JPH08124141A - Magnetic recording medium and magnetic recorder using the same - Google Patents

Magnetic recording medium and magnetic recorder using the same

Info

Publication number
JPH08124141A
JPH08124141A JP26391494A JP26391494A JPH08124141A JP H08124141 A JPH08124141 A JP H08124141A JP 26391494 A JP26391494 A JP 26391494A JP 26391494 A JP26391494 A JP 26391494A JP H08124141 A JPH08124141 A JP H08124141A
Authority
JP
Japan
Prior art keywords
magnetic
film
recording medium
alloy
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26391494A
Other languages
Japanese (ja)
Inventor
Yuzuru Inagaki
譲 稲垣
Yoshifumi Matsuda
好文 松田
Yuzuru Hosoe
譲 細江
Shinan Yaku
四男 屋久
Akira Kato
章 加藤
Shioji Fujita
塩地 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26391494A priority Critical patent/JPH08124141A/en
Publication of JPH08124141A publication Critical patent/JPH08124141A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To decrease medium noises and to enhance S/N by specifying the film thickness of nonmagnetic ground surface films to >=0.3 to <=10nm and specifying the coercive force of a magnetic head for recording and reproducing information to >=2.4 kilooersted. CONSTITUTION: Amorphous plating layers 22, 22' which consist of an Al-4wt.% alloy having an outside diameter of 95mm, a bore of 25mm and a thickness of 0.8mm and have a film thickness of 13μm are formed. The product Brxt of the total (t) of these alloy based magnetic layers and the residual magnetic flux density Br measured by impressing a magnetic field in the relative traveling direction of the magnetic head with a magnetic recording medium at the time of recording is specified to >=10 to <=60 gauss microns. The coercive force Hc of the magnetic recording medium measured by impressing the magnetic field in the direction described above is specified to >=2.4 kilooersted, by which the recording and reproducing of the high-density information of >=2 gigabits per square inch are made possible as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ディスク用等の情
報記録用磁気記録媒体に係り、特に、1平方インチ当た
り1ギガビット以上の面記録密度を有する、高密度の情
報記録に適した磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium for information recording such as a magnetic disk, and more particularly to a magnetic recording medium having an areal recording density of 1 gigabit per square inch or more and suitable for high density information recording. Recording medium

【0002】[0002]

【従来の技術】従来、磁化を面内方向に反転させて記録
する面内磁気記録用の媒体では、Coのような強磁性金
属を主成分としたCo基合金系磁性薄膜を記録層として
いる。より高密度の情報記録を可能とするためには、こ
の記録層に対して媒体ノイズを小さくし、保磁力を高め
ることが要求されている。比較的高い保磁力が得られる
Co合金系磁性膜として、従来Co−Cr−Ta系より
もCo−Cr−Pt系あるいはCo−Ni−Pt系等の
Ptを含んだCo基合金磁性膜を用いたものが、例えば
IEEE Trans,on Magn.,Vol.2
7(1991),P5280(文献1)に示されてい
る。
2. Description of the Related Art Conventionally, in a medium for in-plane magnetic recording in which magnetization is reversed in the in-plane direction for recording, a Co-based alloy magnetic thin film containing a ferromagnetic metal such as Co as a main component is used as a recording layer. . In order to enable higher density information recording, it is required to reduce medium noise and increase coercive force for this recording layer. As a Co alloy-based magnetic film having a relatively high coercive force, a Co-based alloy magnetic film containing Pt such as a Co—Cr—Pt system or a Co—Ni—Pt system is used as compared with a conventional Co—Cr—Ta system. Others, such as IEEE Trans, on Magn. , Vol. Two
7 (1991), P5280 (Reference 1).

【0003】また、一般に、保磁力を大きくするためC
rあるいはCrを主成分とする合金系非磁性下地膜の
{100}結晶面及び、Co基合金系磁性薄膜{11.
0}結晶面を記録面に並行にする手法が特開平1−22
0217号公報(文献2)により、また、合金系非磁性
下地膜の{110}結晶面上にCo基合金系磁性薄膜の
{10.0}結晶面を記録面に平行にエピタキシャル成
長させる手法が米国特許5082747号明細書(文献
3)等により、それぞれ提案されている。また、媒体ノ
イズ低減のための有効な方法として、記録層を空間的に
分離することにより、磁性結晶粒を磁気的に孤立化させ
ることが例えば、IEEE Trans.on Mag
n.,Vol.26,No.5(1990)p.227
1−2276(文献4)により知られている。また、C
rあるいはCrを主成分とする合金非磁性下地膜の膜厚
を薄くすることにより、磁性結晶粒系を小さくすること
が有効であると例えば、IEEE Trans.on
Magn.,Vol.29,No.6(1993)p.
3688−3690(文献5)に示されている。
In general, C is used to increase the coercive force.
{100} crystal plane of an alloy-based non-magnetic undercoating film containing r or Cr as a main component and a Co-based alloy-based magnetic thin film {11.
A method of making the (0) crystal plane parallel to the recording surface is disclosed in Japanese Patent Laid-Open No. 1-22.
According to Japanese Patent Application Laid-Open No. 0217 (Reference 2), a method of epitaxially growing the {10.0} crystal plane of a Co-based alloy magnetic thin film on the {110} crystal plane of an alloy-based nonmagnetic underlayer in parallel with the recording surface is described in US It is proposed by the specification of Japanese Patent No. 5082747 (Document 3) and the like. Further, as an effective method for reducing the medium noise, magnetically isolating the magnetic crystal grains by spatially separating the recording layer is described in, for example, IEEE Trans. on Mag
n. , Vol. 26, No. 5 (1990) p. 227
1-22276 (reference 4). Also, C
It is effective to reduce the magnetic crystal grain system by reducing the film thickness of the alloy non-magnetic underlayer film containing r or Cr as the main component, for example, IEEE Trans. on
Magn. , Vol. 29, No. 6 (1993) p.
3688-3690 (reference 5).

【0004】[0004]

【発明が解決しようとする課題】より高密度化を実現す
るためには、例えば、IEEE Trans.on M
agn.,Vol.28(1992年)P3078−3
083(文献6)に示されているように、ビット境界の
磁化からの反磁界に打ち勝って磁化を記録方向に保持し
ておくために保磁力Hcを高くすると同時に、上記記録
層の膜厚δと残留磁束密度Brの積Br.δを小さくし
て反磁界を小さくする必要がある。1平方インチ当たり
1ギガビット以上の記録密度を達成するには、2.4k
Oeを超える保磁力が必要になることが分かっている。
To achieve higher density, for example, IEEE Trans. on M
agn. , Vol. 28 (1992) P3078-3
083 (reference 6), the coercive force Hc is increased in order to overcome the demagnetizing field from the magnetization of the bit boundary and hold the magnetization in the recording direction, and at the same time, the film thickness δ of the recording layer is increased. Of the residual magnetic flux density Br and Br. It is necessary to reduce δ to reduce the demagnetizing field. 2.4k to achieve recording density of 1 gigabits or more per square inch
It has been found that a coercive force exceeding Oe is required.

【0005】しかしながら、実際には、磁気抵抗効果型
素子を用いた記録・再生分離型ヘッドと上記磁気記録媒
体を、どのように組み合わせることにより高い記録密度
を持つ磁気ディスク装置を実現できるかについては、十
分に検討されていなかった。
However, in practice, how to combine the recording / reproducing separated head using the magnetoresistive effect element and the above magnetic recording medium to realize a magnetic disk device having a high recording density is described. , Was not considered enough.

