JPH08122379A - Cell for measuring minute electromagnetic wave and generating strong electromagnetic wave - Google Patents

Cell for measuring minute electromagnetic wave and generating strong electromagnetic wave

Info

Publication number
JPH08122379A
JPH08122379A JP6258619A JP25861994A JPH08122379A JP H08122379 A JPH08122379 A JP H08122379A JP 6258619 A JP6258619 A JP 6258619A JP 25861994 A JP25861994 A JP 25861994A JP H08122379 A JPH08122379 A JP H08122379A
Authority
JP
Japan
Prior art keywords
conductor wire
electromagnetic wave
cell
wire group
outer conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6258619A
Other languages
Japanese (ja)
Other versions
JP2738507B2 (en
Inventor
Katsuo Ishihara
勝夫 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6258619A priority Critical patent/JP2738507B2/en
Publication of JPH08122379A publication Critical patent/JPH08122379A/en
Application granted granted Critical
Publication of JP2738507B2 publication Critical patent/JP2738507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Reversible Transmitting Devices (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE: To provide a cell for measuring minute electromagnetic waves and generating strong electromagnetic waves which uniforms the electromagnetic field distribution and shows a frequency characteristic in a wide band. CONSTITUTION: Central conductor wires 8 taken out from a central conductor 6 of a coaxial tube 3 are arranged horizontally in a group via equal distances. Groups of outer conductor wires 9 taken out from an outside conductor 7 of the coaxial tube 3 are arranged in parallel to the group 8 above and below the group 8. Terminals of the groups 8 and 9 are connected each other via resistors 16, and electromagnetic wave absorbers 4 constituting walls are disposed at both sides and a terminal end of the cell. The cell for measuring minute electromagnetic waves and generating strong electromagnetic waves is thus constituted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子機器その他移動体無
線通信機器等の微小電磁波(信号またはノイズ)の測
定、および電子機器等への強電磁波の照射試験(強電界
イミュニティ試験)に供するセルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a cell used for measuring minute electromagnetic waves (signals or noises) in electronic devices and other mobile wireless communication devices, and for irradiating electronic devices with strong electromagnetic waves (strong electric field immunity test). Regarding

【0002】[0002]

【従来の技術】一般に電子機器より発生する電磁波ノイ
ズや移動体無線通信機器の電磁波信号を測定する手段と
しては、図14に示すようなオープンフィールドテスト
サイト、あるいは図15に示す電磁波無響セルが使用さ
れている。
2. Description of the Related Art Generally, an open field test site as shown in FIG. 14 or an electromagnetic wave anechoic cell as shown in FIG. 15 is used as a means for measuring electromagnetic wave noise generated from electronic equipment and electromagnetic wave signals from mobile radio communication equipment. in use.

【0003】前記図14に示すオープンフィールドテス
トサイトは、野外において供試器21を供試器支持台2
2上に載置し、前記供試器21より離れた位置にアンテ
ナポール23を立設し、これにアンテナ24を上下方向
にスライド自在に設け、アンテナ24に対してアンテナ
ケーブル25で測定器26を接続した構成をとる。
In the open field test site shown in FIG. 14, the EUT 21 is placed in the field and the EUT support base 2 is used.
2, the antenna pole 23 is erected at a position apart from the DUT 21, and the antenna 24 is slidably mounted on the antenna pole 23 in the vertical direction. Take the configuration that is connected.

【0004】そして放射電磁波ノイズ評価を行う場合に
は、前記供試器21より放射される電磁波をアンテナ2
4で受けて、前記電磁波が規定値以下であるかどうかを
測定し、また、強電界照射試験をする場合には、アンテ
ナ24より強電界を供試器21に照射し、供試器21に
おける異常状態、たとえば供試器21が誤動作すること
などを測定する。
When the radiated electromagnetic noise is evaluated, the electromagnetic wave radiated from the DUT 21 is used as the antenna 2
4 to measure whether or not the electromagnetic wave is below a specified value, and in the case of performing a strong electric field irradiation test, a strong electric field is radiated from the antenna 24 to the EUT 21, An abnormal state, such as malfunction of the EUT 21, is measured.

【0005】また、図15に示す電磁無響セルは、外来
波をシールドするために鉄板27で囲まれたセル28を
構成し、その内周壁および天井には発泡ウレタンゴムに
カーボンを混入してなる数多くのくさび状の電磁波吸収
体29を設け、セル28内には前述と同様に供試器支持
台22、アンテナポール23、アンテナ24および供試
器21を設備し、同様な試験をするようにしている。
Further, the electromagnetic anechoic cell shown in FIG. 15 comprises a cell 28 surrounded by an iron plate 27 for shielding an external wave, and carbon is mixed with urethane foam rubber on its inner peripheral wall and ceiling. A large number of wedge-shaped electromagnetic wave absorbers 29 are provided, and the sample holder support 22, the antenna pole 23, the antenna 24, and the sample holder 21 are installed in the cell 28 in the same manner as described above, and the same test is performed. I have to.

【0006】さらに進んだものとして、図16に示すT
EMセルと、その改良したものとして図17に示すGT
EMセルがある。前記図16に示すTEMセルは、高周
波発生器30に接続された要素は基本的には同軸伝送路
であり、ほぼ矩形状のセル31内に水平に配置された平
板状の中心導体板32と、その上下及び側面にそれぞれ
間隔をもって平行に配置された外側導体板33よりな
り、前記中心導体板32と外側導体板33間に電磁界を
発生させ、供試器21は中心導体板32と下方の外側導
体板33の間に位置させて測定に供する構成としてい
る。なお、中心導体板32と外側導体板33の端末間に
は負荷35を接続している。
As a further advance, T shown in FIG.
The EM cell and the GT shown in FIG.
There is an EM cell. In the TEM cell shown in FIG. 16, the element connected to the high frequency generator 30 is basically a coaxial transmission line, and a flat center conductor plate 32 horizontally arranged in a substantially rectangular cell 31. , The outer conductor plates 33 are arranged in parallel on the upper and lower sides and side faces thereof with a space therebetween, and generate an electromagnetic field between the central conductor plate 32 and the outer conductor plate 33. It is configured to be positioned between the outer conductor plates 33 and used for measurement. A load 35 is connected between the ends of the central conductor plate 32 and the outer conductor plate 33.

【0007】このTEMセルは、中心導体板32と外側
導体板33間に均一な電磁界を発生させ、供試器21の
測定をするものであり、外部への電磁波の漏洩もなく、
比較的に安定した試験ができる。
This TEM cell is for measuring the test piece 21 by generating a uniform electromagnetic field between the central conductor plate 32 and the outer conductor plate 33, and there is no leakage of electromagnetic waves to the outside.
A relatively stable test can be performed.

