造方法の場合、4Cの電流で充放電を行うと、モジュール電池10の内圧が0.5MPaよりも大きくなってしまい、安全弁が開弁して電解液が排出された。したがって、従来の製造方法の場合は低電流で活性化を行う必要があり、1Cで充放電を行ったところ、活性化に48時間を要した。
【0045】
このように、本発明の製造方法および製造装置を用いることによって、生産性よく安価にニッケル水素蓄電池を製造できた。
【0046】
以上、本発明の実施の形態について例を挙げて説明したが、本発明は、上記実施の形態に限定されず本発明の技術的思想に基づき他の実施形態に適用することができる。
【0047】
たとえば、本発明の製造方法は、上記実施例で説明した電池を製造する方法に限定されない。
【0048】
【発明の効果】
以上説明したように、本発明のニッケル水素蓄電池の製造方法および製造装置によれば、短時間で電池の活性化を行うことができるため、生産性よく安価にニッケル水素蓄電池を製造できる。
【図面の簡単な説明】
【図1】 本発明のニッケル水素蓄電池で製造されたニッケル水素蓄電池の一例を示す(a)上面図および(b)側面図である。
【図2】 図1に示したニッケル水素蓄電池の垂直方向断面図である。
【図3】 図1に示したニッケル水素蓄電池の極板群の水平方向断面図である。
【図4】 本発明のニッケル水素蓄電池の製造方法について一工程の一例を示す斜視図である。
【図5】 本発明のニッケル水素蓄電池の製造方法について他の一工程の一例を示す平面図である。
【図6】 本発明のニッケル水素蓄電池の製造方法についてその他の一工程の一例を示す斜視図である。
【図7】 本発明のニッケル水素蓄電池の製造方法に用いる押圧治具について配管の構造の一例を示す平面図である。
【図8】 図7に示した押圧治具の一部拡大断面図である。
【符号の説明】
10 モジュール電池
11 一体電槽
11b 電槽
14 極板群
21 安全弁
30 ケース
31 正極
32 負極
33 セパレータ
41 冷却治具
61 押圧治具
62 固定ブロック
63 くさび
64 押さえ治具
65 配管
66 エアーカプラ
70 台座
71 穴
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for manufacturing a nickel metal hydride storage battery using a hydrogen storage alloy.
[0002]
[Prior art]
In recent years, alkaline storage batteries have attracted attention as power sources for portable devices, portable devices, and the like, and as mobile power sources for electric vehicles, hybrid electric vehicles, and the like, and higher performance is required than ever. In particular, a nickel-hydrogen storage battery is a secondary battery having a positive electrode made of an active material mainly composed of nickel hydroxide and a negative electrode mainly made of a hydrogen storage alloy, and has a high energy density and excellent reliability. It is rapidly spreading as a secondary battery.
[0003]
The nickel-metal hydride secondary battery has a problem that the initial discharge capacity is small because the activity of the hydrogen storage alloy is low immediately after battery assembly. In order to solve this problem, a manufacturing method is generally used in which the hydrogen storage alloy is activated by charging and discharging the battery after the battery is assembled.
[0004]
Further, in the nickel hydride storage battery, when the internal pressure of the battery rises, a safety valve is formed in the battery case in order to prevent the internal gas from escaping and the internal pressure from becoming excessive.
[0005]
[Problems to be solved by the invention]
However, the conventional manufacturing method has a problem that the charge / discharge rate cannot be increased in the charge / discharge process for activating the hydrogen storage alloy, and charge / discharge takes time. This is because if the hydrogen storage alloy is not fully activated and charging / discharging at a high current value, the internal pressure becomes higher than the set value of the safety valve, the safety valve opens, and part of the electrolyte is in the battery. This is because it is discharged together with the gas. Therefore, the conventional manufacturing method has a problem that productivity and manufacturing cost are not sufficiently reduced.
[0006]
In order to solve the above-described problems, an object of the present invention is to provide a nickel-metal hydride storage battery manufacturing method and a manufacturing apparatus that can manufacture nickel-metal hydride storage batteries with high productivity and low cost.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing a nickel metal hydride storage battery of the present invention includes a positive electrode containing nickel hydroxide, a negative electrode containing a hydrogen storage alloy, and a case provided with a safety valve that opens at an internal pressure equal to or higher than a set value. A method for manufacturing a nickel metal hydride storage battery, wherein a first step of assembling a battery by enclosing a positive electrode, a negative electrode, a separator and an electrolyte in a case, and a current for opening the battery at the set value of the safety valve while pressurizing the safety valve And a second step of charging / discharging with a value . In the manufacturing method of the present invention, since charging and discharging can be performed at a high current value in the second step, a nickel-metal hydride storage battery can be manufactured with high productivity and at low cost.