【0006】さらに、本発明者等の研究によると、実際
には、媒体ノイズ低減のためにCrあるいはCrを主成
分とする合金系非磁性下地膜の膜厚を薄くして行くと、
下地膜の結晶性が悪化することにより保磁力Hcが低下
し、高密度化できないことがわかった。本発明者等は更
に研究を重ねたところ、合金非磁性下地膜の膜厚を薄く
して行くと、上記のように保磁力Hcは、ある所までは
低下して行くが、それを越えて更に薄くして行くと、極
薄の下地膜とした場合において、再び高い保磁力Hcを
示す範囲があることが見出された。
Further, according to the research conducted by the present inventors, in practice, when the thickness of Cr or an alloy-based non-magnetic underlayer containing Cr as a main component is reduced in order to reduce medium noise,
It was found that the coercive force Hc was lowered due to the deterioration of the crystallinity of the base film, and the density could not be increased. The inventors of the present invention have conducted further research, and as the thickness of the alloy non-magnetic underlayer is reduced, the coercive force Hc decreases to a certain point as described above, but beyond that. When the thickness was further reduced, it was found that there was a range in which a high coercive force Hc was exhibited again when an extremely thin underlayer was formed.

【0007】本発明は以上の点に鑑みなされたものであ
って、本発明の目的は、上記の従来技術の問題点を解決
し、特殊構成の下地膜を用いることによって1平方イン
チ当たり1ギガビット以上の高密度な情報の記録再生が
可能な、高保磁力、低ノイズ磁気記録媒体を提供するこ
とにある。本発明の付加的な目的は、上記のような高保
磁力、低ノイズ磁気記録媒体と組み合わせて用いられる
信頼性の高い磁気記録装置を提供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to solve the above-mentioned problems of the prior art and to use a specially-structured base film to achieve 1 gigabits per square inch. An object of the present invention is to provide a high coercive force, low noise magnetic recording medium capable of recording and reproducing high-density information as described above. An additional object of the present invention is to provide a highly reliable magnetic recording device which is used in combination with the above high coercive force and low noise magnetic recording medium.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、非磁性基板上に、少なくとも一層以上の
非磁性下地膜を介し、Co基合金系等の合金系磁性薄膜
による情報記録層が形成されている(必要に応じてその
上にC,SiO2,ZrO2等の保護膜、さらに最表面
に高分子材料による潤滑膜が形成されている)磁気記録
媒体において、以下の構成を備えたものである。
In order to achieve the above object, the present invention provides an information based on an alloy magnetic thin film such as a Co-based alloy based on at least one nonmagnetic underlayer on a nonmagnetic substrate. A magnetic recording medium in which a recording layer is formed (a protective film of C, SiO2, ZrO2, etc., if necessary, and a lubricating film made of a polymer material is formed on the outermost surface thereof) has the following structure. Be prepared.

【0009】(1) 前記非磁性下地膜の膜厚が0.3
nm以上、10nm以下であることを特徴とするもので
ある。この時下地膜の膜厚は0.5nm以上、2nm以
下であることが望ましい、さらに、この時の非磁性下地
膜がCrおよびTiを主成分とする合金、情報記録層が
Co,CrおよびPtを主成分とする合金磁性膜、下地
膜の膜厚が2nmであることが望ましい。上記の構造に
より、記録方向の保磁力は2.4kOe以上が得られ
る。
(1) The thickness of the non-magnetic underlayer is 0.3
It is characterized in that it is not less than 10 nm and not more than 10 nm. At this time, the thickness of the underlayer is preferably 0.5 nm or more and 2 nm or less. Furthermore, the nonmagnetic underlayer at this time is an alloy containing Cr and Ti as main components, and the information recording layer is Co, Cr and Pt. It is desirable that the film thickness of the alloy magnetic film and the underlayer film whose main component is 2 nm. With the above structure, a coercive force in the recording direction of 2.4 kOe or more can be obtained.

【0010】(2) 非磁性基板上に形成する非磁性下
地膜において、結晶粒の粒径が10nm以下で分散した
島状の構造をとる金属から成り、蛍光X線装置等により
測定される平均的な膜厚が0.1nm以上、10nm以
下であることを特徴とするものである。この時の下地膜
の膜厚は0.5nm以上、2nm以下であることが望ま
しい。さらに、この時の非磁性下地膜がCrおよびTi
を主成分とする合金、情報記録層がCo,CrおよびP
tを主成分とする合金磁性膜、下地膜の膜厚が2nmで
あることが望ましい。さらに、合金磁性膜の磁性結晶粒
の粒径は1平方インチ当たり1ギガビット以上の面記録
密度を実現するためには20nm以下であることが望ま
しい。上記の構造により、記録方向の保磁力は2.4k
Oe以上が得られる。
(2) The non-magnetic underlayer film formed on the non-magnetic substrate is made of a metal having an island-like structure in which the crystal grains have a grain size of 10 nm or less, and is an average measured by a fluorescent X-ray apparatus or the like. The characteristic film thickness is 0.1 nm or more and 10 nm or less. At this time, the thickness of the base film is preferably 0.5 nm or more and 2 nm or less. Further, the non-magnetic underlayer film at this time is made of Cr and Ti.
Containing Al as the main component, and the information recording layer having Co, Cr and P
It is desirable that the film thickness of the alloy magnetic film containing t as a main component and the underlayer film be 2 nm. Further, the grain size of the magnetic crystal grains of the alloy magnetic film is preferably 20 nm or less in order to achieve an areal recording density of 1 gigabit per square inch or more. With the above structure, the coercive force in the recording direction is 2.4k.
Oe or higher is obtained.

【0011】なお、非磁性下地膜は、Cr、Ti、M
o、W、V、Nb、Ta、Cu、Ag、Mn、Zr、H
f、Siのいずれかを主成分とする合金から成ればよ
く、その膜厚は、0.5nm以上、2nm以下であるこ
とが望ましい。
The non-magnetic underlayer is made of Cr, Ti, M.
o, W, V, Nb, Ta, Cu, Ag, Mn, Zr, H
It may be made of an alloy containing f or Si as a main component, and its film thickness is preferably 0.5 nm or more and 2 nm or less.

【0012】(3) 非磁性基板上に非磁性下地膜を介
して形成された情報記録層において、最密六方格子結晶
構造であるCo,CrおよびPtを主成分とする合金磁
性膜から成り、その結晶粒のc軸の方位が基板面に略平
行であるものと、基板面に略垂直であるものが混在する
ことを特徴とするものである。この時の下地膜の膜厚は
0.5nm以上、2nm以下であることが望ましい。さ
らに、この時の非磁性下地膜がCrおよびTiを主成分
とする合金、情報記録層がCo,CrおよびPtを主成
分とする合金磁性膜、下地膜の膜厚が2nmであること
が望ましい。上記の構造により、記録方向の保磁力は
2.4kOe以上が得られる。
(3) In the information recording layer formed on the non-magnetic substrate via the non-magnetic underlayer, an alloy magnetic film containing Co, Cr and Pt, which are close-packed hexagonal lattice crystal structures, as main components, It is characterized in that the crystal grains of which the c-axis orientation is substantially parallel to the substrate surface and those of which the crystal grains are substantially perpendicular to the substrate surface coexist. At this time, the thickness of the base film is preferably 0.5 nm or more and 2 nm or less. Further, at this time, it is preferable that the non-magnetic undercoating film has an alloy containing Cr and Ti as main components, the information recording layer has an alloy magnetic film containing Co, Cr and Pt as main components, and the undercoating film has a thickness of 2 nm. . With the above structure, a coercive force in the recording direction of 2.4 kOe or more can be obtained.

【0013】なお、上記(1)〜(3)の磁気記録媒体
と組み合わせられる磁気記録装置で用いる磁気ヘッドと
しては、再生素子に磁気抵抗効果型素子を用いた記録・
再生分離型ヘッドであることが必要である。本発明の上
記(1)、(2)あるいは(3)の磁気記録媒体は、磁
気抵抗効果型素子の特徴である高い再生感度との組み合
わせにより、例えば1平方インチ当たり1ギガビット以
上の記録密度で記録・再生する場合にも十分なS/Nが
得られる。さらに、上記磁気ヘッドの再生部を、互いの
磁化方向が外部磁界によって相対的に変化し、これによ
り、大きな抵抗変化を生じる複数の導電性磁性層と該導
電性磁性層の間に配置された導電性非磁性層とを含む磁
気抵抗センサによって構成し、かつ、前記合金系磁性層
の厚さの合計tと、記録時における該磁気記録媒体に対
する上記磁気ヘッドの相対的な走行方向に磁界を印加し
て測定した残留磁束密度Brとの積Br×tを10ガウ
ス・ミクロン以上、60ガウス・ミクロン以下とし、上
記方向に磁界を印加して測定した上記磁気記録媒体の保
持力Hcを2.4キロエルステッド以上とすることによ
り、1平方インチ当り2ギガビット以上の高密度な情報
の記録再生も可能となる。
In the magnetic head used in the magnetic recording apparatus combined with the magnetic recording medium of the above (1) to (3), a recording / reproducing element using a magnetoresistive element is used.
It must be a regenerative separation type head. The magnetic recording medium according to the above (1), (2) or (3) of the present invention has a recording density of, for example, 1 gigabits per square inch or more due to a combination with a high reproducing sensitivity which is a characteristic of the magnetoresistive effect element. Sufficient S / N can be obtained even when recording / reproducing. Further, the reproducing portion of the magnetic head is arranged between a plurality of conductive magnetic layers which cause a large resistance change due to a mutual change of their magnetization directions by an external magnetic field, and the conductive magnetic layers. A magnetic resistance sensor including a conductive non-magnetic layer, and a magnetic field is generated in the traveling direction of the magnetic head relative to the magnetic recording medium during recording and the total thickness t of the alloy magnetic layer. 1. The product Br × t with the residual magnetic flux density Br applied and measured is 10 gauss · micron or more and 60 gauss · micron or less, and the coercive force Hc of the magnetic recording medium measured by applying a magnetic field in the above direction is 2. By setting the distance to 4 kilo-oersted or more, it is possible to record and reproduce high-density information of 2 gigabits or more per 1 square inch.

【0014】[0014]

【作用】上記構成に基づく作用を説明する。The operation based on the above configuration will be described.

【0015】本発明者らは以下の方法により面内磁気記
録媒体を作製し、上記の機能を確認した。Ni−Pをメ
ッキし、その表面を鏡面研磨したAl−Mg合金、化学
強化ガラス、結晶化ガラス等の種々の3.5インチ磁気
ディスク用基板上に、該基板をタクト時間30秒一定で
一枚ずつ順次送りながら、上記磁気記録用媒体を構成す
る各膜をそれぞれ別々の成膜室で形成する枚葉式スパッ
タ装置で、dcマグネトロンスパッタ法により作製し
た。ここで成膜条件は、主真空槽の背圧:5×10のマ
イナス8乗Torr以下、基板温度:100〜300
℃、Arガス圧:5〜30mTorr、投入電力:ター
ゲットサイズが6インチに対して1〜4kWと種々に変
えた。上記種々の基板上に膜厚0.3〜100nmのC
rおよびTiを主成分とする合金非磁性下地膜を形成
し、さらに、連続して膜厚10〜40nmの種々の組成
のCo,CrおよびTaあるいはCo,CrおよびPt
を主成分とする合金磁性膜を形成し、その上にC保護膜
を形成して、磁気特性、結晶学的特性、記録再生特性等
を評価した。記録再生特性の測定は、薄膜ヘッドとMR
ヘッドを複合した記録・再生分離型ヘッドにより評価し
た。その結果、例えば、基板温度を270℃とし、上記
下地膜としてCr−15at%Tiを、Arガス圧:5
mTorr、投入電力:4kWで形成し、上記磁性膜と
してCo−20at%Cr−8at%Ptを、Arガス
圧:5mTorr、投入電力:1kWで形成した場合、
蛍光X線装置により測定される下地膜の平均的な膜厚を
0.1〜100nmと変えたときの、情報を記録・再生
する磁気ヘッドの相対的な走行方向に磁界を印加して測
定した保磁力Hcの変化を図1に示す。
The present inventors produced an in-plane magnetic recording medium by the following method and confirmed the above function. Various 3.5-inch magnetic disk substrates, such as Al-Mg alloy, chemically strengthened glass, and crystallized glass, whose surfaces were mirror-polished with Ni-P plated, were placed at a constant takt time of 30 seconds. The film was formed by the dc magnetron sputtering method in a single-wafer type sputtering apparatus in which the respective films constituting the magnetic recording medium are formed in separate film forming chambers while sequentially feeding the films one by one. Here, the film forming conditions are as follows: back pressure of main vacuum chamber: 5 × 10 −8 Torr or less, substrate temperature: 100 to 300
C, Ar gas pressure: 5 to 30 mTorr, input power: variously changed to 1 to 4 kW for a target size of 6 inches. C with a film thickness of 0.3 to 100 nm on the above various substrates
An alloy non-magnetic undercoating film mainly composed of r and Ti is formed, and further, Co, Cr and Ta or Co, Cr and Pt having various compositions with a film thickness of 10 to 40 nm are continuously formed.
An alloy magnetic film containing as a main component was formed, and a C protective film was formed thereon, and magnetic properties, crystallographic properties, recording / reproducing properties, etc. were evaluated. Recording / reproduction characteristics are measured with a thin film head and MR.
Evaluation was performed using a recording / reproducing separated head having a combined head. As a result, for example, the substrate temperature is set to 270 ° C., Cr-15 at% Ti is used as the base film, and the Ar gas pressure is 5
When the magnetic film is formed of Co-20 at% Cr-8 at% Pt with Ar gas pressure of 5 mTorr and input power of 1 kW, the magnetic film is formed with mTorr and input power of 4 kW.
Measurement was performed by applying a magnetic field in the relative traveling direction of the magnetic head for recording / reproducing information when the average film thickness of the underlayer film measured by a fluorescent X-ray device was changed to 0.1 to 100 nm. The change in coercive force Hc is shown in FIG.

【0016】図1は、本発明の磁気記録媒体の磁気特性
を示す図で、同図(a)は非磁性下地膜に対する保磁力
を示し、同図(b)は同図(a)の一部を拡大して示す
図である。図1でHcは、下地膜の膜厚の低下とともに
減少するが、2nmにおいて上昇し2.4kOe以上が
得られた。しかし、下地膜の膜厚が2nmより薄いとこ
ろでは保磁力は再び低下し、2nmでピークを持つこと
が分かった。このとき、X線回析装置による回析パター
ンからは、下地膜の膜厚が2nmのときには、Cr−1
5at%Tiの{100}結晶面にエピタキシャル成長
したと考えられるCo−20at%Cr−8at%Pt
の{11・0}結晶面と、最密六方格子結晶構造の最密
面である{00・1}結晶面が混在している。これは、
Cr−Ti合金非磁性下地膜において、結晶粒が分散し
た島状の構造をとっているためである。つまり、下地膜
の膜厚が極めて薄い場合、下地膜はところでどころで地
肌(基板面)が露出した状態になる。そのため、スパッ
タリングにより、非磁性下地膜上に成膜された合金磁性
膜と、Ni−P等の金属メッキから成る基板面に直接成
膜された合金磁性膜が混在している。基板がアモルファ
スの場合、その上に直接成膜される最密六方格子結晶構
造のCo基合金系磁性薄膜は、最密面である{00・
1}結晶面が優先的に成長する。また、上記のように下
地膜上に成膜されるCo基合金系薄膜は、{11・0}
結晶面が優先的に成長する。したがって、結晶粒のc軸
の方位が基板面に略平行であるもの(結晶が横に寝たも
の)と、略垂直であるもの(結晶が立ったもの)が混在
することになる。このように結晶粒が混在する場合、保
磁力が著しく増大することがわかった。
FIG. 1 is a diagram showing the magnetic characteristics of the magnetic recording medium of the present invention. FIG. 1 (a) shows the coercive force with respect to a non-magnetic underlayer, and FIG. 1 (b) shows one of those in FIG. It is a figure which expands and shows a part. In FIG. 1, Hc decreases with a decrease in the film thickness of the base film, but increases at 2 nm and is 2.4 kOe or more. However, it was found that the coercive force decreased again when the film thickness of the base film was thinner than 2 nm, and had a peak at 2 nm. At this time, from the diffraction pattern obtained by the X-ray diffraction apparatus, it was found that Cr-1
Co-20 at% Cr-8 at% Pt which is considered to have been epitaxially grown on the {100} crystal plane of 5 at% Ti.
The {11.0} crystal plane of {circumflex over (1)} and the {00.1} crystal plane which is the closest packed plane of the closest packed hexagonal lattice crystal structure coexist. this is,
This is because the Cr-Ti alloy nonmagnetic underlayer film has an island-like structure in which crystal grains are dispersed. That is, when the film thickness of the base film is extremely thin, the ground film (substrate surface) is exposed in some places in the base film. Therefore, the alloy magnetic film formed on the non-magnetic undercoat film by sputtering and the alloy magnetic film formed directly on the substrate surface made of metal plating such as Ni-P coexist. When the substrate is amorphous, the Co-based alloy-based magnetic thin film having a close-packed hexagonal lattice crystal structure formed directly on it has a close-packed surface {00.
1} Crystal planes grow preferentially. In addition, the Co-based alloy thin film formed on the base film as described above is {11.0}
Crystal planes grow preferentially. Therefore, a crystal grain having a c-axis orientation substantially parallel to the substrate surface (a crystal lying sideways) and a crystal grain having a substantially vertical orientation (a crystal standing) are mixed. It was found that the coercive force remarkably increases when the crystal grains are mixed.

【0017】従来から非磁性下地膜の膜厚を薄くする
と、磁性膜の結晶粒子が小さくなることや媒体ノイズが
低下することは知られているが、従来から知られている
る非磁性下地膜の膜厚の最低限度はせいぜい略30nm
までであって、30nm以下とした場合の各種の特性は
十分に確かめられていなかった。本発明者等は、更に非
磁性下地膜の膜厚を30nm以下と薄くしたことによ
り、上述の図1を始め図5,図6,図7に示すように、
この膜厚の0.3nm以上10nm以下において、高保
磁力と低媒体ノイズ化により高S/Nが得られることを
見出し確かめたものである。このような極薄の膜厚は、
原子の寸法レベルで数原子以下の場合を含んでいる。
It has been conventionally known that when the thickness of the non-magnetic underlayer film is reduced, the crystal grains of the magnetic film are reduced and the medium noise is reduced. The minimum thickness of the film is at most about 30 nm
However, various characteristics have not been sufficiently confirmed when the thickness is 30 nm or less. The inventors of the present invention further reduced the thickness of the non-magnetic underlayer film to 30 nm or less, so that as shown in FIG. 1, FIG. 5, FIG.
It was found and confirmed that a high coercive force and a low S / N can be obtained at a film thickness of 0.3 nm or more and 10 nm or less. Such an ultra-thin film thickness is
This includes cases where the atomic size level is less than a few atoms.

【0018】詳細には、媒体ノイズNdは、図6に示す
ように非磁性下地膜の膜厚を10nm程度までまたはそ
れ以下に薄くすることにより低減することができる。ま
た、保磁力Hcは、図1(a)に示すように下地膜の膜
厚が30nm以下になると10nmまでは急激に減少す
る。Hcが減少すると媒体の2f出力E2fは、図5に
示すように減少する。例えば、面記録密度1Gbit/
in2を達成するために必要な線記録密度150kBP
Iの時の媒体のS/Nは、下地膜の膜厚が50nm以下
ではE2fの減少により改善されなかった。ところが、
本発明者等による今回の発見により、下地膜の膜厚が2
nmのときにHcが大幅に上昇したため、低いNdと相
乗効果により、図7に示すような従来得られていた値よ
り高いS/Nが得られた。このように、従来見出されな
かった減少が発見できたのは、上記のような従来に比べ
て極薄な下地膜の詳細な検討によるものである。
More specifically, the medium noise Nd can be reduced by reducing the thickness of the non-magnetic underlayer film to about 10 nm or less as shown in FIG. In addition, the coercive force Hc sharply decreases to 10 nm when the thickness of the underlayer film becomes 30 nm or less as shown in FIG. As Hc decreases, the 2f output E2f of the medium decreases as shown in FIG. For example, areal recording density 1 Gbit /
150kBP linear recording density required to achieve in2
The S / N of the medium at I was not improved due to the decrease of E2f when the thickness of the underlayer film was 50 nm or less. However,
According to the present discovery by the present inventors, the thickness of the base film is 2
Since the Hc greatly increased at nm, the S / N higher than the conventionally obtained value as shown in FIG. 7 was obtained due to the synergistic effect with the low Nd. As described above, the fact that a reduction that has not been found in the past was discovered is due to a detailed study of the above-described base film that is extremely thin as compared with the conventional one.

【0019】[0019]

【実施例】以下に、本発明の実施例を添付図面を参照し
て更に詳細に説明する。
Embodiments of the present invention will now be described in more detail with reference to the accompanying drawings.

【0020】図2は、本発明に係わる面内磁気記録媒体
の断面構造を模式的に示したものである。同図におい
て、符号21はAl−Mg合金、化学強化ガラス、結晶
化ガラス、チタン、シリコン、カーボン或いはセラミッ
クス等からなる基板、22および22’は基板21の両
面に形成したNi−P,Ni−W−P等からなる非磁性
メッキ層である。Al−Mg合金を基板として用いた場
合にはこのようなメッキ層を備えたものを基板として使
用する。23および23’は、Cr,Mo,W,または
Cr,Mo,Wのいずかを主成分とする合金から成る非
磁性下地膜、24および24’は該下地膜の上に形成し
たCo−Sm,Co−Ni−Cr,Co−Ni−Pt,
Co−Ni−P,Co−Cr−Ta,Co−Cr−P
t,Co−Cr−W,Co−Cr−Si,Co−Cr−
Ta−Pt等からなるCo基合金系等の合金磁性膜、2
5および25’は該磁性膜の上に形成したカーボン、ボ
ロン、SiO2、ZrO2等からなる非磁性保護膜をそ
れぞれ示す。
FIG. 2 schematically shows the sectional structure of the in-plane magnetic recording medium according to the present invention. In the figure, reference numeral 21 is a substrate made of Al-Mg alloy, chemically strengthened glass, crystallized glass, titanium, silicon, carbon or ceramics, and 22 and 22 'are Ni-P and Ni- formed on both surfaces of the substrate 21. It is a non-magnetic plating layer made of WP or the like. When an Al-Mg alloy is used as the substrate, one having such a plating layer is used as the substrate. 23 and 23 'are non-magnetic underlayer films made of Cr, Mo, W, or an alloy containing Cr, Mo, W as a main component, and 24 and 24' are Co-layers formed on the underlayer film. Sm, Co-Ni-Cr, Co-Ni-Pt,
Co-Ni-P, Co-Cr-Ta, Co-Cr-P
t, Co-Cr-W, Co-Cr-Si, Co-Cr-
Co-based alloy-based alloy magnetic film made of Ta-Pt or the like, 2
Reference numerals 5 and 25 'denote nonmagnetic protective films formed on the magnetic film and made of carbon, boron, SiO2, ZrO2 and the like.

【0021】《実施例1》外径95mm,内径25m
m,厚さ0.8mmのAl−4重量%Mg合金、から成
るディスク基板21の両面にNi−12.5重量%Pか
ら成る膜厚13μmのアモルファスのメッキ層22,2
2’を形成した。この非磁性基板の表面に、ラッピング
とその後のテープポリッシングにより、略円周方向にテ
クスチャーを形成した。その後、基板に付着した研磨剤
等の汚れを洗浄・除去して乾燥した。こうして形成され
た基板を上記の枚葉式dcマグネトロンスパッタ装置の
基板仕込み室に装填して真空に引いた後、当該基板を加
熱室、非磁性下地膜形成室、磁性膜形成室、非磁性保護
膜形成室および取り出し室の順に真空度4×10のマイ
ナス8乗Torr以下の主排気槽を介しながら搬送し、
それぞれの室でそれぞれの膜を形成した。まず、当該加
熱室で270℃に加熱し、5mTorrのアルゴン圧の
もとでCrターゲットに1kWの電力を加えて、膜厚1
0nmのCr下地膜23,23’を形成した。この下地
膜の上に、5mTorrのアルゴン圧のもとでターゲッ
トに1kWの電力を加えて、Co−16at%Cr−6
at%Taから成る膜厚27nmの合金磁性膜24,2
4’を積層した。さらに、この磁性膜の上に6mTor
rのアルゴン圧のもとでターゲットに2kWの電力を加
えて、膜厚10nmのカーボン保護膜25,25’を形
成した。そして、当該保護膜上に吸着性のパーフルオロ
ポリエーテル等の潤滑層を形成し、3.5インチ磁気デ
ィスクとした。
Example 1 Outer diameter 95 mm, inner diameter 25 m
m, a 0.8 mm thick Al-4 wt% Mg alloy, on both sides of a disk substrate 21 made of Ni-12.5 wt% P and having a film thickness of 13 μm.
2'formed. A texture was formed on the surface of the non-magnetic substrate in a substantially circumferential direction by lapping and subsequent tape polishing. After that, stains such as abrasives adhered to the substrate were washed and removed and dried. The substrate thus formed is loaded into the substrate preparation chamber of the above-mentioned single-wafer dc magnetron sputtering apparatus and evacuated, and then the substrate is heated, the non-magnetic undercoat film formation chamber, the magnetic film formation chamber, and the non-magnetic protection. The film forming chamber and the take-out chamber are transferred in this order through a main exhaust tank having a vacuum degree of 4 × 10 and a minus 8th power Torr or less,
Each film was formed in each chamber. First, heating to 270 ° C. in the heating chamber, applying a power of 1 kW to a Cr target under an argon pressure of 5 mTorr to obtain a film thickness of 1
Cr underlayer films 23 and 23 'having a thickness of 0 nm were formed. On this underlayer film, under the argon pressure of 5 mTorr, 1 kW of electric power was applied to the target to produce Co-16 at% Cr-6.
Alloy magnetic films 24 and 2 made of at% Ta and having a film thickness of 27 nm
4'was laminated. In addition, 6mTor on this magnetic film
Power of 2 kW was applied to the target under an argon pressure of r to form carbon protective films 25 and 25 'having a film thickness of 10 nm. Then, a lubricating layer of adsorbent perfluoropolyether or the like was formed on the protective film to obtain a 3.5-inch magnetic disk.

【0022】《実施例2》実施例1において、非磁性下
地膜の組成をCr−15at%Ti、合金磁性膜の組成
をCo−20at%Cr−12at%Ptとし、さらに
実施例1の磁性膜と上記記録層の膜厚δと残留磁束密度
Brの積Br・δを略同一とするために、当該磁性膜の
膜厚を23nmとした以外は実施例1と同様な方法で磁
気ディスクを形成した。
Example 2 In Example 1, the composition of the non-magnetic underlayer film was Cr-15 at% Ti, the composition of the alloy magnetic film was Co-20 at% Cr-12 at% Pt, and the magnetic film of Example 1 was used. In order to make the product Br · δ of the recording layer thickness δ and the residual magnetic flux density Br approximately the same, a magnetic disk was formed by the same method as in Example 1 except that the thickness of the magnetic film was 23 nm. did.

【0023】《実施例3》実施例2において、非磁性下
地膜の膜厚を2nmとした以外は実施例2と同様な方法
で磁気ディスクを形成した。
Example 3 A magnetic disk was formed in the same manner as in Example 2 except that the thickness of the nonmagnetic underlayer film was changed to 2 nm.

【0024】《実施例4》実施例1において、この非磁
性基板の表面をラッピングにより面粗さ1nm程度に鏡
面研磨を施した超平滑基板とし、基板に付着した研磨剤
等の汚れを洗浄・除去して乾燥した。こうして形成され
た基板を用いて実施例3と同様な方法で磁気ディスクを
形成した。
<Embodiment 4> In Embodiment 1, the surface of the non-magnetic substrate is mirror-polished to have a surface roughness of about 1 nm by lapping to form an ultra-smooth substrate, and dirt such as an abrasive adhered to the substrate is washed. Removed and dried. Using the substrate thus formed, a magnetic disk was formed in the same manner as in Example 3.

【0025】《比較例1》実施例2において、非磁性下
地膜の膜厚を15nmとした以外は実施例2と同様な方
法で磁気ディスクを形成した。
Comparative Example 1 A magnetic disk was formed in the same manner as in Example 2 except that the thickness of the non-magnetic underlayer film was changed to 15 nm.

【0026】このようにして形成した磁気ディスクの磁
気特性や記録再生特性を評価した。磁気特性は、上記磁
気ディスクをその半径34mmの位置から8mm×8m
mの略正方形状に切り出し、片面の磁性膜を削り落とし
た試料を作製し、振動試料型磁力計を用いて最大印加磁
界を10kOeとして測定した。また、記録再生特性の
評価は、磁気ヘッドとして、記録をギャップ長0.4μ
m、トラック幅3.0μm、巻線数30回の薄膜型ヘッ
ド、再生をシールド間隔0.3μm、トラック幅2.6
μmのMRヘッドとした記録再生分離型ヘッドを用いて
行なった。記録再生時における磁気ヘッドと磁気記録媒
体間の磁気的な隙間は0.07μmと設定し、出力半減
記録密度(D50)および線記録密度150kBPIの
時のS/Nの値を求めた。表1に示すように上記実施例
4では保磁力は円周方向で2.7kOe以上と比較例1
に対して100Oe以上大きく、S/Nは1.88以上
と高い磁気ディスクが得られた。
The magnetic characteristics and recording / reproducing characteristics of the magnetic disk thus formed were evaluated. The magnetic characteristics of the magnetic disk are 8 mm x 8 m from the position where the radius is 34 mm.
A sample was cut out into a substantially square shape of m and the magnetic film on one side was scraped off, and the maximum applied magnetic field was measured with a vibrating sample magnetometer at 10 kOe. In addition, the recording / reproducing characteristics were evaluated by using a magnetic head and recording with a gap length of 0.4 μm.
m, track width 3.0 μm, thin-film head with 30 windings, reproducing shield spacing 0.3 μm, track width 2.6
A recording / reproducing separated type head, which was an MR head of μm, was used. The magnetic gap between the magnetic head and the magnetic recording medium at the time of recording / reproducing was set to 0.07 μm, and the S / N values at the output half recording density (D50) and the linear recording density of 150 kBPI were obtained. As shown in Table 1, in Example 4 above, the coercive force was 2.7 kOe or more in the circumferential direction, and Comparative Example 1
On the other hand, a magnetic disk having a large S / N of 100 Oe or more and a S / N of 1.88 or more was obtained.

【0027】[0027]

【表1】 [Table 1]

【0028】《実施例5》面内磁化磁気記録媒体の断面
を示す図3を参照しながら実施例5を説明する。外径6
5mm,内径20mm,厚さ0.635mmのAl−7
重量%Mg合金から成るディスク基板31の両面にNi
−12.5重量%Pから成る膜厚10μmのアモルファ
スのメッキ層32,32’を形成した。以下実施例1と
同様に基板を形成し、上記の枚葉式dcマグネトロンス
パッタ装置の基板仕込み室に装填して真空に引いた後、
当該基板を加熱室、非磁性下地膜形成室、第1磁性膜形
成室、非磁性中間膜形成室、第2磁性膜形成室、非磁性
保護膜形成室および取り出し室の順に真空度4×10の
マイナス8乗Torr以下の主排気槽を介しながら搬送
し、それぞれの膜を形成した。まず、当該加熱室で27
0℃に加熱し、5mTorrのアルゴン圧のもとでCr
ターゲットに4kWの電力を加えて、膜厚10nmのC
r下地膜33,33’を形成した。この下地膜の上に、
5mTorrのアルゴン圧のもとでターゲットに1kW
の電力を加えて、Co−16at%Cr−6at%Ta
から成る膜厚20nmの第1合金磁性膜34,34’を
積層した。この磁性膜の上に、5mTorrのアルゴン
圧のもとでターゲットに1kWの電力を加えて、Crか
ら成る膜厚2nmの非磁性中間膜35,35’を積層
し、さらにこの中間膜の上にターゲットに1kWの電力
を加えて、Co−16at%Cr−6at%Taから成
る膜厚20nmの第2合金磁性膜36,36’を積層し
た。さらに、この磁性膜の上に6mTorrのアルゴン
圧のもとでターゲットに2kWの電力を加えて、膜厚1
0nmのカーボン保護膜37,37’を形成した。そし
て、当該保護膜上に吸着性のパーフルオロポリエーテル
等の潤滑層を形成し2.5インチ磁気ディスクとした。
ここで、第1磁性膜と第2磁性膜とは同一の組成とした
が、必ずしも同じ組成である必要はない。この実施例5
の磁気ディスクについて、上記と同様の方法で、記録再
生特性を評価したところ、S/Nが1.42と実施例1
比較して高いS/Nが得られた。
Example 5 Example 5 will be described with reference to FIG. 3 showing a cross section of an in-plane magnetized magnetic recording medium. Outer diameter 6
Al-7 with 5mm, inner diameter of 20mm and thickness of 0.635mm
Ni on both sides of the disk substrate 31 made of a Mg% alloy by weight.
Amorphous plating layers 32 and 32 'made of -12.5 wt% P and having a film thickness of 10 μm were formed. After forming a substrate in the same manner as in Example 1 and loading it in the substrate preparation chamber of the above-mentioned single-wafer dc magnetron sputtering apparatus and drawing a vacuum,
The substrate is heated to a non-magnetic underlayer film forming chamber, a first magnetic film forming chamber, a non-magnetic intermediate film forming chamber, a second magnetic film forming chamber, a non-magnetic protective film forming chamber, and a take-out chamber in this order at a vacuum degree of 4 × 10. Each film was formed by transporting it through a main exhaust tank having a minus 8th power Torr or less. First, 27 in the heating chamber
Heat to 0 ° C and Cr under an argon pressure of 5 mTorr
Apply 4 kW of power to the target to obtain a 10 nm thick C film.
r Underlayer films 33 and 33 'were formed. On this base film,
Target 1kW under argon pressure of 5mTorr
Power of Co-16at% Cr-6at% Ta
The first alloy magnetic films 34 and 34 'having a film thickness of 20 nm are laminated. On this magnetic film, a target of 1 kW of electric power was applied under an argon pressure of 5 mTorr to stack non-magnetic intermediate films 35 and 35 ′ made of Cr and having a thickness of 2 nm, and further on this intermediate film. By applying electric power of 1 kW to the target, the second alloy magnetic films 36 and 36 'made of Co-16 at% Cr-6 at% Ta and having a film thickness of 20 nm were laminated. Furthermore, a power of 2 kW was applied to the target on the magnetic film under an argon pressure of 6 mTorr to obtain a film thickness of 1
Carbon protective films 37 and 37 'having a thickness of 0 nm were formed. Then, a lubricating layer such as an adsorbent perfluoropolyether was formed on the protective film to obtain a 2.5-inch magnetic disk.
Here, although the first magnetic film and the second magnetic film have the same composition, they do not necessarily have to have the same composition. This Example 5
When the recording / reproducing characteristics of the magnetic disk of No. 1 were evaluated by the same method as described above, the S / N was 1.42 and
A high S / N was obtained by comparison.

【0029】《実施例6》実施例4と同等の特性を有す
る磁気ディスクを使用し、CoTaZr合金を記録用磁
極材料とし、磁気抵抗効果型素子を再生用に有する複合
型磁気ヘッドを用いた磁気記録装置を試作した。本装置
は、図4(a)の平面模式図および図4(b)の断面模
式図で示すように、一枚あるいは複数の磁気ディスク4
1と、磁気ディスク枚数に対応した電磁誘導型記録、磁
気抵抗効果型素子(MR)再生の複合ヘッド43と、上
記磁気ディスクを回転駆動する駆動部42と、上記磁気
ヘッドの駆動手段44等を有して成る周知の構成を持つ
磁気ディスク装置である。このように、本発明による磁
気記録媒体と、MRヘッド及び高精度ヘッド位置決め装
置を有する磁気ディスク装置とを組み合わせることによ
り、1平方インチ当たり1.5ギガビットの面記録密度
で記録再生エラー率が10のマイナス8乗以下の特性が
得られた。本実施例では、CoTaZr合金を磁極材と
する複合型磁気ヘッドを用いた場合について説明した
が、NiFe,FeC合金等を記録用磁極材とする複合
型磁気ヘッドを用いた場合にも同様な効果が得られる。
さらに、上記磁気ヘッドの再生部を、従来の磁気抵抗効
果よりも格段に大きい巨大磁気抵抗効果を利用した磁気
抵抗センサによって構成することにより、1平方インチ
当り2ギガビット以上の高い面記録密度で記録再生エラ
ー率が10のマイナス8乗以下の特性が得られた。
Sixth Embodiment A magnetic disk having the same characteristics as in the fourth embodiment is used, a CoTaZr alloy is used as a recording magnetic pole material, and a composite magnetic head having a magnetoresistive effect element for reproduction is used. A recording device was prototyped. As shown in the schematic plan view of FIG. 4A and the schematic cross-sectional view of FIG. 4B, the present apparatus includes one or a plurality of magnetic disks 4
1, a composite head 43 for electromagnetic induction type recording and magnetoresistive effect element (MR) reproduction corresponding to the number of magnetic disks, a drive section 42 for rotationally driving the magnetic disk, a drive means 44 for the magnetic head, and the like. The magnetic disk device has a well-known configuration. As described above, by combining the magnetic recording medium according to the present invention with the magnetic disk device having the MR head and the high-accuracy head positioning device, the recording / reproducing error rate is 10 at the areal recording density of 1.5 gigabits per square inch. The characteristic of less than minus eight power was obtained. In this embodiment, the case of using the composite type magnetic head using the CoTaZr alloy as the magnetic pole material has been described, but the same effect is also obtained when using the composite type magnetic head using the recording magnetic pole material of NiFe, FeC alloy or the like. Is obtained.
Further, by configuring the reproducing portion of the magnetic head by a magnetoresistive sensor utilizing a giant magnetoresistive effect which is significantly larger than the conventional magnetoresistive effect, recording at a high areal recording density of 2 gigabits or more per square inch. The characteristic that the reproduction error rate is 10 −8 or less was obtained.

【0030】なお、非磁性基板には化学強化ガラス、結
晶化ガラス、チタン、シリコン、カーボン或いはセラミ
ックス等からなる基板を用いてもよく、この場合は非磁
性メッキ層を形成しなくてもよい。
As the non-magnetic substrate, a substrate made of chemically strengthened glass, crystallized glass, titanium, silicon, carbon, ceramics or the like may be used. In this case, the non-magnetic plating layer may not be formed.

【0031】なお、本発明は、以下の態様で実施するこ
とができる。
The present invention can be carried out in the following modes.

【0032】(1) 請求項1〜4において、前記非磁
性下地膜の膜厚が0.5nm以上2nm以下である。
(1) In any one of claims 1 to 4, the thickness of the nonmagnetic underlayer film is 0.5 nm or more and 2 nm or less.

【0033】(2) 請求項1〜4において、非磁性下
地膜がCrおよびTiを主成分とする合金、情報記録層
がCo,CrおよびPtを主成分とする合金系磁性膜か
ら成る。
(2) In any one of claims 1 to 4, the nonmagnetic underlayer film is an alloy containing Cr and Ti as main components, and the information recording layer is an alloy magnetic film containing Co, Cr and Pt as main components.

【0034】(3) 請求項1〜4、または上記実施態
様(1)〜(2)において、情報を記録再生する磁気ヘ
ッドの相対的な走行方向に磁界を印加して測定した保磁
力Hcが、2.4キロエルステッド以上である。
(3) In any one of claims 1 to 4 or the above embodiments (1) to (2), the coercive force Hc measured by applying a magnetic field in the relative traveling direction of the magnetic head for recording and reproducing information is It is more than 2.4 kilo Oersted.

【0035】(4) 請求項1〜4または上記実施態様
(1)〜(3)において、合金磁性膜が、少なくとも1
層以上の非磁性中間膜で分割された多層膜で形成され
る。
(4) In any one of claims 1 to 4 or the above embodiments (1) to (3), the alloy magnetic film is at least 1
It is formed of a multi-layer film divided by a non-magnetic intermediate film having at least one layer.

【0036】(5) 請求項1〜4または上記実施態様
(1)〜(3)の磁気記録媒体と、再生素子に磁気抵抗
効果型素子を用いた記録・再生分離型の磁気ヘッドとを
組み合わせて用いる。
(5) A combination of the magnetic recording medium according to any one of claims 1 to 4 or the above-mentioned embodiments (1) to (3) and a recording / reproducing separated type magnetic head using a magnetoresistive effect element as a reproducing element. To use.

【0037】[0037]

【発明の効果】以上詳しく説明したように、本発明によ
れば、非磁性基板上に少なくとも一層以上の非磁性下地
膜を介してCo基合金系等の合金系磁性膜の情報記録層
が形成されている磁気記録媒体において、非磁性下地膜
の膜厚を0.3nm〜10nmとしたことによって、情
報記録層の保磁力を例えば2.4キロエルステッド以上
のように高め、媒体ノイズを減少してS/Nを高めると
共に、1平方インチ当たり1ギガビット以上と極めて高
い面記録密度が記録可能な面内磁気記録媒体が得られる
という効果を奏する。
As described in detail above, according to the present invention, an information recording layer of an alloy type magnetic film such as a Co-based alloy type is formed on a nonmagnetic substrate through at least one nonmagnetic underlayer film. In the known magnetic recording medium, the coercive force of the information recording layer is increased to, for example, 2.4 kilo Oersted or more and the medium noise is reduced by setting the thickness of the non-magnetic underlayer film to 0.3 nm to 10 nm. As a result, an S / N is increased, and an in-plane magnetic recording medium capable of recording an extremely high areal recording density of 1 gigabit per square inch or more can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)および(b)は、それぞれ、本発明の実
施例の磁気記録媒体の磁気特性を示す図、および、その
非磁性下地膜の膜厚の範囲の拡大図である。
1A and 1B are a diagram showing a magnetic characteristic of a magnetic recording medium of an example of the present invention and an enlarged diagram of a range of a thickness of a non-magnetic underlayer film, respectively.

【図2】本発明の一実施例の面内磁気記録媒体の断面図
である。
FIG. 2 is a sectional view of an in-plane magnetic recording medium of one embodiment of the present invention.

【図3】本発明の一実施例の面内磁気記録媒体の断面図
である。
FIG. 3 is a sectional view of an in-plane magnetic recording medium according to an embodiment of the present invention.

【図4】(a)および(b)は、それぞれ、本発明の一
実施例の磁気記憶装置の平面模式図およびそのA−A’
断面図である。
4A and 4B are a schematic plan view of a magnetic memory device according to an embodiment of the present invention and AA ′ thereof, respectively.
It is sectional drawing.

【図5】本発明の実施例の磁気記録媒体の2f出力特性
を示す図である。
FIG. 5 is a diagram showing 2f output characteristics of a magnetic recording medium according to an example of the present invention.

【図6】本発明の実施例の磁気記録媒体の媒体ノイズを
示す図である。
FIG. 6 is a diagram showing medium noise of the magnetic recording medium of the example of the present invention.

【図7】本発明の実施例の磁気記録媒体のS/N特性を
示す図である。
FIG. 7 is a diagram showing S / N characteristics of the magnetic recording medium of the example of the present invention.

【符号の説明】[Explanation of symbols]

21 非磁性基板 22,22’ 非磁性メッキ層 23,23’ 非磁性下地膜 24,25’ 合金磁性膜 25,25’ 非磁性保護膜 31 非磁性基板 32,32’ 非磁性メッキ層 33,33’ 非磁性下地膜 34,34’ 第1合金磁性膜 35,35’ 非磁性中間膜 36,36’ 第2合金磁性膜 37,37’ 非磁性保護膜 41 磁気ディスク 42 磁気ディスク駆動系 43 磁気ヘッド 44 磁気ヘッド駆動系 21 non-magnetic substrate 22, 22 'non-magnetic plating layer 23, 23' non-magnetic underlayer film 24, 25 'alloy magnetic film 25, 25' non-magnetic protective film 31 non-magnetic substrate 32, 32 'non-magnetic plating layer 33, 33 'Non-magnetic underlayer film 34, 34' First alloy magnetic film 35, 35 'Non-magnetic intermediate film 36, 36' Second alloy magnetic film 37, 37 'Non-magnetic protective film 41 Magnetic disk 42 Magnetic disk drive system 43 Magnetic head 44 Magnetic head drive system

フロントページの続き (72)発明者 屋久 四男 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 (72)発明者 加藤 章 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 (72)発明者 藤田 塩地 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内Front page continuation (72) Inventor Yakuo Yaku 2880 Kozu, Odawara-shi, Kanagawa Hitachi Storage Systems Division (72) Inventor Akira Kato 2880 Kozu, Odawara, Kanagawa Hitachi Storage Systems Business In-house (72) Inventor Shioji Fujita 2880 Kozu, Odawara City, Kanagawa Stock Company Hitachi Storage Systems Division

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板上に、少なくとも一層以上の
非磁性下地膜を介し、Co基合金系等の合金系磁性膜に
よる情報記録層が形成されている磁気記録媒体におい
て、前記非磁性下地膜の膜厚が、0.3nm以上、10
nm以下であり、情報を記録・再生する磁気ヘッドの相
対的な走行方向に磁界を印加して測定した保磁力Hc
が、2.4キロエルステッド以上であることを特徴とす
る磁気記録媒体。
1. A magnetic recording medium in which an information recording layer of an alloy-based magnetic film such as a Co-based alloy-based film is formed on a non-magnetic substrate with at least one non-magnetic underlayer film interposed therebetween. The thickness of the ground film is 0.3 nm or more, 10
Coercive force Hc of less than nm and measured by applying a magnetic field in the relative traveling direction of the magnetic head for recording / reproducing information
Is a magnetic recording medium having a magnetic field density of 2.4 kilo Oersted or more.
【請求項2】 前記非磁性下地膜が、CrあるいはCr
を主成分とする合金から成ることを特徴とする請求項1
に記載の磁気記録媒体。
2. The non-magnetic underlayer is Cr or Cr
3. An alloy containing as a main component.
3. The magnetic recording medium according to claim 1.
【請求項3】 前記非磁性下地膜が、Cr、Ti、M
o、W、V、Nb、Ta、Cu、Ag、Mn、Zr、H
f、Siのいずれかを主成分とする合金から成り、膜厚
が、0.5nm以上、2nm以下であることを特徴とす
る請求項1に記載の磁気記録媒体。
3. The non-magnetic base film is Cr, Ti, M
o, W, V, Nb, Ta, Cu, Ag, Mn, Zr, H
The magnetic recording medium according to claim 1, which is made of an alloy containing f or Si as a main component and has a film thickness of 0.5 nm or more and 2 nm or less.
【請求項4】 非磁性基板上に非磁性下地膜が形成さ
れ、その上にCo基合金系等の合金系磁性膜による情報
記録層が形成されている磁気記録媒体において、前記非
磁性下地膜の結晶粒が、分散した島状の構造をとる金属
から成り、蛍光X線装置等により測定される平均的な膜
厚が、0.1nm以上、10nm以下であることを特徴
とする磁気記録媒体。
4. A magnetic recording medium comprising a non-magnetic undercoating film formed on a non-magnetic substrate, and an information recording layer comprising an alloy-based magnetic film such as a Co-based alloy-based film formed on the non-magnetic undercoating film. The magnetic recording medium is characterized in that the crystal grains are made of a metal having a dispersed island structure, and the average film thickness measured by a fluorescent X-ray device or the like is 0.1 nm or more and 10 nm or less. .
【請求項5】 非磁性基板上に、少なくとも一層以上の
非磁性下地膜を介し、Co基合金系等の合金磁性膜によ
る情報記録層が形成されている磁気記録媒体において、
前記情報記録層が、最密六方格子結晶構造となる合金系
磁性膜からなり、その結晶粒のc軸の方位が基板面に略
並行であるものと、基板面に略垂直であるものが混在す
ることを特徴とする磁気記録媒体。
5. A magnetic recording medium in which an information recording layer of an alloy magnetic film such as a Co-based alloy system is formed on at least one nonmagnetic underlayer film on a nonmagnetic substrate,
The information recording layer is composed of an alloy-based magnetic film having a close-packed hexagonal lattice crystal structure, and the crystal grains of which the c-axis direction is substantially parallel to the substrate surface and those which are substantially perpendicular to the substrate surface are mixed. A magnetic recording medium characterized by:
【請求項6】 請求項1ないし5のうち1記載の磁気記
録媒体と、該磁気記録媒体に情報を記録・再生する磁気
ヘッドとを備える磁気記録装置において、記録部と再生
部とからなる前記磁気ヘッドの再生部は、互いの磁化方
向が外部磁界によって相対的に変化し、これにより大き
な抵抗変化を生じる複数の導電性磁性層と該導電性磁性
層の間に配置された導電性非磁性層とを含む磁気抵抗セ
ンサにより構成され、かつ、前記合金系磁性層の厚さの
合計tと、記録時における前記記録媒体に対する前記磁
気ヘッドの相対的な走行方向に磁界を印加して測定した
残留磁束密度Brとの積Br×tが10ガウス・ミクロ
ン以上、60ガウス・ミクロン以下であり、前記磁気ヘ
ッドの相対的な走行方向に磁界を印加して測定した前記
磁気記録媒体の保磁力Hcが、2.4キロエルステッド
以上であることを特徴とする磁気記録装置。
6. A magnetic recording apparatus comprising a magnetic recording medium according to claim 1 and a magnetic head for recording / reproducing information on / from the magnetic recording medium, the recording unit and the reproducing unit. The reproducing portion of the magnetic head has a plurality of conductive magnetic layers whose magnetic directions change relative to each other due to an external magnetic field, thereby causing a large resistance change, and a conductive non-magnetic layer disposed between the conductive magnetic layers. And a magnetic field is applied in the traveling direction of the magnetic head relative to the recording medium at the time of recording and the total thickness t of the alloy-based magnetic layer. The product Br × t of the residual magnetic flux density Br is 10 Gauss · micron or more and 60 Gauss · micron or less, and the coercivity of the magnetic recording medium measured by applying a magnetic field in the relative traveling direction of the magnetic head. Hc of the magnetic recording apparatus, characterized in that 2.4 kOe or more.
JP26391494A 1994-10-27 1994-10-27 Magnetic recording medium and magnetic recorder using the same Pending JPH08124141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26391494A JPH08124141A (en) 1994-10-27 1994-10-27 Magnetic recording medium and magnetic recorder using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26391494A JPH08124141A (en) 1994-10-27 1994-10-27 Magnetic recording medium and magnetic recorder using the same

Publications (1)

Publication Number Publication Date
JPH08124141A true JPH08124141A (en) 1996-05-17

Family

ID=17396024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26391494A Pending JPH08124141A (en) 1994-10-27 1994-10-27 Magnetic recording medium and magnetic recorder using the same

Country Status (1)

Country Link
JP (1) JPH08124141A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682834B2 (en) 2000-09-25 2004-01-27 Fujitsu Limited Magnetic storage medium having a high recording density
JP2007220285A (en) * 2007-02-26 2007-08-30 Fujitsu Ltd Magnetic recording medium and magnetic recording apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682834B2 (en) 2000-09-25 2004-01-27 Fujitsu Limited Magnetic storage medium having a high recording density
JP2007220285A (en) * 2007-02-26 2007-08-30 Fujitsu Ltd Magnetic recording medium and magnetic recording apparatus

Similar Documents

Publication Publication Date Title
JP4540557B2 (en) Perpendicular magnetic recording medium
JP2003162806A (en) Perpendicular magnetic recording medium and magnetic storage device
JP3701593B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2001023140A (en) Perpendicular magnetic recording medium and magnetic memory apparatus
JP2002190108A (en) Magnetic recording medium and its production method
JP3612087B2 (en) Magnetic recording medium
JP3670728B2 (en) Magnetic recording medium and magnetic recording apparatus using the same
JP2991672B2 (en) Magnetic recording media
JP3370720B2 (en) Magnetic recording medium and magnetic recording device
JPH08124141A (en) Magnetic recording medium and magnetic recorder using the same
JP3652999B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3041273B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP3308239B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing device
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JP2004310944A (en) Vertical magnetic recording medium and magnetic storage device
JPH0773433A (en) Magnetic recording medium, its production and magnetic recorder
JP3867351B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP2001351226A (en) Magnetic recording medium, method for producing the same and magnetic recorder
JP2002230735A (en) Perpendicular magnetic recording medium and magnetic storage device
JP3445537B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JPH08115516A (en) Magnetic recording medium and magnetic recorder
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device
JP2001250223A (en) Magnetic recording medium and magnetic recorder
JPH10289437A (en) Magnetic recording medium and magnetic storage device
JP2002216338A (en) Perpendicular magnetic recording media and magnetic storage