【0008】しかし、前記TEMセルは、セルの形状が
ほぼ矩形をしており、内部のテーパーコーナ部で電磁波
の異常反射があって使用可能上限周波数が低下すること
から、図17に示すGTEMセルが開発され、このGT
EMセルは、セル36の形状がテーパーコーナ部を持た
ないように構成されている。すなわち、セル36内にお
いて水平に配設された平板状の中心導体板37と、その
上下に配置され、かつ放射状に配置された平板状の外側
導体板38により構成され、供試器21を前述と同様に
中心導体板37と下方の外側導体板38間に配置して測
定するようにしている。図中の39は高周波発生器、4
0はウレタンゴムよりなる電磁波吸収体である。
However, in the TEM cell, the shape of the cell is almost rectangular, and the upper limit frequency that can be used is lowered due to the abnormal reflection of electromagnetic waves at the internal taper corners, so the GTEM cell shown in FIG. Was developed by this GT
The EM cell is configured so that the shape of the cell 36 does not have a tapered corner portion. That is, it is composed of a flat central conductor plate 37 horizontally arranged in the cell 36, and flat outer conductor plates 38 arranged vertically above and below the flat central conductor plate 37. Similarly, the measurement is performed by arranging it between the central conductor plate 37 and the lower outer conductor plate 38. In the figure, 39 is a high frequency generator, 4
Reference numeral 0 is an electromagnetic wave absorber made of urethane rubber.

【0009】[0009]

【発明が解決しようとする課題】ところで前記図14に
示すオープンテストサイトは、都会地では外来の環境電
磁波ノイズのレベルが高いために試験ができないことか
ら、野外に設置することを原則としている。したがって
不便であり、また、降雨、降雪、強風などの気象条件に
よって試験ができないことがある。また、外気温度の変
化、温度の変化などにより供試器21の放射電磁波ノイ
ズのレベルが変化し、測定結果の再現性が得にくい。一
方、測定小屋などの構造物を設置する場合もあるが、そ
れにより供試器21より放射する電磁波の反射を引き起
こし、特性を低下させる問題がある。特に強電界照射試
験は、他への電磁波妨害を引き起すために実施できな
い。
By the way, since the open test site shown in FIG. 14 cannot be tested in the urban area due to the high level of external environmental electromagnetic noise, it is basically installed outdoors. Therefore, it is inconvenient and the test may not be possible due to weather conditions such as rainfall, snowfall, and strong wind. In addition, the level of the radiated electromagnetic noise of the test device 21 changes due to changes in the outside air temperature, changes in temperature, etc., making it difficult to obtain reproducibility of measurement results. On the other hand, there is a case where a structure such as a measurement hut is installed, but this causes reflection of electromagnetic waves radiated from the DUT 21, which causes a problem of deterioration in characteristics. In particular, a strong electric field irradiation test cannot be performed because it causes electromagnetic interference to the other.

【0010】つぎに図15に示す電磁波無響セルは、シ
ールドセル構成となっているため、前述の欠点を補填す
るが、次のような問題がある。すなわち、電磁波吸収体
29の長さは吸収すべき電磁波の半波長の長さが必要で
あり、放射される電磁波は周波数30MHz〜1GHz
とすると、前記電磁波吸収体29は少なくとも5m以上
の長さにしなければならない。
Next, since the electromagnetic wave anechoic cell shown in FIG. 15 has a shield cell structure, the above-mentioned drawbacks are compensated, but there are the following problems. That is, the length of the electromagnetic wave absorber 29 needs to be half the wavelength of the electromagnetic wave to be absorbed, and the radiated electromagnetic wave has a frequency of 30 MHz to 1 GHz.
Then, the electromagnetic wave absorber 29 should be at least 5 m long.

【0011】また、床面が電磁波の全反射面となってい
るためハイトパターンが発生し、無響セル内寸法は有効
高さで5m以上必要である。これらの条件より外殻寸法
で長さ19m、巾16m、高さ10m以上となり、非常
に大型で、かつ高額の設備費を要する。さらに強電界照
射試験では、床が電磁波の全反射面となっているため電
界の乱れを生じ、したがって前記強電界照射試験ができ
ない。
Further, since the floor surface is a total reflection surface of electromagnetic waves, a height pattern is generated, and the effective dimension of the anechoic cell must be 5 m or more. Under these conditions, the outer shell has a length of 19 m, a width of 16 m, and a height of 10 m or more, which is very large and requires a large equipment cost. Further, in the strong electric field irradiation test, since the floor is a total reflection surface of electromagnetic waves, the electric field is disturbed, and therefore the strong electric field irradiation test cannot be performed.

【0012】つぎに図16に示すTEMセルは、これら
の問題を解決するために開発されたものであり、同軸伝
送路を構成することから比較的に小型のセルで、しかも
安定した試験ができるが、セル内壁がシールド部材であ
る鉄板であることから電磁波の反射があり、また、セル
内部のテーパーコーナ部による電磁波の乱れがあり、ま
た、同軸管基部より中心導体板32と外側導体板33が
急激に拡がっていることから入出力インピーダンスのア
ンマッチングがあり、使用可能上限周波数(遮断周波
数)が低下し(供試器1m3 の場合の使用可能周波数:
DC〜150MHz)、供試器21の種類に限界があ
る。特に最近の移動体無線通信機器などでは1GHzを
大きく越える使用周波数による試験を要するが、これに
対応できないという大きな問題がある。
Next, the TEM cell shown in FIG. 16 was developed to solve these problems. Since it constitutes a coaxial transmission line, it is a relatively small cell and a stable test can be performed. However, since the inner wall of the cell is an iron plate that is a shield member, there is reflection of electromagnetic waves, there is disturbance of electromagnetic waves due to the tapered corners inside the cell, and the central conductor plate 32 and the outer conductor plate 33 from the coaxial tube base portion. Since there is a rapid spread, there is an input / output impedance unmatching, and the usable upper limit frequency (cutoff frequency) decreases (the usable frequency for the test equipment 1 m 3 is:
(DC to 150 MHz), there is a limit to the type of EUT 21. In particular, recent mobile wireless communication devices and the like require a test with a used frequency that greatly exceeds 1 GHz, but there is a big problem that this cannot be supported.

【0013】つぎに図17に示すGTMセルは、セル内
におけるテーパーコーナを無くして使用周波数(遮断周
波数)を伸ばしているが、中心導体板37に対して外側
導体板38が角度をもって伸びているため、TEM波伝
送方向に対して垂直方向の電界は斜電界分布となり、セ
ル内部の電磁界が不均一となる。したがって測定、試験
の安定性、再現性に問題がある。
In the GTM cell shown in FIG. 17, the operating frequency (cutoff frequency) is extended by eliminating the taper corner in the cell, but the outer conductor plate 38 extends at an angle with respect to the central conductor plate 37. Therefore, the electric field perpendicular to the TEM wave transmission direction has an oblique electric field distribution, and the electromagnetic field inside the cell becomes nonuniform. Therefore, there is a problem in measurement and test stability and reproducibility.

【0014】このようにこれまでの電子機器または移動
体無線通信機器などの微小電磁波(信号またはノイズ)
の測定、および電子機器などへの強電磁波の照射試験
(強電界イミュニティ試験)をするためには、種々の供
試器に対する必要な測定または試験内容に応じて、それ
ぞれの測定、試験設備の性能の使い分けをしなければな
らず、測定、試験のための使用周波数、コスト、効率に
限界があった。
As described above, minute electromagnetic waves (signals or noises) in conventional electronic devices or mobile wireless communication devices
In order to perform the measurement and the irradiation test of strong electromagnetic waves to electronic equipment (strong electric field immunity test), the performance of each measurement and test equipment should be adjusted according to the required measurement or test contents for various EUTs. Had to be used properly, and there were limits to the frequency used for measurement and testing, cost, and efficiency.

【0015】本発明は前記従来の問題に留意し、セルの
形状の大きさにかかわらず電磁界の分布が一様であり、
かつ、使用周波数が数GHzまで伸び、多種多様の電子
機器および移動体無線通信機器の測定、試験を可能とす
るセルを提供することを目的とする。
In consideration of the above-mentioned conventional problems, the present invention has a uniform electromagnetic field distribution regardless of the size of the cell shape,
Moreover, it is an object of the present invention to provide a cell whose usable frequency extends up to several GHz and which enables measurement and testing of various electronic devices and mobile wireless communication devices.

【0016】[0016]

【課題を解決するための手段】前記目的を達成するため
本発明の微小電磁波測定および強電磁波発生用セルは、
電子機器などより発生する微小電磁波の測定器または電
子機器などに強電磁波を照射してたとえば誤動作などの
試験するために高周波発生器を接続する同軸管を備え、
この同軸管の中心導体より中心導体ワイヤ群を導出して
これを水平に配設し、また、前記同軸管の外側導体より
外側導体ワイヤ群を導出するとともに、これを前記中心
導体ワイヤの上下に分割し、かつ、その主部が中心導体
ワイヤ群と平行になるように配設し、前記中心導体ワイ
ヤ群の各終端と外側導体ワイヤ群の各終端間には負荷お
よび入出力インピーダンス整合を兼ねる抵抗群を接続
し、これらワイヤ群の両側部および終端部に壁をなすよ
うに電磁波吸収体を配設した構成とする。
In order to achieve the above-mentioned object, a cell for measuring minute electromagnetic waves and a strong electromagnetic wave according to the present invention comprises:
Equipped with a coaxial tube for connecting a high-frequency generator to test a device such as a malfunction by irradiating a strong electromagnetic wave to a measuring device for minute electromagnetic waves generated from electronic devices or electronic devices,
A central conductor wire group is led out from the central conductor of this coaxial tube and is arranged horizontally, and an outer conductor wire group is led out from the outer conductor of the coaxial tube, and is placed above and below the central conductor wire. It is divided and arranged so that its main part is parallel to the center conductor wire group, and also serves as load and input / output impedance matching between each end of the center conductor wire group and each end of the outer conductor wire group. The resistance groups are connected to each other, and the electromagnetic wave absorbers are arranged so as to form walls on both side portions and terminal portions of these wire groups.

【0017】[0017]

【作用】上記構成において、供試器を中心導体ワイヤ群
と下側の外側ワイヤ群間に位置させ、微小電磁波測定に
おいては供試器より発生する微小電磁波を中心導体ワイ
ヤ群と外側導体ワイヤ群とで拾ってこれを測定器にて測
定する。
In the above structure, the EUT is positioned between the central conductor wire group and the lower outer wire group, and in the measurement of minute electromagnetic waves, the minute electromagnetic wave generated by the EUT is used for the central conductor wire group and the outer conductor wire group. Pick it up with and measure it with a measuring instrument.

【0018】また、供試器の強電磁波照射試験において
は、高周波発生器より高周波電流を中心導体ワイヤと外
側導体ワイヤに流し、両者間に電磁界を発生させ、これ
を供試器に照射する。この照射において使用周波数を上
げていき、どの周波数で供試器がたとえば誤動作するか
などを試験する。
Further, in the strong electromagnetic wave irradiation test of the EUT, a high-frequency current is caused to flow from the high-frequency generator to the central conductor wire and the outer conductor wire, an electromagnetic field is generated between them, and this is irradiated to the EUT. . In this irradiation, the operating frequency is increased and at what frequency the EUT malfunctions, for example, is tested.

【0019】この試験において、中心導体ワイヤ群と外
側導体ワイヤ群間の電磁界の分布は均一である。すなわ
ち、セルにテーパーコーナ部がなく、セルの両側および
終端部に電磁波吸収体を配設しているので、電磁波の反
射がほとんどないためであり、これによって使用周波数
を大きく伸ばすことができる。さらに外側導体ワイヤ群
は比較的に狭い間隔で配列されており、これがシールド
部材として機能し、セル内部より電磁波が漏れたり、外
来電磁波がセル内に侵入することがなく、良好な試験が
できることとなる。
In this test, the distribution of the electromagnetic field between the central conductor wire group and the outer conductor wire group is uniform. That is, the cell has no taper corner portion and the electromagnetic wave absorbers are arranged on both sides and the end portion of the cell, so that there is almost no reflection of the electromagnetic wave, and thereby the operating frequency can be greatly extended. Furthermore, the outer conductor wire group is arranged at a relatively narrow interval, and this functions as a shield member, and electromagnetic waves do not leak from the inside of the cell or foreign electromagnetic waves do not enter the cell, and a good test can be performed. Become.

【0020】[0020]

【実施例】以下に本発明の一実施例の微小電磁波測定お
よび強電磁波発生用セルについて説明する。
EXAMPLE A cell for measuring a minute electromagnetic wave and generating a strong electromagnetic wave according to an embodiment of the present invention will be described below.

【0021】図1において1はセルであり、一側の壁に
N型コネクタ2をもつ同軸管3をとりつけてあり、上下
を除く側面と、終端面にはフェライト板よりなる電磁波
吸収体4を配設している。前記電磁波吸収体4の外側に
はシールド材として厚み1mmのアルミ板5を配設して
いる。前記同軸管3は図2に示すように環状の中心導体
6と外側導体7をもち、真鍮製の削り出しとし、同軸管
3内支持物はテフロン製としている。前記同軸管3の中
心導体6には複数の中心導体ワイヤ8の端部を結合し、
かつ導出しており、また、同軸管3の外側導体7には前
記中心導体ワイヤ8の2倍の数の外側導体ワイヤ9を結
合し、かつ導出している(図3参照)。なお、中心導体
6および外側導体7のワイヤ結合部には適宜に結合用の
溝10,11を付している。この中心導体ワイヤ8およ
び外側導体ワイヤ9は、直径2mmの銅線よりなってい
る。
In FIG. 1, reference numeral 1 denotes a cell, a coaxial tube 3 having an N-type connector 2 is attached to one wall, side surfaces except upper and lower sides, and an electromagnetic wave absorber 4 made of a ferrite plate on a terminal surface. It is arranged. An aluminum plate 5 having a thickness of 1 mm is provided as a shield material on the outer side of the electromagnetic wave absorber 4. As shown in FIG. 2, the coaxial tube 3 has an annular center conductor 6 and an outer conductor 7, is machined from brass, and the support inside the coaxial tube 3 is made from Teflon. The ends of a plurality of center conductor wires 8 are coupled to the center conductor 6 of the coaxial waveguide 3,
Moreover, the outer conductor 7 of the coaxial waveguide 3 is coupled with and guided to the outer conductor 7 of the central conductor wire 8 twice as many as the outer conductor wires 9 (see FIG. 3). The wire connecting portions of the central conductor 6 and the outer conductor 7 are provided with connecting grooves 10 and 11 as appropriate. The center conductor wire 8 and the outer conductor wire 9 are made of copper wire having a diameter of 2 mm.

【0022】図3,図4は中心導体ワイヤ8および外側
導体ワイヤ9の導出基部を側方と後方より見た図であ
り、各中心導体ワイヤ8群は基部の円筒配列より先端に
順次径を平たくしながら一平面上に配設した絶縁支持部
材12に至り、ここにおいては複数の導体ワイヤ8群が
一水平面上において横方向に等間隔、本実施例では使用
周波数の上限、たとえば3GHzの波長の1/10以
下、すなわち2cmにして位置づけられる。また、各外
側導体ワイヤ群9は、まず上下2つに分割され、絶縁支
持部材12に対し上下に所要の間隔をもち、かつ水平に
配設した絶縁支持部材13に至り、ここにおいて外側導
体ワイヤ群9が同一平面上において横方向に等間隔に、
すなわち2cmの間隔で、かつ、各中心導体ワイヤ8群
と上下に個々に対応するように位置づけられる。
FIGS. 3 and 4 are views showing the lead-out base portions of the central conductor wire 8 and the outer conductor wire 9 as viewed from the side and the rear side. Each central conductor wire group 8 has a diameter in order from the cylindrical arrangement of the base to the tip. It reaches the insulating support member 12 arranged on one plane while flattening, in which a plurality of groups of conductor wires 8 are laterally equally spaced on one horizontal plane, and in the present embodiment, the upper limit of the used frequency, for example, a wavelength of 3 GHz. 1/10 or less, that is, 2 cm. In addition, each outer conductor wire group 9 is first divided into upper and lower parts, and reaches the insulating support member 13 which is horizontally arranged with a required space above and below the insulating support member 12, and the outer conductor wire group 9 is arranged here. The groups 9 are evenly spaced laterally on the same plane,
That is, they are positioned at an interval of 2 cm and individually above and below each central conductor wire 8 group.

【0023】図5はセル1の内部を上面より見た図であ
り、図6はセル1の内部を側方より見た図である。ここ
で絶縁支持部材12より中心導体ワイヤ8群は横方向に
等間隔にかつ、水平を保ちながら、終端の絶縁支持部材
14に至って終端を固定される。同様に絶縁支持部材1
3より外側導体ワイヤ9群は横方向に等間隔を保ち、か
つ中心導体ワイヤ8と平行を保ちながら水平に延び、終
端の絶縁支持部材15に至って終端を固定される。な
お、図5において、外側導体ワイヤ9群と中心導体ワイ
ヤ8群は上下に重なるので、前記中心導体ワイヤ8群は
図示されない。また、前記絶縁支持部材12〜15は入
出力インピーダンスを乱さないため、低誘電率、高絶縁
体材料を用いている。
FIG. 5 is a view of the inside of the cell 1 as seen from above, and FIG. 6 is a view of the inside of the cell 1 as seen from the side. Here, the group of central conductor wires 8 is fixed laterally at equal intervals by the insulating support member 12 while reaching the insulating support member 14 at the end while maintaining the horizontal. Similarly, the insulating support member 1
The group of conductor wires 9 outside 3 is horizontally extended at equal intervals in the lateral direction and parallel to the center conductor wire 8, and reaches the insulating support member 15 at the end to fix the end. In FIG. 5, the outer conductor wires 9 and the central conductor wires 8 are vertically overlapped with each other, so that the central conductor wires 8 are not shown. Further, since the insulating support members 12 to 15 do not disturb the input / output impedance, a low dielectric constant, high insulating material is used.

【0024】図6,図7に示すように、各中心導体ワイ
ヤ8の終端と、これに上下に対応する各外側導体ワイヤ
9の終端間には、負荷として、また同軸管3に接続され
る測定器、高周波発生器などとの入出力インピーダンス
を整合するための抵抗16を接続している。そして、こ
の抵抗群16の各抵抗値は、セル側方に近づくにしたが
って順次に低くなるようにしてあり、中央部の抵抗16
の値が最も高く、本実施例では全体として50Ωとして
いる。
As shown in FIGS. 6 and 7, between the ends of the center conductor wires 8 and the ends of the outer conductor wires 9 corresponding to the upper and lower sides of the center conductor wires 8 are connected to the coaxial tube 3 as a load. A resistor 16 for matching input / output impedance with a measuring instrument, a high frequency generator, etc. is connected. Each resistance value of the resistance group 16 is gradually decreased as it approaches the lateral side of the cell, and the resistance value 16 in the central portion is reduced.
Is the highest, and is 50Ω as a whole in this embodiment.

【0025】上記構成において、まず電子機器などの微
小電磁波(信号またはノイズ)測定について述べる。セ
ル1内における水平に配設された中心導体ワイヤ8群
と、その下方に配設された外側導体ワイヤ9群間に測定
すべき供試器17をセットし、この供試器17を動作さ
せる。前記動作する供試器17から発生する信号あるい
はノイズは中心導体ワイヤ8群と下方の外側導体ワイヤ
9群に拾われ、同軸管3のN型コネクタ2に接続された
測定器(図示せず)で測定される。この測定において、
セル1の上下は外側導体ワイヤ9群のみであるが、前記
信号、ノイズあるいは外来信号などが外側導体ワイヤ9
群によってシールドされ、セル1内の測定に影響はな
い。
In the above structure, first, measurement of minute electromagnetic waves (signal or noise) of electronic equipment will be described. The test piece 17 to be measured is set between the central conductor wire group 8 arranged horizontally in the cell 1 and the outer conductor wire group 9 arranged below it, and the test piece 17 is operated. . A signal or noise generated from the operating EUT 17 is picked up by the central conductor wire group 8 and the lower outer conductor wire group 9 and connected to the N-type connector 2 of the coaxial tube 3 (not shown). Measured at. In this measurement,
Only the outer conductor wire 9 group is provided above and below the cell 1, but the signals, noises, external signals, etc.
It is shielded by the group and does not affect the measurements in cell 1.

【0026】つぎに強電磁波の照射試験について説明す
る。前記と同様にセル1内における水平に配設された中
心導体ワイヤ8群と、その下方の外側導体ワイヤ9群間
に供試器17をセットし、同軸管3のN型コネクタ2に
高周波発生器(図示せず)を接続して高周波電流を中心
導体ワイヤ8群から外側導体ワイヤ9群に流す。
Next, a strong electromagnetic wave irradiation test will be described. Similarly to the above, the test device 17 is set between the central conductor wires 8 arranged horizontally in the cell 1 and the outer conductor wires 9 below the central conductor wires 8 to generate a high frequency in the N-type connector 2 of the coaxial tube 3. A high-frequency current is passed from the central conductor wire group 8 to the outer conductor wire group 9 by connecting a container (not shown).

【0027】この場合、同軸管3に接続された中心導体
ワイヤ8群および外側導体ワイヤ9群は、ともに円筒形
配列から平行線路に均一の傾斜と膨らみを持ちながら移
行するため、インピーダンス不整合がなく、特性インピ
ーダンスが一定であり、かつ、導体エッジが形成されな
いため、高周波帯域まで電磁波反射のない伝送線路が形
成される。
In this case, both the central conductor wire 8 group and the outer conductor wire 9 group connected to the coaxial waveguide 3 move from the cylindrical array to the parallel lines with uniform inclination and bulge, so that impedance mismatching occurs. Since the characteristic impedance is constant and the conductor edge is not formed, a transmission line that does not reflect electromagnetic waves up to a high frequency band is formed.

【0028】また図8に示すように中心導体ワイヤ8群
から外側導体ワイヤ9群に向って電界Aが発生するとと
もに、この電界Aに直交する磁界Bが発生する。そして
大きな特徴は、磁界Bがセル1の側方の電磁波吸収体4
に直進するため、磁界の乱れが少なく、供試器17に均
一な電磁波の照射をすることになる。
As shown in FIG. 8, an electric field A is generated from the central conductor wire 8 group toward the outer conductor wire 9 group, and a magnetic field B orthogonal to the electric field A is generated. The major feature is that the magnetic field B is the electromagnetic wave absorber 4 on the side of the cell 1.
Since the magnetic field is not disturbed, the EUT is uniformly irradiated with electromagnetic waves.

【0029】ここで注目すべきは、実際には図8におい
て破線で示すように、磁界Bの磁力線が電磁波吸収体4
に当る部分において偏向現象を起こす。このことは電磁
波の乱れを生じさせ、使用周波数の伸びを抑える大きな
原因となっている。本実施例では図7に示す負荷で、か
つ、インピーダンス整合要素である抵抗16群のうち、
セル1の側方の電磁波吸収体4に近いものほど抵抗値を
小さくしているので、前記中心導体ワイヤ8群および外
側導体ワイヤ9群の前記電磁波吸収体4に近いものほど
大きな電流が乱れ、図8で示すように磁界Bは、その端
部になるにしたがって強くなり、すなわち磁界Bの磁力
線の偏向を補正し、電磁波の乱れを防止し、使用周波数
の上限を数GHz程度まで伸ばし、強電磁波照射試験を
する上において、より有効とすることができる。
It should be noted here that the magnetic field lines of the magnetic field B are actually the electromagnetic wave absorber 4 as shown by the broken line in FIG.
A deflection phenomenon occurs in the part that hits. This causes turbulence of electromagnetic waves and is a major cause of suppressing the extension of the used frequency. In the present embodiment, of the load 16 shown in FIG. 7 and the resistance 16 group which is the impedance matching element,
The closer to the electromagnetic wave absorber 4 on the side of the cell 1, the smaller the resistance value is. Therefore, the closer to the electromagnetic wave absorber 4 of the central conductor wire 8 group and the outer conductor wire 9 group, the larger the current is disturbed. As shown in FIG. 8, the magnetic field B becomes stronger toward the end thereof, that is, the deflection of the magnetic field lines of the magnetic field B is corrected, the disturbance of electromagnetic waves is prevented, and the upper limit of the operating frequency is extended to about several GHz, It can be more effective in conducting an electromagnetic wave irradiation test.

【0030】図9はその結果を示すSWR特性であり、
反射度合は3GHz近くまで低い値となっている。もち
ろん、前記中心導体ワイヤ8群と外側導体ワイヤ9群と
は平行な関係にあり、供試器17には均一に電磁波を照
射することになるので、試験の安定性、再現性が良好で
ある。また、セル1は上下面に外側導体ワイヤ9群が配
設され、シールド板を設けていない。しかし、前記外側
導体ワイヤ9群の間隔は、使用周波数の上限周波数の波
長の1/10以下としているため、本実施例では2cm
であるので、使用周波数の上限が3GHzであっても、
前記3GHzの電波は外側導体ワイヤ9群によって捕捉
され、外部に漏洩することがなく、他にシールド板を付
設する必要がない。このように本実施例の微小電磁波測
定および強電磁波発生用セルは、形状の大きさにかかわ
らず電磁界の分布が一様であり、かつ、使用周波数が数
GHzまで伸びるものであり、微小電磁波測定および強
電磁波照射試験の設備として、性能を向上させるととも
に、測定、試験コストを低減する。
FIG. 9 is a SWR characteristic showing the result,
The degree of reflection is as low as about 3 GHz. Of course, the central conductor wire group 8 and the outer conductor wire group 9 are in a parallel relationship, and since the electromagnetic waves are evenly applied to the test device 17, the stability and reproducibility of the test are good. . In addition, the cell 1 has the outer conductor wires 9 arranged on the upper and lower surfaces thereof and is not provided with a shield plate. However, the distance between the groups of the outer conductor wires 9 is set to 1/10 or less of the wavelength of the upper limit frequency of the used frequency, and therefore 2 cm in this embodiment.
Therefore, even if the upper limit of the used frequency is 3 GHz,
The 3 GHz radio wave is captured by the group of outer conductor wires 9 and does not leak to the outside, and it is not necessary to additionally attach a shield plate. As described above, in the micro electromagnetic wave measurement cell and the strong electromagnetic wave generation cell of this embodiment, the distribution of the electromagnetic field is uniform regardless of the size of the shape, and the operating frequency extends up to several GHz. As a facility for measurement and strong electromagnetic wave irradiation test, improve performance and reduce measurement and test costs.

【0031】図10は本発明の他の実施例の要部構成を
示す。この実施例の特徴は、セル内における中心導体ワ
イヤ8群に対する外側導体ワイヤ9群の配置を変化させ
たものである。
FIG. 10 shows the structure of the essential parts of another embodiment of the present invention. The feature of this embodiment is that the arrangement of the outer conductor wire 9 group with respect to the central conductor wire 8 group in the cell is changed.

【0032】先に述べたように、電磁波吸収体4をセル
の両側に配置したものにおいては、磁界の磁力線端が偏
向する現象を呈す不都合があり、これを補正する必要が
ある。したがって本実施例では配設した中心導体ワイヤ
8群に対応する外側導体ワイヤ9群のうち、両側の電磁
波吸収体4に近いものほど、前記対応する中心導体ワイ
ヤ8との間隔を小さくしたものである。
As described above, in the case where the electromagnetic wave absorbers 4 are arranged on both sides of the cell, there is a disadvantage that the magnetic field line ends of the magnetic field are deflected, and it is necessary to correct this. Therefore, in this embodiment, among the outer conductor wires 9 corresponding to the central conductor wires 8 arranged, the closer to the electromagnetic wave absorbers 4 on both sides, the smaller the distance from the corresponding center conductor wire 8 is. is there.

【0033】この構成により発生する磁界Bは、磁界端
になるほど強磁界となり、前述の抵抗16群の個別に抵
抗値を変えるものと同等の効果をもたらす。図11は本
発明の他の実施例を示し、たとえば生産工場における試
験設備として構成したものを示している。本実施例の特
徴としては、前述の実施例の構成のセル1の側部より内
部を挿通する非磁性体よりなるコンベア18を設け、こ
のコンベア18上に供試器17を載置してセル1内に自
動的に順次に搬送し、微小電磁波の測定または強電磁波
の照射試験を行なう。したがって、生産ラインに連結し
て効率よく電子機器の測定、試験を行なうことができ
る。なお、セル1におけるコンベア18の出入口部に
は、電磁波の侵入を防ぎ、また内部の電磁波の反射を抑
える磁性体よりなる案内筒19を設ける。
The magnetic field B generated by this structure becomes a stronger magnetic field at the magnetic field end, and has the same effect as that of individually changing the resistance value of the group of resistors 16 described above. FIG. 11 shows another embodiment of the present invention, which is configured as a test facility in a production factory, for example. The feature of the present embodiment is that a conveyor 18 made of a non-magnetic material that penetrates the inside of the cell 1 having the configuration of the above-described embodiment is provided, and the tester 17 is placed on the conveyor 18 It is automatically conveyed to the inside of 1 and the minute electromagnetic wave is measured or the strong electromagnetic wave irradiation test is performed. Therefore, the electronic device can be efficiently measured and tested by connecting to the production line. A guide cylinder 19 made of a magnetic material is provided at the entrance and exit of the conveyor 18 in the cell 1 to prevent electromagnetic waves from entering and to suppress reflection of internal electromagnetic waves.

【0034】前記各実施例におけるセル1において、水
平に設けた中心導体ワイヤ8群との上部および下部の外
側導体ワイヤ9群の間隔は、図12に示すように上部が
1、下部が2の比率にしてもよい。すなわち、供試17
を位置させる部分のみを大間隔とし、セル全体の高さを
低くできるものであり、たとえば上0.3m、下0.6
m、全体の高さ0.9mと小型化することができる。
In the cell 1 in each of the above-described embodiments, the distance between the horizontally arranged central conductor wire 8 group and the upper and lower outer conductor wire 9 groups is 1 at the upper portion and 2 at the lower portion as shown in FIG. It may be a ratio. That is, sample 17
The height of the entire cell can be reduced by making only the portion where is located a large interval, and for example, 0.3 m above and 0.6 below.
m, and the overall height can be reduced to 0.9 m.

【0035】また、セル1の上下部には本来はシールド
板は不要であるが、図13に示すように上下の外側導体
ワイヤ9群の外側にシールド板20を設けてもよく、こ
の場合、電磁波の漏洩、外部ノイズの侵入などをより完
全に遮断することができる。
Although the shield plate is not required above and below the cell 1, the shield plate 20 may be provided outside the upper and lower outer conductor wire groups 9 as shown in FIG. It is possible to more completely block the leakage of electromagnetic waves and the intrusion of external noise.

【0036】[0036]

【発明の効果】前記実施例の説明より明らかなように、
本発明の微小電磁波測定および強電磁波発生用セルは、
同軸管より導出して水平に配設した中心導体ワイヤ群
と、同じく前記同軸管より導出され、前記中心導体ワイ
ヤ群の上下に前記中心導体ワイヤ群と平行に配設した外
側ワイヤ群と、前記各中心導体ワイヤと各外側導体ワイ
ヤとの間に接続した負荷兼インピーダンス整合用の抵抗
群と、前記セル両側に配置した電磁波吸収体によって構
成したため、均一な電磁界を発生できるとともに、その
使用周波数上限を大きく伸ばすことができる。しかも一
部のシールド構造も省略できるとともに全体を小型化す
ることができ、電子機器、移動体無線通信機器などの微
小電磁波測定、強電磁波照射試験を正確に、かつ効果的
に行なうことができ、その価値は大きい。
As is clear from the description of the above embodiment,
The micro electromagnetic wave measurement and strong electromagnetic wave generation cell of the present invention is
A central conductor wire group that is derived from the coaxial tube and is disposed horizontally, and an outer wire group that is also derived from the coaxial tube and that is disposed above and below the central conductor wire group in parallel with the central conductor wire group, and Since it is composed of a resistance group for load and impedance matching connected between each central conductor wire and each outer conductor wire and an electromagnetic wave absorber arranged on both sides of the cell, a uniform electromagnetic field can be generated and its frequency used. The upper limit can be greatly extended. Moreover, a part of the shield structure can be omitted and the whole can be downsized, and minute electromagnetic wave measurement and strong electromagnetic wave irradiation test of electronic devices, mobile wireless communication devices, etc. can be accurately and effectively performed. Its value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の微小電磁波測定および強電
磁波発生用セルの一部材をはづした状態の斜視図
FIG. 1 is a perspective view showing a state in which a member for measuring a minute electromagnetic wave and a cell for generating a strong electromagnetic wave according to an embodiment of the present invention is mounted.

【図2】同セルにおける同軸管部の断面図FIG. 2 is a cross-sectional view of a coaxial tube part in the same cell.

【図3】同、同軸管部と導出した導体ワイヤ群を示す断
側面図
FIG. 3 is a sectional side view showing a conductor wire group led out from the coaxial tube portion.

【図4】同、同軸管部と導出した導体ワイヤ群を示す背
面図
FIG. 4 is a rear view showing a coaxial wire and a conductor wire group led out in the same manner.

【図5】同、導体ワイヤ群(外側導体ワイヤ群)を配設
したセルの平断面図
FIG. 5 is a plan sectional view of a cell in which a conductor wire group (outer conductor wire group) is arranged.

【図6】同、導体ワイヤ群を配設したセルの縦断面図FIG. 6 is a vertical sectional view of a cell in which a conductor wire group is arranged.

【図7】同、セルの端面を示す平面図FIG. 7 is a plan view showing an end face of the cell.

【図8】同、導体ワイヤ群の配置説明図FIG. 8 is a layout explanatory diagram of a conductor wire group of the same.

【図9】同、セルにおけるSWR特性図FIG. 9 is a SWR characteristic diagram of the same cell.

【図10】本発明の他の実施例における導体ワイヤ群の配
置説明図
FIG. 10 is a layout explanatory view of a conductor wire group according to another embodiment of the present invention.

【図11】本発明の他の実施例のセルの断面図FIG. 11 is a sectional view of a cell of another embodiment of the present invention.

【図12】本発明の他の実施例のセルの断面図FIG. 12 is a sectional view of a cell of another embodiment of the present invention.

【図13】本発明の他の実施例のセルの斜視図FIG. 13 is a perspective view of a cell according to another embodiment of the present invention.

【図14】従来のオープンサイト式の測定、試験装置の構
成図
[Figure 14] Configuration diagram of conventional open-site measurement and test equipment

【図15】従来の電磁無響セルの断面図FIG. 15 is a sectional view of a conventional electromagnetic anechoic cell.

【図16】従来のTEMセルの一部切欠斜視図FIG. 16 is a partially cutaway perspective view of a conventional TEM cell.

【図17】従来のGTEMセルの一部切欠斜視図FIG. 17 is a partially cutaway perspective view of a conventional GTEM cell.

【符号の説明】[Explanation of symbols]

1 セル 2 N型コネクタ 3 同軸管 4 電磁波吸収体 8 中心導体ワイヤ 9 外側導体ワイヤ 16 抵抗 17 供試器 1 Cell 2 N-type Connector 3 Coaxial Tube 4 Electromagnetic Wave Absorber 8 Center Conductor Wire 9 Outer Conductor Wire 16 Resistance 17 Test Device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 7/26 H05K 9/00 M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H04B 7/26 H05K 9/00 M

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 測定器または高周波発生器を接続する同
軸管と、前記同軸管の中心導体より導出され、水平に、
かつ等間隔に配設された中心導体ワイヤ群と、前記同軸
管の外側導体より導出され、前記中心導体ワイヤ群の上
下において中心導体ワイヤ群と主部が平行に配設された
外側導体ワイヤ群と、前記中心導体ワイヤ群と外側導体
ワイヤ群の上下各対応する終端間に接続された抵抗群
と、前記中心導体ワイヤ群と外側導体ワイヤ群の両側部
および終端部に配設して壁をなす電磁波吸収体より構成
した微小電磁波測定および強電磁波発生用セル。
1. A coaxial tube for connecting a measuring device or a high frequency generator, and a horizontal conductor which is led out from a central conductor of the coaxial tube,
And a central conductor wire group arranged at equal intervals, and an outer conductor wire group led out from the outer conductor of the coaxial waveguide, in which the central conductor wire group and the main part are arranged in parallel above and below the central conductor wire group. A resistor group connected between the upper and lower corresponding ends of the center conductor wire group and the outer conductor wire group, and a wall provided by arranging both sides and end portions of the center conductor wire group and the outer conductor wire group. Cell for measuring minute electromagnetic wave and generating strong electromagnetic wave, which is composed of eggplant electromagnetic wave absorber.
【請求項2】 中心導体ワイヤ群と外側導体ワイヤ群の
終端間に接続された抵抗群は、セルの両側部に近いもの
ほど抵抗値を小さくしてなる請求項1記載の微小電磁波
測定および強電磁波発生用セル。
2. The small electromagnetic wave measurement and the strong electromagnetic wave measurement according to claim 1, wherein the resistance group connected between the ends of the central conductor wire group and the outer conductor wire group has a smaller resistance value as the resistance group is closer to both sides of the cell. Electromagnetic cell.
【請求項3】 外側導体ワイヤ群は、セルの両側部に近
いものほど対向する中心導体ワイヤとの間隔を小さくし
てなる請求項1記載の微小電磁波測定および強電磁波発
生用セル。
3. The cell for minute electromagnetic wave measurement and strong electromagnetic wave generation according to claim 1, wherein the outer conductor wire group has a smaller distance between the outer conductor wire group and the central conductor wire facing each other as the outer conductor wires are closer to both sides of the cell.
【請求項4】 外側導体ワイヤ群は、隣り合うものとの
間隔を上限使用周波数の波長の1/10以下にした請求
項1記載の微小電磁波測定および強電磁波発生用セル。
4. The micro electromagnetic wave measurement and strong electromagnetic wave generation cell according to claim 1, wherein the outer conductor wire group has an interval between adjacent outer wire wires set to 1/10 or less of the wavelength of the upper limit operating frequency.
【請求項5】 同軸管の中心導体および外側導体より導
出された中心導体ワイヤ群および外側導体ワイヤ群は、
その導出基部の断面円筒形配列より次第に扁平配列に移
行させた請求項1記載の微小電磁波測定および強電磁波
発生用セル。
5. The center conductor wire group and the outer conductor wire group derived from the center conductor and the outer conductor of the coaxial waveguide,
The micro electromagnetic wave measurement and strong electromagnetic wave generation cell according to claim 1, wherein the derived base portion is gradually moved from a cylindrical arrangement in cross section to a flat arrangement.
【請求項6】 電磁波吸収体はフェライト板によって形
成してなる請求項1記載の微小電磁波測定および強電磁
波発生用セル。
6. The micro electromagnetic wave measuring and strong electromagnetic wave generating cell according to claim 1, wherein the electromagnetic wave absorber is formed of a ferrite plate.
【請求項7】 請求項1記載のセルにおける外側導体群
の外側にシールド板を配設してなる微小電磁波測定およ
び強電磁波発生用セル。
7. A cell for measuring minute electromagnetic waves and generating a strong electromagnetic wave, comprising a shield plate arranged outside the outer conductor group in the cell according to claim 1.
【請求項8】 請求項1記載のセルにおける中心導体ワ
イヤ群と下側導体ワイヤ群の間を通る非磁性材よりなる
供試器搬送用のコンベアを付設した微小電磁波測定およ
び強電磁波発生用セル。
8. A cell for measuring small electromagnetic waves and generating a strong electromagnetic wave, which is provided with a conveyor for transporting a sample device made of a non-magnetic material that passes between the central conductor wire group and the lower conductor wire group in the cell according to claim 1. .
【請求項9】 中心導体ワイヤ群に対する上側の外側導
体ワイヤ群の間隔と、中心導体ワイヤ群に対する下側の
外側導体ワイヤ群の間隔を1:2の比率にした請求項1
または8記載の微小電磁波測定および強電磁波発生用セ
ル。
9. The ratio of the interval of the upper outer conductor wire group to the central conductor wire group and the interval of the lower outer conductor wire group to the central conductor wire group are set to a ratio of 1: 2.
Alternatively, the cell for measuring minute electromagnetic waves and generating strong electromagnetic waves according to 8.
JP6258619A 1994-10-25 1994-10-25 Cell for small electromagnetic wave measurement and strong electromagnetic wave generation Expired - Fee Related JP2738507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6258619A JP2738507B2 (en) 1994-10-25 1994-10-25 Cell for small electromagnetic wave measurement and strong electromagnetic wave generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6258619A JP2738507B2 (en) 1994-10-25 1994-10-25 Cell for small electromagnetic wave measurement and strong electromagnetic wave generation

Publications (2)

Publication Number Publication Date
JPH08122379A true JPH08122379A (en) 1996-05-17
JP2738507B2 JP2738507B2 (en) 1998-04-08

Family

ID=17322800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6258619A Expired - Fee Related JP2738507B2 (en) 1994-10-25 1994-10-25 Cell for small electromagnetic wave measurement and strong electromagnetic wave generation

Country Status (1)

Country Link
JP (1) JP2738507B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989959A (en) * 1995-09-20 1997-04-04 Kokusai Electric Co Ltd Sensitivity measuring box for production line
JPH0989960A (en) * 1995-09-26 1997-04-04 Kokusai Electric Co Ltd Automatic sensitivity measuring device
EP0821242A2 (en) * 1996-07-23 1998-01-28 Thermo Voltek Europe B.V. An electromagnetic compatibility (EMC) test cell
WO1998053333A1 (en) * 1997-05-21 1998-11-26 Euro Emc Service Dr. Hansen Gmbh Method and device for generating and receiving electromagnetic fields for test and measurement purposes
WO2007067017A1 (en) * 2005-12-09 2007-06-14 Electronics And Telecommunications Research Institute Method for measuring inverse scattering wave, and apparatus for identifying inferior rfid transponder and reader using the same
JP5786871B2 (en) * 2011-02-08 2015-09-30 株式会社村田製作所 Reception sensitivity measurement method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989959A (en) * 1995-09-20 1997-04-04 Kokusai Electric Co Ltd Sensitivity measuring box for production line
JPH0989960A (en) * 1995-09-26 1997-04-04 Kokusai Electric Co Ltd Automatic sensitivity measuring device
EP0821242A2 (en) * 1996-07-23 1998-01-28 Thermo Voltek Europe B.V. An electromagnetic compatibility (EMC) test cell
EP0821242A3 (en) * 1996-07-23 1998-09-16 Thermo Voltek Europe B.V. An electromagnetic compatibility (EMC) test cell
WO1998053333A1 (en) * 1997-05-21 1998-11-26 Euro Emc Service Dr. Hansen Gmbh Method and device for generating and receiving electromagnetic fields for test and measurement purposes
WO2007067017A1 (en) * 2005-12-09 2007-06-14 Electronics And Telecommunications Research Institute Method for measuring inverse scattering wave, and apparatus for identifying inferior rfid transponder and reader using the same
US7847743B2 (en) 2005-12-09 2010-12-07 Electronics And Telecommunications Research Institute Method for measuring inverse scattering wave, and apparatus for identifying inferior RFID transponder and reader using the same
JP5786871B2 (en) * 2011-02-08 2015-09-30 株式会社村田製作所 Reception sensitivity measurement method

Also Published As

Publication number Publication date
JP2738507B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
Johnston et al. An improved small antenna radiation-efficiency measurement method
US5530412A (en) Enhanced mode stirred test chamber
CN103543342A (en) Method and system for testing shielding performance of cable
JP2738507B2 (en) Cell for small electromagnetic wave measurement and strong electromagnetic wave generation
Icheln The construction and application of a GTEM cell
Sarkar et al. Low cost RF sensor for partial discharge detection of high voltage apparatus
Wang et al. A wideband tangential electric probe based on common mode absorbing
CN109884412B (en) Ultra-wideband electric field probe adopting U-shaped structure
CN216485390U (en) Chip pin coupling voltage test system
US4970455A (en) Device for measuring electromagnetic wave leakage
KR0144869B1 (en) 3p-tem cell
Bridges Proposed recommended practices for the measurement of shielding effectiveness of high-performance shielding enclosures
KR100666503B1 (en) Epoxy Injection Hole Sensor for Diagnosis Partial Discharge of Gas-Insulated Switchgear
KR100666505B1 (en) External Sensor for Diagnosis Partial Discharge of Gas-Insulated Switchgear
Manara et al. Electromagnetic penetration and coupling to wires through apertures of arbitrary shape
KR20010083382A (en) Standard fields generation cell for emc testing and calibration
CN221103353U (en) Antenna near field coupling test assembly and antenna performance test equipment
CN111323667B (en) Bounded wave simulator with three different electric field areas
Ghosh et al. Performance analysis of emi sensor in different test sites with different wave impedances
Chai Partial Discharge Monitoring by the UHF Method in Power Transformers
JPH1130638A (en) Wide-band electromagnetic wave testing black box
Ishigami et al. Site validation for radiated field measurements of high-voltage/large-capacity electrical equipment
Wang et al. Research on partial discharge detection through ultra high frequency signal diffusing from GIS pouring aperture
JPH05264620A (en) Tem cell
Chamnankij et al. Frequency Enhancement of Gigahertz Transverse Electromagnetic Cell for EMC Calibration in 300 kHz–6 GHz

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees