JPH11238530A - Cooling method for modular battery and its manufacture - Google Patents

Cooling method for modular battery and its manufacture

Info

Publication number
JPH11238530A
JPH11238530A JP4068698A JP4068698A JPH11238530A JP H11238530 A JPH11238530 A JP H11238530A JP 4068698 A JP4068698 A JP 4068698A JP 4068698 A JP4068698 A JP 4068698A JP H11238530 A JPH11238530 A JP H11238530A
Authority
JP
Japan
Prior art keywords
battery
cooling
module battery
refrigerant
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4068698A
Other languages
Japanese (ja)
Inventor
Katsuyuki Tomioka
克行 富岡
Shinji Hamada
真治 浜田
Noriyuki Fujioka
徳行 藤岡
Munehisa Ikoma
宗久 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Toyota Motor Corp
Priority to JP4068698A priority Critical patent/JPH11238530A/en
Publication of JPH11238530A publication Critical patent/JPH11238530A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To restrain the temperature rise of a battery effectively, during charging and discharging by having a liquid coolant flow through a space part formed between cells and arranging the battery in a tank storing the coolant such that the battery immerses the upper ends of its ribs in the coolant. SOLUTION: Respective cells are connected electrically together in series through connecting members, ribs 6 of the respective cells adjacent to each other are abutted against each other, and a space part opened at its upper and lower part is formed in a part between them. Water used as a coolant is filled in an inside tank 21, a modular battery 10 is installed in it, the height of the opening part of the inside tank 21 is set so as to be higher than the upper end of the rib 6 of each cell and lower than the upper surface of a lid. When a chiller 26 is started, the water in a cooling device 20 is circulated. That is, the water cooled by the chiller 26 flows into the space part through a via water supplying part 23, passes through the space part while absorbing the heat generated in each of the cells, overflows from the inside tank 21, and is supplied to the chiller 26 again by way of an outside tank 22 and a drain pipe 28.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、モジュール電池の
冷却方法および製造方法に関するもので、特にそのモジ
ュール電池の充放電時の冷却方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling method and a manufacturing method for a module battery, and more particularly to a cooling method for charging and discharging the module battery.

【0002】[0002]

【従来の技術】従来より、ニッケル・水素蓄電池やニッ
ケル・カドミウム蓄電池に代表されるアルカリ蓄電池
は、各種電気機器に用いられている。とりわけ、近年で
は、環境問題の高まりから、有毒なカドミウムを用いた
ニッケル・カドミウム蓄電池にかわり、クリーンなエネ
ルギーであるニッケル・水素蓄電池の開発が盛んであ
る。ニッケル・水素蓄電池は、水酸化ニッケルを正極
に、水素を可逆的に吸蔵・放出する水素吸蔵合金を負極
にそれぞれ用いたもので、エネルギー密度が高く、さら
に高出力が可能であることなどから、電気自動車の駆動
用電源としても注目を集めている。電気自動車の駆動用
電源としては200〜300Vの高電圧が必要とされる
ため、単電池を200個程度直列に接続する必要があ
る。そこで、単電池を複数個組み合わせたモジュール電
池が提案されている。このような単電池では、軽量化の
ために、直方体の筺型でポリプロピレン等の樹脂製の電
槽を用いている。また、放熱と機械的強度の維持のため
に、電槽の肉厚を薄くし、その外表面に補強材として複
数のリブを配している。特に、ニッケル・水素蓄電池
は、電池内圧が高く、さらに充電末期の酸素を吸収する
負極反応が発熱反応であることから発熱が大きいため、
電池の機械的強度と放熱性を両立させる必要性が高い。
そこで、使用時における電池の温度上昇を防ぐため、単
電池の電槽表面にリブを同一方向に複数配列し、隣接す
る単電池とリブを互いに突き合わせることにより単電池
間に空間部を形成して、この空間部に空気を流通させる
方法も提案されている。
2. Description of the Related Art Conventionally, alkaline storage batteries typified by nickel-hydrogen storage batteries and nickel-cadmium storage batteries have been used for various electric appliances. In particular, in recent years, nickel-cadmium storage batteries using toxic cadmium have been replaced by nickel-hydrogen storage batteries, which are clean energy, due to increasing environmental problems. Nickel-metal hydride storage batteries use nickel hydroxide as the positive electrode and a hydrogen storage alloy that reversibly stores and releases hydrogen for the negative electrode.Because of their high energy density and high output, It is also attracting attention as a power supply for driving electric vehicles. Since a high voltage of 200 to 300 V is required as a power supply for driving an electric vehicle, it is necessary to connect about 200 cells in series. Therefore, a module battery in which a plurality of unit cells are combined has been proposed. In such a unit cell, a battery case made of a resin such as polypropylene is used in a rectangular parallelepiped housing for weight reduction. Further, in order to maintain heat radiation and mechanical strength, the thickness of the battery case is reduced, and a plurality of ribs are arranged on the outer surface as a reinforcing material. In particular, nickel-metal hydride storage batteries have a high internal pressure, and generate a large amount of heat because the negative electrode reaction that absorbs oxygen at the end of charging is an exothermic reaction.
There is a high need to balance the mechanical strength and heat dissipation of the battery.
Therefore, in order to prevent a temperature rise of the battery during use, a plurality of ribs are arranged in the same direction on the surface of the battery case of the unit cell, and a space is formed between the unit cells by abutting the adjacent unit cell and the rib with each other. Thus, a method of circulating air through the space has been proposed.

【0003】一般に、アルカリ蓄電池は、初期の活性サ
イクルの条件が電池性能に大きな影響を与えるため、出
荷に先立って電池の性能を引き出すことのできる条件で
初充電を行う。従来、このような初充放電は、単電池ご
とに、冷却水に浸して行っていた。単電池を一つずつ初
充放電することは非常に手間のかかる作業で、生産効率
を低くする要因の一つであった。また、初充放電の作業
効率を向上させるためには、充放電レートを高くするこ
とが望まれるが、ニッケル・水素蓄電池は、上記のよう
に急速充電を行うと電池の発熱が激しく、さらに電池の
内圧が急激に上昇する。そのため、高率で充電を行うこ
とが困難であった。
In general, an alkaline storage battery is initially charged under conditions that can bring out the performance of the battery prior to shipment, because the condition of the initial activation cycle greatly affects the performance of the battery. Conventionally, such initial charge / discharge has been performed by immersing each cell in cooling water. Initial charging and discharging of single cells one by one is a very time-consuming task and one of the factors that lowers production efficiency. In addition, in order to improve the work efficiency of the initial charge and discharge, it is desired to increase the charge and discharge rate. Internal pressure rises sharply. Therefore, it was difficult to perform charging at a high rate.

【0004】[0004]

【発明が解決しようとする課題】本発明は、以上のよう
な問題点を解決し、急速で充放電が可能なモジュール電
池、特にニッケル・水素蓄電池のモジュール電池の冷却
方法を提供することを目的とする。さらに、本発明は、
生産効率の高いモジュール電池の製造方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to provide a method of cooling a module battery which can be rapidly charged and discharged, particularly a module battery of a nickel hydrogen storage battery. And Further, the present invention provides
An object of the present invention is to provide a method of manufacturing a module battery with high production efficiency.

【0005】[0005]

【課題を解決するための手段】本発明においては、外側
面に縦方向に配列された複数のリブを有する電槽と、電
槽に収容された正極板および負極板をセパレータを挟ん
で交互に積層して構成される極板群と、正極および負極
とそれぞれ接続された一対の極柱とを具備する単電池を
複数、リブを互いに突き合わせて積層して構成されたモ
ジュール電池に対して、単電池間に形成される空間部に
液状の冷媒を流通させて、各単電池を冷却する。
According to the present invention, a battery case having a plurality of ribs vertically arranged on an outer surface thereof, and a positive electrode plate and a negative electrode plate housed in the battery case are alternately sandwiched by a separator. A plurality of unit cells each including a stacked electrode plate group and a pair of electrode columns respectively connected to the positive electrode and the negative electrode, A liquid refrigerant is circulated in the space formed between the cells to cool each cell.

【0006】[0006]

【発明の実施の形態】本発明のモジュール電池の冷却方
法は、電槽側面に縦方向に配列された複数のリブを有す
る角形の単電池の複数をリブを互いに突き合わせて構成
されたモジュール電池に対して、液状の冷媒を単電池間
に形成された空間部に流通させて各単電池を冷却するも
のである。本発明のモジュール電池の冷却方法の好まし
い態様においては、モジュール電池をリブの上端まで冷
媒に浸漬させて槽内に配置し、リブ間の空間部に冷媒を
流通させて冷却する。ただし、正極板および負極板に接
続された極柱は、それぞれ冷媒の液面より露出させるこ
とが好ましい。また、冷媒が極柱に付着しないように、
極柱にシールド部材を配することが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The method for cooling a module battery according to the present invention is directed to a module battery comprising a plurality of rectangular cells having a plurality of ribs vertically arranged on a side surface of a battery case and having the ribs butted against each other. On the other hand, a liquid refrigerant is circulated through a space formed between the cells to cool the cells. In a preferred embodiment of the method for cooling a module battery of the present invention, the module battery is immersed in a coolant up to the upper end of a rib and placed in a tank, and the coolant is circulated through a space between the ribs to be cooled. However, it is preferable that the poles connected to the positive electrode plate and the negative electrode plate are respectively exposed from the liquid level of the refrigerant. Also, so that the refrigerant does not adhere to the pole,
It is preferable to arrange the shield member on the pole.

【0007】より好ましくは、冷媒を収容した槽にモジ
ュール電池を配し、冷媒を槽に過剰に供給して槽より溢
れさせながら、単電池間の空間部に冷媒を流通させる。
冷媒を槽より溢れさせることにより、冷媒の液面の高さ
を槽の開口部の高さと一致させて安定させることができ
る。したがって、電池を安定して冷媒に接触させること
ができ、電池の冷却効率を安定させることが可能にな
る。特に、空間部を上方に向けて冷媒を流通させる。冷
媒は、電池より熱を吸収すると膨張して液面に向けて上
昇しようとする。この対流の方向と冷媒を流通させる方
向を一致させると、冷媒がスムーズに循環し、より効率
的な冷却が可能になる。冷媒には、コストや取り扱いの
観点から、水を用いることが好ましい。上記のモジュー
ル電池の冷却方法は、通常の充電の他、初充放電にも適
用することができる。従来、単電池を一個ずつ充放電さ
せていたのに対し、本発明によると、モジュール電池に
組み立てた後、複数の単電池を同時に充放電させること
ができ、さらに急速の充放電が可能なことから、生産効
率は大幅に向上する。
[0007] More preferably, the module battery is disposed in a tank containing the refrigerant, and the refrigerant is supplied to the tank excessively and overflows from the tank, and the refrigerant is circulated in the space between the cells.
By causing the refrigerant to overflow from the tank, the height of the liquid level of the refrigerant can be stabilized by matching the height of the opening of the tank. Therefore, the battery can be stably brought into contact with the refrigerant, and the cooling efficiency of the battery can be stabilized. In particular, the refrigerant is circulated with the space facing upward. When the refrigerant absorbs heat from the battery, it expands and tends to rise toward the liquid level. When the direction of the convection and the direction in which the refrigerant flows are made to match, the refrigerant circulates smoothly, and more efficient cooling becomes possible. It is preferable to use water as the refrigerant from the viewpoint of cost and handling. The cooling method of the module battery described above can be applied to initial charging and discharging in addition to normal charging. Conventionally, single cells were charged and discharged one by one, but according to the present invention, a plurality of cells can be simultaneously charged and discharged after assembling into a module battery, and more rapid charging and discharging is possible. Therefore, the production efficiency is greatly improved.

【0008】[0008]

【実施例】以下、本発明の実施例として、特にニッケル
・水素蓄電池の初充電方法について、図面を用いて詳細
に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, as an embodiment of the present invention, a method for initially charging a nickel-metal hydride storage battery will be described in detail with reference to the drawings.

【0009】本実施例で用いたニッケル・水素蓄電池の
単電池を図1に示す。単電池1の公称容量は100Ah
である。ポリプロピレン製の電槽2の内部には、セパレ
ータを挟んで正極板および負極板を交互に重ね合わせて
構成される極板群7が収容されている。ここで、正極板
は、水酸化ニッケル粉末および水酸化コバルト粉末を重
量比100:10で混合したのち発泡ニッケル板に充填
したものである。一方、負極板は、組成がMmNi3.6
Co0.7Mn0.4Al0.4の水素吸蔵合金粉末に適量のカ
ーボン粉末、カルボキシメチルセルロースおよびスチレ
ンブタジエンゴムを添加した混合粉末を、表面にニッケ
ルめっきが施された鉄製のパンチングメタルに充填した
ものである。なお、セパレータにはポリプロピレン製の
不織布を用いた。電槽2の内部には、適量の水酸化リチ
ウムを添加した水酸化カリウムの水溶液からなる電解液
が注入されている。
FIG. 1 shows a nickel-hydrogen storage battery cell used in this embodiment. The nominal capacity of the cell 1 is 100 Ah
It is. Inside the battery case 2 made of polypropylene, an electrode group 7 configured by alternately stacking positive and negative plates with a separator interposed therebetween is accommodated. Here, the positive electrode plate is obtained by mixing nickel hydroxide powder and cobalt hydroxide powder at a weight ratio of 100: 10, and then filling the mixture into a foamed nickel plate. On the other hand, the negative electrode plate had a composition of MmNi 3.6
A mixed powder obtained by adding an appropriate amount of carbon powder, carboxymethylcellulose, and styrene-butadiene rubber to a hydrogen-absorbing alloy powder of Co 0.7 Mn 0.4 Al 0.4 is filled in an iron punching metal whose surface is nickel-plated. Note that a polypropylene nonwoven fabric was used for the separator. An electrolytic solution composed of an aqueous solution of potassium hydroxide to which an appropriate amount of lithium hydroxide has been added is injected into the battery case 2.

【0010】電槽2の開口部は、熱溶着によって固定さ
れたポリプロピレン製の蓋3により、密封されている。
蓋3には、電池内圧の異常な上昇を防ぐために、作動圧
が4×102kPaの安全弁9が配されている。蓋3に
は、さらにそれぞれ正極板および負極板に接続された極
柱4および5が配されている。電槽2の幅広の側壁は、
高さが160mm、幅が110mmで、その表面には、
高さ1.5mmで幅が5mmのリブ6が12mm間隔で
縦方向に複数配列している。単電池1を5個、リブ6を
備えた側壁を向かい合わせて積層し、図2に示すような
モジュール電池10を作製した。単電池1は、その積層
方向の両端面に配されたアルミニウム製のエンドプレー
ト11をアルミニウム製でロッド状の結合部材12で締
め付けることにより互いに圧着して固定されている。こ
れら単電池1は、接続部材14で電気的に直列に接続さ
れている。これら隣接する単電池1は、図3に示すよう
に、リブ6同士が互いに突き合わされていて、両者の間
には上下が開放された空間部13が形成されている。
The opening of the battery case 2 is sealed by a polypropylene lid 3 fixed by heat welding.
The cover 3 is provided with a safety valve 9 having an operating pressure of 4 × 10 2 kPa in order to prevent an abnormal increase in battery internal pressure. The cover 3 is further provided with pole columns 4 and 5 connected to the positive electrode plate and the negative electrode plate, respectively. The wide side wall of the battery case 2
The height is 160 mm, the width is 110 mm, and on the surface,
A plurality of ribs 6 each having a height of 1.5 mm and a width of 5 mm are arranged in the vertical direction at intervals of 12 mm. Five unit cells 1 were stacked with the side walls provided with the ribs 6 facing each other to produce a module battery 10 as shown in FIG. The unit cells 1 are fixed to each other by crimping aluminum end plates 11 arranged on both end surfaces in the stacking direction with a rod-shaped connecting member 12 made of aluminum. These unit cells 1 are electrically connected in series by a connecting member 14. As shown in FIG. 3, the ribs 6 of these adjacent unit cells 1 are abutted with each other, and a space 13 is formed between the two to open up and down.

【0011】以上のようなモジュール電池10を図4に
示す冷却装置20を用いて初充電を行った。まず、単電
池1の極柱4および5と接続部材14を覆うようにポリ
プロピレン製の防水キャップ19を被せ、これらに冷却
水が付着しないように保護した。ついで、モジュール電
池10を冷却装置20内に配置した。冷却装置20は、
内槽21と、内槽21を収容する外槽22を備える。内
槽21の底部には、冷却水供給部23が配されている。
冷却水供給部23は、その上面に複数の孔23aを有す
る。モジュール電池10は、冷却装置20の冷却水供給
部23の上に配される。冷却水供給部23は、供給管2
7によりチラー26と接続されている。また、外槽22
はチラー26と排出管28により接続されている。チラ
ー26は、排出管28を通じて外槽22から供給される
液状冷媒を所定温度に冷却した後、供給管27を通じて
内槽21の冷却水供給部23に供給する。
The above-described module battery 10 was initially charged using the cooling device 20 shown in FIG. First, a waterproof cap 19 made of polypropylene was covered so as to cover the poles 4 and 5 of the unit cell 1 and the connecting member 14 to protect them from the cooling water. Next, the module battery 10 was placed in the cooling device 20. The cooling device 20
An inner tank 21 and an outer tank 22 that houses the inner tank 21 are provided. A cooling water supply unit 23 is provided at the bottom of the inner tank 21.
The cooling water supply unit 23 has a plurality of holes 23a on its upper surface. The module battery 10 is disposed on the cooling water supply unit 23 of the cooling device 20. The cooling water supply unit 23 is provided with the supply pipe 2
7 is connected to the chiller 26. In addition, the outer tank 22
Are connected by a chiller 26 and a discharge pipe 28. The chiller 26 cools the liquid refrigerant supplied from the outer tank 22 through the discharge pipe 28 to a predetermined temperature, and then supplies the liquid refrigerant to the cooling water supply unit 23 of the inner tank 21 through the supply pipe 27.

【0012】まず、内槽21内に冷媒としての水を満た
して、その中にモジュール電池10を配置する。ここ
で、内槽21の開口部の高さが、単電池1のリブ6の上
端よりも高く、かつ蓋2の上面よりも低くなるように設
定される。チラー26を始動させると、装置20内を水
が図中矢印で示すように循環する。すなわち、チラー2
6で冷却された水は、冷却水供給部23に供給され、孔
23aよりモジュール電池10の空間部13に流入す
る。空間部13に流入した水は、上方に流れる間に単電
池1で発生した熱を吸収しながら空間部13を通過す
る。空間部13を通過した冷却水は、その後、内槽21
より溢れ、外槽22に流れ込む。外槽22に流れ込んだ
水は、排出管28より再びチラー26に供給されて冷却
される。ここで、内槽21内の冷却水の液面は、単電池
1のリブ6の上端よりも高いことから、冷却水は単電池
1間の空間部13をスムーズに流れる。また、冷却水の
液面は、蓋2の上面よりも低いことから、極柱4および
5が冷却水中に浸漬するのを防いでいる。もちろん、モ
ジュール電池10の極柱および接続部材14には、上記
のように、水が付着しないように防水キャップ19によ
る防水処理が施されている。
First, the inner tank 21 is filled with water as a refrigerant, and the module battery 10 is disposed therein. Here, the height of the opening of the inner tank 21 is set so as to be higher than the upper end of the rib 6 of the unit cell 1 and lower than the upper surface of the lid 2. When the chiller 26 is started, water circulates in the device 20 as shown by the arrow in the figure. That is, chiller 2
The water cooled in 6 is supplied to the cooling water supply unit 23 and flows into the space 13 of the module battery 10 through the hole 23a. The water that has flowed into the space 13 passes through the space 13 while absorbing heat generated in the unit cells 1 while flowing upward. The cooling water that has passed through the space 13 is then
It overflows and flows into the outer tank 22. The water that has flowed into the outer tub 22 is again supplied to the chiller 26 from the discharge pipe 28 and cooled. Here, since the liquid level of the cooling water in the inner tank 21 is higher than the upper end of the rib 6 of the unit cell 1, the cooling water flows smoothly through the space 13 between the unit cells 1. Further, since the liquid level of the cooling water is lower than the upper surface of the lid 2, the poles 4 and 5 are prevented from being immersed in the cooling water. Needless to say, the poles and the connecting members 14 of the module battery 10 are waterproofed by the waterproof cap 19 so that water does not adhere thereto as described above.

【0013】上記の冷却装置を用いて、電流50Aすな
わち0.5CAで初充電を行った。このとき、チラー2
6により循環させる水の温度を25℃に、その流量を
6.0リットル/分に調整した。
Using the above cooling device, initial charging was performed at a current of 50 A, that is, 0.5 CA. At this time, chiller 2
The temperature of the water circulated through 6 was adjusted to 25 ° C. and the flow rate was adjusted to 6.0 liters / minute.

【0014】《比較例1》同様のモジュール電池10の
空間部13にファンを用いて温度25℃の空気を2.5
m/sで供給しながら、同様に電池を充電した。
Comparative Example 1 Air having a temperature of 25.degree.
The battery was similarly charged while supplying at m / s.

【0015】《比較例2》上記実施例で用いた内槽と同
容積の槽内にモジュール電池10を配置し、さらに、そ
の中に水を水位が上記実施例と同程度になるように注入
した。ついで、この水をチラーで25℃に冷却しなが
ら、流量6.0リットル/分で循環させた。すなわち、
実施例のようなオーバーフローおよび空間部における冷
却水の強制循環を行わずにモジュール電池10を冷却し
た。
<< Comparative Example 2 >> A module battery 10 was placed in a tank having the same volume as the inner tank used in the above-described embodiment, and water was poured into the module battery 10 so that the water level was about the same as in the above-described embodiment. did. Then, the water was circulated at a flow rate of 6.0 liter / min while cooling to 25 ° C. with a chiller. That is,
The module battery 10 was cooled without performing the overflow and forced circulation of the cooling water in the space as in the example.

【0016】以上の実施例および比較例の冷却方法にお
いて、充電時の温度変化をそれぞれ観察した。その結果
を図5に示す。図5より明らかなように、比較例1およ
び比較例2の冷却方法によると、いずれも充電が進むに
つれて、電池の温度が大きく上昇する。特に、空冷した
比較例1によると、充電の途中で電池内圧が安全弁の作
動圧に達し、それ以上の充電が不可能になった。これに
対して、実施例の冷却方法によると、電池の温度は、徐
々に上昇するものの、ほぼ30℃で一定であった。すな
わち、実施例の冷却方法によると、急速充電を行っても
電池の温度上昇を防ぐことができ、効率のよい充電が可
能であることがわかる。
In the cooling methods of the above Examples and Comparative Examples, temperature changes during charging were observed. The result is shown in FIG. As is clear from FIG. 5, according to the cooling methods of Comparative Example 1 and Comparative Example 2, the temperature of the battery greatly increases as charging progresses. In particular, according to the air-cooled Comparative Example 1, the internal pressure of the battery reached the operating pressure of the safety valve during charging, and further charging was impossible. On the other hand, according to the cooling method of the example, although the temperature of the battery gradually increased, it was constant at approximately 30 ° C. That is, according to the cooling method of the embodiment, it can be understood that the temperature of the battery can be prevented from rising even when rapid charging is performed, and that efficient charging is possible.

【0017】上記実施例で説明したように、単電池の重
ね合わせる面にリブを備えたモジュール電池において、
単電池間に形成された空間部に冷媒を循環させることに
より、効果的に電池を冷却することができる。特に、リ
ブを垂直方向に設け、冷媒を下方から上方に向けて循環
させることにより、効率よく冷媒を循環させることがで
き、効果的な冷却が可能になる。また、内槽より冷媒を
オーバーフローさせることにより、冷媒の液面を一定に
することができ、安定した冷却が可能になる。以上のよ
うな冷却方法は、初充放電に限らず、通常使用時の冷却
にも効果的である。とりわけ、効果的な冷却が可能であ
ることから、急速充電が可能になる。無論、本発明は、
ニッケル・水素蓄電池の冷却に限らず、その他の蓄電
池、たとえばニッケル・カドミウム蓄電池や鉛酸蓄電池
のモジュール電池にも適用できる。
As described in the above embodiment, in the module battery having the ribs on the surface where the unit cells overlap,
By circulating the refrigerant through the space formed between the cells, the cells can be effectively cooled. In particular, by providing the ribs in the vertical direction and circulating the refrigerant upward from below, the refrigerant can be efficiently circulated and effective cooling can be achieved. Also, by causing the refrigerant to overflow from the inner tank, the liquid level of the refrigerant can be made constant, and stable cooling can be performed. The cooling method as described above is effective not only for initial charging and discharging but also for cooling during normal use. In particular, rapid cooling is possible because effective cooling is possible. Of course, the present invention
The present invention is not limited to cooling of a nickel-metal hydride storage battery, but may be applied to other storage batteries, for example, a nickel-cadmium storage battery or a module battery of a lead-acid storage battery.

【0018】[0018]

【発明の効果】本発明によると、充放電時の電池の温度
上昇を効果的に抑制することができるモジュール電池の
冷却方法を提供することができる。また、これにより、
効率的に単電池の初充放電を行うことができるモジュー
ル電池の製造方法を提供することができる。
According to the present invention, it is possible to provide a module battery cooling method capable of effectively suppressing a rise in battery temperature during charging and discharging. This also gives
It is possible to provide a method of manufacturing a module battery capable of efficiently performing initial charging and discharging of a unit cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で用いた単電池の構造を示す一
部を切り欠いた斜視図である。
FIG. 1 is a partially cutaway perspective view showing a structure of a unit cell used in an example of the present invention.

【図2】同実施例で用いたモジュール電池の構造を示す
斜視図である。
FIG. 2 is a perspective view showing a structure of a module battery used in the example.

【図3】同モジュール電池の単電池の接合箇所の状態を
示す要部の横断面図である。
FIG. 3 is a cross-sectional view of a main part showing a state of a joint of the unit cells of the module battery.

【図4】同実施例で用いた冷却装置の構造を示す縦断面
図である。
FIG. 4 is a longitudinal sectional view showing a structure of a cooling device used in the embodiment.

【図5】同実施例において、充電量と電池温度の関係を
示す特性図である。
FIG. 5 is a characteristic diagram showing a relationship between a charge amount and a battery temperature in the embodiment.

【符号の説明】[Explanation of symbols]

1 単電池 2 電槽 3 蓋 4、5 極柱 6 リブ 9 安全弁 10 モジュール電池 11 エンドプレート 12 結合部材 13 空間部 14 接続部材 19 防水キャップ 20 冷却装置 21 内槽 22 外槽 23 冷却水供給部 23a 孔 25 結合部材 26 チラー 27 供給管 28 排出管 REFERENCE SIGNS LIST 1 unit cell 2 battery case 3 lid 4, 5 pole 6 rib 9 safety valve 10 module battery 11 end plate 12 connecting member 13 space portion 14 connecting member 19 waterproof cap 20 cooling device 21 inner tank 22 outer tank 23 cooling water supply part 23a Hole 25 Coupling member 26 Chiller 27 Supply pipe 28 Discharge pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤岡 徳行 静岡県湖西市境宿555番地 パナソニック イーブイエナジー株式会社内 (72)発明者 生駒 宗久 静岡県湖西市境宿555番地 パナソニック イーブイエナジー株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Noriyuki Fujioka 555 Sakaijuku, Kosai-shi, Shizuoka Prefecture Inside Panasonic Eve Energy Co., Ltd. (72) Inventor Munehisa 555 Sakaijuku, Kosai-shi, Shizuoka Prefecture Inside Panasonic Eve Energy Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 複数の単電池を積層したモジュール電池
の冷却方法であって、前記モジュール電池が、電槽側面
に縦方向に配列された複数のリブを有する角形の単電池
の複数を、前記リブを互いに突き合わせて構成されたも
のであり、液状の冷媒を前記単電池間に形成された空間
部に流通させるモジュール電池の冷却方法。
1. A method for cooling a module battery in which a plurality of unit cells are stacked, wherein the module battery includes a plurality of square unit cells having a plurality of ribs arranged vertically on a side surface of a battery case. A method for cooling a module battery, wherein ribs are abutted against each other, and wherein a liquid refrigerant flows through a space formed between the unit cells.
【請求項2】 前記冷媒を収容した槽内に前記モジュー
ル電池を前記リブの上端が前記冷媒に浸漬するように配
置して前記空間部に前記冷媒を流通させる請求項1記載
のモジュール電池の冷却方法。
2. The cooling of the module battery according to claim 1, wherein the module battery is disposed in a tank containing the refrigerant so that an upper end of the rib is immersed in the refrigerant, and the refrigerant flows through the space. Method.
【請求項3】 前記冷媒を前記槽より外部に溢れさせな
がら供給する請求項2記載のモジュール電池の冷却方
法。
3. The method for cooling a module battery according to claim 2, wherein the refrigerant is supplied while overflowing the tank from the outside.
【請求項4】 前記空間部を上方に向けて前記冷媒を流
通させる請求項1記載のモジュール電池の冷却方法。
4. The method for cooling a module battery according to claim 1, wherein the cooling medium is circulated with the space facing upward.
【請求項5】 前記冷媒が水である請求項1記載のモジ
ュール電池の冷却方法。
5. The method according to claim 1, wherein the refrigerant is water.
【請求項6】 前記単電池の極柱が、前記冷媒の付着を
防ぐためのシールド部材を備えた請求項1記載のモジュ
ール電池の冷却方法。
6. The method for cooling a module battery according to claim 1, wherein the pole of the unit cell includes a shield member for preventing the attachment of the refrigerant.
【請求項7】 単電池の複数を積層したモジュール電池
の製造方法であって、前記単電池の初充放電を、請求項
1記載のモジュール電池の冷却方法により冷却しながら
行うモジュール電池の製造方法。
7. A method for manufacturing a module battery in which a plurality of unit cells are stacked, wherein the initial charging and discharging of the unit cells are performed while cooling by the module battery cooling method according to claim 1. .
JP4068698A 1998-02-23 1998-02-23 Cooling method for modular battery and its manufacture Pending JPH11238530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4068698A JPH11238530A (en) 1998-02-23 1998-02-23 Cooling method for modular battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4068698A JPH11238530A (en) 1998-02-23 1998-02-23 Cooling method for modular battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH11238530A true JPH11238530A (en) 1999-08-31

Family

ID=12587442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4068698A Pending JPH11238530A (en) 1998-02-23 1998-02-23 Cooling method for modular battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH11238530A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008737A (en) * 2000-06-23 2002-01-11 Mitsubishi Heavy Ind Ltd Energy supply system
EP1091438A3 (en) * 1999-10-08 2002-04-03 Matsushita Electric Industrial Co., Ltd. Battery pack
US7147963B2 (en) 1998-11-27 2006-12-12 Matsushita Electric Industrial Co., Ltd. Battery pack with thermal distribution configuration
WO2007086231A1 (en) * 2006-01-27 2007-08-02 Toyota Jidosha Kabushiki Kaisha Cooling fan control device and method
DE112007002809T5 (en) 2006-11-24 2009-10-22 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Electric power supply system
JP2013089511A (en) * 2011-10-19 2013-05-13 Toyota Industries Corp Secondary battery, temperature control device for secondary battery, and vehicle
US8552683B2 (en) 2010-06-10 2013-10-08 Samsung Sdi Co., Ltd. Charging apparatus
JP2015512022A (en) * 2012-01-27 2015-04-23 ザ・シュア・チル・カンパニー・リミテッドThe Sure Chill Company Limited Refrigeration equipment
US9909799B2 (en) 2013-01-28 2018-03-06 The Sure Chill Company Limited Refrigeration apparatus
CN109860943A (en) * 2018-12-26 2019-06-07 曙光节能技术(北京)股份有限公司 Immersion cell heat dissipation tank
CN109994687A (en) * 2017-12-25 2019-07-09 丰田自动车株式会社 The regenerating unit and regeneration method of nickel-metal hydride battery
CN111211371A (en) * 2018-11-21 2020-05-29 宁德时代新能源科技股份有限公司 Heat exchange plate and battery module
US10704822B2 (en) 2015-09-11 2020-07-07 The Sure Chill Company Limited Portable refrigeration apparatus
NL2026565B1 (en) * 2020-09-28 2022-05-30 Voor De Vve B V Fire-resistant battery enclosure
WO2024066698A1 (en) * 2022-09-28 2024-04-04 常州博瑞电力自动化设备有限公司 Energy storage battery box

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147963B2 (en) 1998-11-27 2006-12-12 Matsushita Electric Industrial Co., Ltd. Battery pack with thermal distribution configuration
EP1091438A3 (en) * 1999-10-08 2002-04-03 Matsushita Electric Industrial Co., Ltd. Battery pack
US6569561B1 (en) 1999-10-08 2003-05-27 Matsushita Electric Industrial Co., Ltd. Battery pack
EP1619740A3 (en) * 1999-10-08 2007-03-28 Matsushita Electric Industrial Co., Ltd. Battery pack
US7291421B2 (en) 1999-10-08 2007-11-06 Matsushita Electric Industrial Co., Ltd. Battery pack
JP2002008737A (en) * 2000-06-23 2002-01-11 Mitsubishi Heavy Ind Ltd Energy supply system
JP4633889B2 (en) * 2000-06-23 2011-02-16 三菱重工業株式会社 Energy supply system
WO2007086231A1 (en) * 2006-01-27 2007-08-02 Toyota Jidosha Kabushiki Kaisha Cooling fan control device and method
JP2007200780A (en) * 2006-01-27 2007-08-09 Toyota Motor Corp Controller for cooling fan
US8219248B2 (en) 2006-01-27 2012-07-10 Toyota Jidosha Kabushiki Kaisha Control device and control method for cooling fan
DE112007002809T5 (en) 2006-11-24 2009-10-22 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Electric power supply system
US8552683B2 (en) 2010-06-10 2013-10-08 Samsung Sdi Co., Ltd. Charging apparatus
JP2013089511A (en) * 2011-10-19 2013-05-13 Toyota Industries Corp Secondary battery, temperature control device for secondary battery, and vehicle
JP2015512022A (en) * 2012-01-27 2015-04-23 ザ・シュア・チル・カンパニー・リミテッドThe Sure Chill Company Limited Refrigeration equipment
US10767916B2 (en) 2012-01-27 2020-09-08 The Sure Chill Company Limited Fluid reservoir refrigeration apparatus
US9909799B2 (en) 2013-01-28 2018-03-06 The Sure Chill Company Limited Refrigeration apparatus
US10704822B2 (en) 2015-09-11 2020-07-07 The Sure Chill Company Limited Portable refrigeration apparatus
CN109994687A (en) * 2017-12-25 2019-07-09 丰田自动车株式会社 The regenerating unit and regeneration method of nickel-metal hydride battery
JP2019115184A (en) * 2017-12-25 2019-07-11 トヨタ自動車株式会社 Regeneration device of nickel hydrogen battery and regeneration method
CN109994687B (en) * 2017-12-25 2022-02-11 丰田自动车株式会社 Regenerating device and method for nickel-hydrogen battery
CN111211371A (en) * 2018-11-21 2020-05-29 宁德时代新能源科技股份有限公司 Heat exchange plate and battery module
CN109860943A (en) * 2018-12-26 2019-06-07 曙光节能技术(北京)股份有限公司 Immersion cell heat dissipation tank
NL2026565B1 (en) * 2020-09-28 2022-05-30 Voor De Vve B V Fire-resistant battery enclosure
WO2024066698A1 (en) * 2022-09-28 2024-04-04 常州博瑞电力自动化设备有限公司 Energy storage battery box

Similar Documents

Publication Publication Date Title
CA2447955C (en) Monoblock battery
JP5145374B2 (en) Integrated battery pack
JP4918029B2 (en) Battery and battery case
US7547487B1 (en) Multi-cell battery assembly
JP3260951B2 (en) Single cell and unit cell of sealed alkaline storage battery
KR100614381B1 (en) Li Ion Secondary Battery
JP3355958B2 (en) Battery cooling method
JPH11238530A (en) Cooling method for modular battery and its manufacture
US20100003581A1 (en) Electric power storage apparatus
CA2619220A1 (en) Battery case having improved thermal conductivity
JP2001110381A (en) Sealed square battery
KR20060118957A (en) Li secondary battery
US6669742B2 (en) Method for producing a nickel metal-hydride storage battery
JP2001060465A (en) Battery
JP2001319682A (en) Square alkaline storage battery, and unit battery and assembled battery using the same
JP7193420B2 (en) Nickel-metal hydride secondary battery manufacturing method
CN101330136A (en) Power storage unit
KR100601536B1 (en) Li Ion Secondary Battery
JPH11121029A (en) Open storage battery for industry requiring no maintenance
KR100615153B1 (en) Lithium secondary battery
CN220324538U (en) Battery pack
JP2002324568A (en) Cell having a plurality of wound pole plates
JP2000149979A5 (en)
JP3339327B2 (en) Storage battery
CN114975896A (en) Method for manufacturing nickel-metal hydride storage battery