[0008]
In the said manufacturing method, it is preferable to pressurize a safety valve using air in a 2nd process. According to the above configuration, the safety valve can be pressurized easily and inexpensively.
[0009]
In the said manufacturing method, it is preferable to charge / discharge in the 2nd process, cooling a battery with a refrigerant | coolant. According to the said structure, charging / discharging can be performed with a high electric current value.
[0010]
The nickel hydride storage battery manufacturing apparatus of the present invention is a nickel hydride storage battery manufacturing apparatus including a positive electrode containing nickel hydroxide, a negative electrode containing a hydrogen storage alloy, and a case having a safety valve that opens at an internal pressure equal to or higher than a set value. A pressing jig having a recess, a pressing means for pressing the pressing jig against the case so as to store the safety valve in the recess, and a pressure for supplying air into the recess to pressurize the safety valve. and means, further, the set value of the battery the safety valve and said Rukoto comprises a charging and discharging means for charging and discharging at a current value of the valve opening. According to the manufacturing apparatus of the present invention, since charging and discharging can be performed with a high current value, a nickel-metal hydride storage battery can be manufactured with high productivity and low cost.
[0011]
The manufacturing apparatus of the present invention preferably further includes a fixing means for fixing the pressing jig in a state where the pressing jig is pressed against the case and the inside of the recess is airtight. According to the above configuration, the pressing jig can be easily pressed at a substantially constant pressure. In addition, since the battery can be moved while the holding jig is pressed against the case, it is easy to perform processes such as charging and discharging.
[0012]
Above manufacturing apparatus of the present invention, in order to perform the activation of the battery, comprising a charging and discharging means for charging and discharging the battery.
[0013]
In the manufacturing apparatus of the present invention, it is preferable to further include a cooling means for cooling the battery in order to activate the battery.
[0014]
In the manufacturing apparatus of the present invention, it is preferable that the pressurizing means includes a pipe connected to the recess and an air coupler connected to the pipe. According to the said structure, the pressurization to a recessed part can be performed easily. In addition, the battery can be freely moved while being pressed into the recess.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0016]
(Embodiment 1)
Embodiment 1 demonstrates the manufacturing method of the nickel hydride storage battery of this invention.
[0017]
In the method for producing a nickel-metal hydride storage battery of the present invention, first, a positive electrode, a negative electrode, a separator, and an electrolytic solution are sealed in a case to assemble a battery (first step). In the first step, as the positive electrode, the negative electrode, the separator, the electrolytic solution, and the case, those generally used for nickel metal hydride storage batteries can be used. Specifically, for example, foamed nickel filled with an active material mainly composed of nickel hydroxide can be used as the positive electrode. As the negative electrode, for example, a hydrogen storage alloy containing Mm (Misch metal), nickel, aluminum, cobalt, and manganese can be used. As the separator, for example, a sulfonated polypropylene separator can be used. As the electrolytic solution, an alkaline aqueous solution mainly composed of potassium hydroxide can be used. The case also includes a safety valve that opens at an internal pressure equal to or higher than a set value . When the internal pressure in the case becomes higher than the threshold value, the safety valve releases the internal gas until the internal pressure in the case becomes equal to or lower than the threshold value. The same applies to a module battery in which a plurality of unit cells are combined.
[0018]
Thereafter, the battery assembled in the first step is charged and discharged with a current value that opens at the set value of the safety valve while pressurizing the safety valve of the case (second step). The charging / discharging is performed to activate the active material of the assembled battery. In the second step, it is preferable to pressurize the safety valve using air. In the second step, it is preferable to charge and discharge the battery while cooling it with a refrigerant.
[0019]
In the manufacturing method of the nickel hydride storage battery of the present invention, charging and discharging are performed while pressurizing the safety valve in the second step. For this reason, the operating pressure of the safety valve increases by the increased amount. For this reason, in the said manufacturing method, even if the hydrogen storage alloy is not fully activated, charging / discharging can be performed with a high electric current value, and activation can be performed in a short time. Therefore, according to the said manufacturing method, a nickel hydride storage battery can be manufactured cheaply with high productivity.
[0020]
(Embodiment 2)
Embodiment 2 demonstrates the manufacturing apparatus of the nickel-metal hydride storage battery of this invention.
[0021]
An apparatus for producing a nickel metal hydride storage battery according to the present invention is an apparatus for producing a nickel metal hydride storage battery including a positive electrode containing nickel hydroxide, a negative electrode containing a hydrogen storage alloy, and a case having a safety valve that opens at an internal pressure equal to or higher than a set value. A pressing jig provided with a recess, a pressing means for pressing the pressing jig against the case so as to store the safety valve in the recess, and air is supplied into the recess to pressurize the safety valve. and a pressure means for further, in the set value of the battery the safety valve and said Rukoto comprises a charging and discharging means for charging and discharging at a current value of the valve opening.
[0022]
According to the manufacturing apparatus of the second embodiment, a nickel-metal hydride storage battery can be manufactured with high productivity and low cost.
[0023]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0024]
First, the nickel metal hydride storage battery manufactured in this example will be described. In Example 1, a module battery 10 in which a plurality of single cells (nickel metal hydride storage batteries) were connected was produced.
[0025]
A top view and a side view of the module battery 10 are schematically shown in FIGS. 1A and 1B, respectively. Also, a vertical sectional view of the module battery 10 is schematically shown in FIG.
[0026]
Referring to FIG. 1, the module battery 10 includes a case 30 including an integrated battery case 11 and a lid 20. A positive electrode terminal 12 and a negative electrode terminal 13 are formed on the side surface of the integrated battery case 11. The lid 20 is formed with a safety valve 21 and a sensor mounting hole 22 for mounting a sensor for detecting the internal temperature. In addition, although the integrated battery case 11 and the lid | cover 20 equip the surface with the unevenness | corrugation for improving the heat dissipation in use, illustration is abbreviate | omitted in FIG. 1 and FIG.
[0027]
The integrated battery case 11 is made of polypropylene and includes a partition 11a formed inside. That is, the integrated battery case 11 is divided into a plurality of battery cases 11b by the partition 11a. In each battery case 11b, an electrode plate group 14 and an electrolyte (not shown) are sealed.
[0028]
The partition 11a includes an opening on the upper side. A current collector 15 (hatching is omitted) of the electrode plate group 14 accommodated in each battery case 11b and a current collector 16 (hatching is omitted) of the adjacent electrode plate group 14 are connected fittings 17 arranged in the opening. Are electrically connected. The connection fittings 17 located at both ends are connected to the positive terminal 12 and the negative terminal 13.
[0029]
The safety valve 21 is a valve for discharging the internal gas until the internal pressure becomes equal to or lower than the threshold when the internal pressure in the integrated battery case 11 becomes equal to or higher than the threshold. In this embodiment, the safety valve 21 that opens when the internal pressure of the module battery 10 becomes 0.5 MPa or more is used. The lid 20 is formed with a through hole (not shown) for connecting the adjacent battery cases 11b, and the internal pressure of each battery case 11b is substantially equal.
[0030]
A cross-sectional view in the horizontal direction of the electrode plate group 14 is schematically shown in FIG. Referring to FIG. 3, electrode group 14 includes positive electrodes 31 and negative electrodes 32, bag-shaped separators 33, and current collectors 15 and 16 that are alternately arranged. The positive electrode 31 is inserted into a bag-like separator 33 (hatching is omitted). The positive electrode 31 is welded to the current collector 15, and the negative electrode 32 is welded to the current collector 16. Further, an outer peripheral separator 34 (hatching is omitted) is disposed on the side surface of the electrode plate group 14.
[0031]
As described above, the module battery 10 is a battery in which six cells including the electrode plate group 14 are connected in series.
[0032]
Below, the manufacturing method of the module battery 10 is demonstrated.
[0033]
The positive electrode 31 was produced by filling foamed nickel with a positive electrode active material paste, followed by drying, rolling, and cutting. As the positive electrode active material, nickel hydroxide to which cobalt oxide was added was used. The negative electrode 32 was prepared by applying a negative electrode paste to a punching metal made of nickel, followed by drying, rolling, and cutting. A hydrogen storage alloy was used for the negative electrode. For the separator 33, a sulfonated polypropylene was used. Moreover, the electrolyte solution which has potassium hydroxide as a main component was used for electrolyte solution.
[0034]
The positive electrode 31 was inserted into a bag-shaped separator 33, and the positive electrode 31 and the negative electrode 32 were alternately stacked. The positive electrode group 14 was formed by welding the positive electrode 31 to the current collector 15 and welding the negative electrode 32 to the current collector 16. The electrode plate group 14 was inserted into each battery case 11b, and the adjacent electrode plate groups 14 were connected in series by a connection fitting 17. Thereafter, the electrolytic solution was injected, and the integrated battery case 11 was sealed with the lid 20. In this way, a module battery 10 having a rated capacity of 6.5 Ah was assembled.
[0035]
The module battery 10 was initially charged / discharged. Specifically, charging is first performed at a current equivalent to 0.1 C (1 C = 6.5 A) until the SOC (State Of Charge (charge state), which is the ratio of the charged amount to the rated capacity) becomes 130%. After that, the battery was discharged at a current corresponding to 4C until the SOC reached 0%. By this initial charge / discharge, Co and Co (OH) 2 contained in the positive electrode 31 were oxidized to CoOOH.
[0036]
Thereafter, as shown in FIG. 4, the module battery 10 that had been initially charged and discharged was mounted on an aluminum cooling jig 41. The cooling jig 41 has a U-shape, and has a through hole 41a on its side. The side upper surface 41 b of the cooling jig 41 was formed at a position so as not to touch the positive electrode terminal 12 and the negative electrode terminal 13. Since the cooling jig 41 is U-shaped, the module battery 10 can be easily attached and detached. The cooling jig 41 preferably has a concavo-convex shape that fits with the concavo-convex shape on the surface of the module battery 10 on the surface that contacts the module battery 10.
[0037]
Then, as shown in FIG. 5, the some cooling jig 41 with which the module battery 10 was mounted | worn was connected. At this time, the bolt 51 was easily passed through the through hole 41a provided in the side portion of the cooling jig 41 and could be fixed easily. Each module battery 10 was arranged so that the direction was opposite to that of the adjacent module battery 10. Further, an end plate 52 is disposed at one end of the connected cooling jig 41 to restrain the whole.
[0038]
Thereafter, a pressing jig 61 was set on each safety valve 21 of the connected module battery 10. The process of setting the module battery 10 on the pressing jig 61 is schematically shown in FIG. As shown in FIG. 6, after setting the holding jig 64 on the safety valve 21, the wedge 63 is inserted into the hole 71 located at a fixed height of the fixed block 62 fixed to the pedestal 70, thereby pressing with a constant pressure. The pressing jig 64 for storing the safety valve 21 can be brought into close contact with the spring 68 by pressing the jig 61.
[0039]
FIG. 7 schematically shows a plan view of the structure of the pipe connected to the pressing jig 61 when viewed from the module battery 10 side. With reference to FIG. 7, the pressing jig 61 is connected to the pressing jig 64 and the pressing jig 64 disposed at a position corresponding to the safety valve 21 of the module battery 10 mounted on the cooling jig 41. A pipe 65 and an air coupler 66 connected to the tip of the pipe 65 are provided. The structure of the holding jig 64 is schematically shown in FIG. The holding jig 64 is movably connected to the support column 67 and is pressed against the case 30 side of the module battery 10 by a spring 68. The holding jig 64 includes a recess 64a in which the safety valve 21 is inserted and a holding rubber 64b. When the pressing jig 61 is pressed by the module battery 10, the pressing rubber 64 b comes into close contact with the periphery of the safety valve 21 and is in an airtight state. The recess 64 a is connected to the pipe 65. That is, the safety valve 21 can be pressurized by injecting compressed air from the air coupler 66. Further, after the pressing jig 61 is fixed to the module battery 10 using the fixing block 62 and the wedge 63, the compressed air is injected from the air coupler 66 and the air coupler 66 is closed, so that the safety valve 21 remains pressurized. The module battery 10 connected in a state can be moved. Therefore, by using the jig, it becomes easy to activate the safety valve 21 in a pressurized state.
[0040]
As described above, the nickel-metal hydride storage battery manufacturing apparatus according to the present embodiment includes a pressing jig 64 having a recess 64a and pressing means (spring) that presses the pressing jig 64 toward the case 30 so as to store the safety valve 21. 68) and pressurizing means (such as a pump (not shown)) for supplying air into the recess 64a and pressurizing the safety valve 21. Further, the nickel-metal hydride storage battery manufacturing apparatus of the present embodiment has a fixing means (fixing block 62) for fixing the pressing jig 64 in a state where the pressing jig 64 is pressed by the case 30 and the inside of the recess 64a is airtight. And a wedge 63). Moreover, the manufacturing apparatus of the nickel metal hydride storage battery according to the present embodiment may further include charge / discharge means for charging / discharging the battery. Moreover, the manufacturing apparatus of the nickel hydride storage battery of a present Example is provided with the cooling means (cooling jig 41) for cooling a battery. In the nickel-metal hydride battery manufacturing apparatus of this embodiment, the pressurizing means includes a pipe 65 connected to the recess 64 a and an air coupler 66 connected to the pipe 65.
[0041]
In this embodiment, a pressure of 0.5 MPa was applied to the safety valve 21 by injecting 0.5 MPa of compressed air from the air coupler 66. In this case, the safety valve 21 does not operate until the internal pressure in the module battery 10 reaches the same level (about 1.0 MPa) as the sum of the operating pressure of the safety valve 21 and 0.5 MPa. . Thereafter, the air coupler 66 was disconnected from the compressed air supply device (not shown) to make the inside of the pipe 65 airtight.
[0042]
Thereafter, the connected cooling jig 41 was placed in a water tank, and the cooling jig 41 and the module battery 10 were cooled by running water (refrigerant). At this time, the flowing water was controlled to a height that does not contact the positive terminal 12 and the negative terminal 13 of the module battery 10 and to cover the side upper surface 41 b of the cooling jig 41.
[0043]
Then, the charging / discharging cycle was repeated 20 times while charging with a current corresponding to 4C until the SOC reached 90% with flowing water flowing, and discharging until the SOC became 0% with a current corresponding to 4C. At this time, the internal temperature of the module battery 10 measured by the sensor mounted in the sensor mounting hole 22 increased to 50 ° C.
[0044]
In this way, the activation of the module battery 10 was completed. At this time, the electrolyte solution was not discharged by opening the safety valve. The total time required for activation by the above method was 12 hours. On the other hand, in the case of the conventional manufacturing method, when charging / discharging was performed at a current of 4 C, the internal pressure of the module battery 10 became larger than 0.5 MPa, the safety valve was opened, and the electrolyte was discharged. Therefore, in the case of the conventional manufacturing method, it is necessary to activate at a low current, and when charging / discharging at 1 C, it took 48 hours to activate.
[0045]
Thus, by using the manufacturing method and manufacturing apparatus of the present invention, a nickel-metal hydride storage battery could be manufactured with good productivity and low cost.
[0046]
Although the embodiments of the present invention have been described above by way of examples, the present invention is not limited to the above-described embodiments, and can be applied to other embodiments based on the technical idea of the present invention.
[0047]
For example, the manufacturing method of the present invention is not limited to the method for manufacturing the battery described in the above embodiment.
[0048]
【The invention's effect】
As described above, according to the manufacturing method and manufacturing apparatus of the nickel-metal hydride storage battery of the present invention, the battery can be activated in a short time, and therefore, the nickel-metal hydride storage battery can be manufactured inexpensively with high productivity.
[Brief description of the drawings]
FIG. 1A is a top view and FIG. 1B is a side view showing an example of a nickel-metal hydride storage battery manufactured with the nickel-metal hydride storage battery of the present invention.
2 is a vertical sectional view of the nickel-metal hydride storage battery shown in FIG. 1. FIG.
3 is a horizontal cross-sectional view of the electrode plate group of the nickel-metal hydride storage battery shown in FIG. 1. FIG.
FIG. 4 is a perspective view showing an example of one step in the method for producing the nickel-metal hydride storage battery of the present invention.
FIG. 5 is a plan view showing an example of another step in the method for producing a nickel-metal hydride storage battery of the present invention.
FIG. 6 is a perspective view showing an example of another step in the method for manufacturing a nickel metal hydride storage battery of the present invention.
FIG. 7 is a plan view showing an example of a pipe structure of a pressing jig used in the method for manufacturing a nickel metal hydride storage battery of the present invention.
8 is a partially enlarged cross-sectional view of the pressing jig shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Module battery 11 Integrated battery case 11b Battery case 14 Electrode board group 21 Safety valve 30 Case 31 Positive electrode 32 Negative electrode 33 Separator 41 Cooling jig 61 Pressing jig 62 Fixing block 63 Wedge 64 Holding jig 65 Piping 66 Air coupler 70 Base 71 Hole

Claims (7)

水酸化ニッケルを含む正極と、水素吸蔵合金を含む負極と、設定値以上の内圧で開弁する安全弁を備えるケースとを含むニッケル水素蓄電池の製造方法であって、
前記正極、前記負極、セパレータおよび電解液を前記ケースに封入して電池を組み立てる第1の工程と、
前記安全弁に加圧しながら前記電池を前記安全弁の設定値では開弁する電流値で充放電する第2の工程とを含むことを特徴とするニッケル水素蓄電池の製造方法。
A method for producing a nickel-metal hydride storage battery, comprising: a positive electrode containing nickel hydroxide; a negative electrode containing a hydrogen storage alloy; and a case provided with a safety valve that opens at an internal pressure equal to or higher than a set value .
A first step of assembling a battery by enclosing the positive electrode, the negative electrode, a separator and an electrolyte in the case;
And a second step of charging and discharging the battery at a current value that opens at the set value of the safety valve while pressurizing the safety valve.
前記第2の工程において、空気を用いて前記安全弁に加圧する請求項1に記載のニッケル水素蓄電池の製造方法。  The method for producing a nickel-metal hydride storage battery according to claim 1, wherein in the second step, the safety valve is pressurized using air. 前記第2の工程において、前記電池を冷媒で冷却しながら充放電する請求項1または2に記載のニッケル水素蓄電池の製造方法。  The manufacturing method of the nickel hydride storage battery of Claim 1 or 2 which charges / discharges, cooling the said battery with a refrigerant | coolant in a said 2nd process. 水酸化ニッケルを含む正極と水素吸蔵合金を含む負極と設定値以上の内圧で開弁する安全弁を備えるケースとを含むニッケル水素蓄電池の製造装置であって、
凹部を備えた押さえ治具と、
前記安全弁を前記凹部に格納するように前記押さえ治具を前記ケースに押圧するための押圧手段と、
前記凹部内に空気を供給して前記安全弁に加圧するための加圧手段とを備え
さらに、前記電池を前記安全弁の設定値では開弁する電流値で充放電するための充放電手段を備えることを特徴とするニッケル水素蓄電池の製造装置。
A nickel-metal hydride battery manufacturing apparatus comprising a positive electrode containing nickel hydroxide, a negative electrode containing a hydrogen storage alloy, and a case having a safety valve that opens at an internal pressure equal to or higher than a set value ,
A holding jig with a recess,
A pressing means for pressing the pressing jig against the case so as to store the safety valve in the recess;
Pressurizing means for supplying air into the recess to pressurize the safety valve ;
Furthermore, the manufacturing apparatus of the nickel-metal hydride storage battery, characterized in Rukoto comprises a charging and discharging means for charging and discharging the battery at a current value which is opened at the set value of the safety valve.
前記押さえ治具が前記ケースに押圧され前記凹部内が気密になった状態で前記押さえ治具を固定するための固定手段をさらに備える請求項4に記載のニッケル水素蓄電池の製造装置。  The nickel-metal hydride storage battery manufacturing apparatus according to claim 4, further comprising a fixing means for fixing the pressing jig in a state where the pressing jig is pressed by the case and the inside of the concave portion is airtight. 前記電池を冷却するための冷却手段をさらに備える請求項に記載のニッケル水素蓄電池の製造装置。The apparatus for manufacturing a nickel-metal hydride storage battery according to claim 4 , further comprising a cooling means for cooling the battery. 前記加圧手段が、前記凹部に連結された配管と前記配管に連結されたエアーカプラとを含む請求項4ないしのいずれかに記載のニッケル水素蓄電池の製造装置。The nickel hydrogen storage battery manufacturing apparatus according to any one of claims 4 to 6 , wherein the pressurizing means includes a pipe connected to the recess and an air coupler connected to the pipe.
JP2000131757A 2000-04-28 2000-04-28 Nickel metal hydride storage battery manufacturing method and nickel metal hydride storage battery manufacturing apparatus Expired - Fee Related JP4679690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000131757A JP4679690B2 (en) 2000-04-28 2000-04-28 Nickel metal hydride storage battery manufacturing method and nickel metal hydride storage battery manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000131757A JP4679690B2 (en) 2000-04-28 2000-04-28 Nickel metal hydride storage battery manufacturing method and nickel metal hydride storage battery manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2001313067A JP2001313067A (en) 2001-11-09
JP4679690B2 true JP4679690B2 (en) 2011-04-27

Family

ID=18640592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000131757A Expired - Fee Related JP4679690B2 (en) 2000-04-28 2000-04-28 Nickel metal hydride storage battery manufacturing method and nickel metal hydride storage battery manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4679690B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5308806B2 (en) * 2008-12-25 2013-10-09 プライムアースEvエナジー株式会社 Manufacturing method of nickel metal hydride storage battery
KR101699853B1 (en) * 2013-09-30 2017-01-25 주식회사 엘지화학 Battery Cell Cooling Device Having Cooling Jig and Cooler
KR102441813B1 (en) 2017-09-18 2022-09-08 주식회사 엘지에너지솔루션 Method for Preparing Pouch-Type Battery Cell Comprising Jig Grading

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283098A (en) * 1992-04-02 1993-10-29 Hitachi Maxell Ltd Manufacture of sealed alkaline storage battery
JPH07153483A (en) * 1993-11-30 1995-06-16 Sanyo Electric Co Ltd Manufacture of sealed nickel metal hydride storage battery
JPH08124595A (en) * 1994-10-20 1996-05-17 Toshiba Battery Co Ltd Activating method for alkaline secondary battery
JPH1167264A (en) * 1997-08-08 1999-03-09 Sanyo Electric Co Ltd Manufacture of nickel-hydrogen storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283098A (en) * 1992-04-02 1993-10-29 Hitachi Maxell Ltd Manufacture of sealed alkaline storage battery
JPH07153483A (en) * 1993-11-30 1995-06-16 Sanyo Electric Co Ltd Manufacture of sealed nickel metal hydride storage battery
JPH08124595A (en) * 1994-10-20 1996-05-17 Toshiba Battery Co Ltd Activating method for alkaline secondary battery
JPH1167264A (en) * 1997-08-08 1999-03-09 Sanyo Electric Co Ltd Manufacture of nickel-hydrogen storage battery

Also Published As

Publication number Publication date
JP2001313067A (en) 2001-11-09

Similar Documents

Publication Publication Date Title
JP2936604B2 (en) Square sealed alkaline storage battery using hydrogen storage alloy negative electrode
US6969567B1 (en) Multi-cell battery
JP3293287B2 (en) Square sealed alkaline storage battery and its unit battery
JP2001110381A (en) Sealed square battery
JP4589550B2 (en) Manufacturing method of nickel metal hydride storage battery
JPH11238530A (en) Cooling method for modular battery and its manufacture
JP4679690B2 (en) Nickel metal hydride storage battery manufacturing method and nickel metal hydride storage battery manufacturing apparatus
JP7193420B2 (en) Nickel-metal hydride secondary battery manufacturing method
JP3474919B2 (en) Stacked sealed nickel-hydride battery
JP2003045480A (en) ThIN NICKEL - HYDROGEN SECONDARY BATTERY, HYBRID CAR AND ELECTRIC VEHICLE
JPH11121029A (en) Open storage battery for industry requiring no maintenance
KR20100027929A (en) Secondary battery with a spirally-rolled electrode group
CN220585427U (en) Anti-extrusion energy storage battery
CN112886075B (en) Method for manufacturing nickel-hydrogen storage battery
CN219717023U (en) Battery monomer, battery and power consumption device
CN219497934U (en) Battery monomer, battery and power consumption device
JP7271488B2 (en) Method for manufacturing nickel-metal hydride storage battery
JP3339327B2 (en) Storage battery
WO2024192923A1 (en) Battery cell, battery, electric device, and preparation method for battery cell
JP7355772B2 (en) Manufacturing method of nickel metal hydride storage battery
CN221379475U (en) Nickel-hydrogen battery
CN116231039A (en) Battery monomer preparation method, battery monomer, battery and electricity utilization device
JP4235805B2 (en) Cylindrical nickel metal hydride storage battery and battery module using the same
JP2022130012A (en) Method for manufacturing nickel-hydrogen storage battery
JP2000030688A (en) Wound alkaline storage battery and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110202

R150 Certificate of patent or registration of utility model

Ref document number: 4679690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees