WO2007067017A1 - Method for measuring inverse scattering wave, and apparatus for identifying inferior rfid transponder and reader using the same - Google Patents

Method for measuring inverse scattering wave, and apparatus for identifying inferior rfid transponder and reader using the same Download PDF

Info

Publication number
WO2007067017A1
WO2007067017A1 PCT/KR2006/005376 KR2006005376W WO2007067017A1 WO 2007067017 A1 WO2007067017 A1 WO 2007067017A1 KR 2006005376 W KR2006005376 W KR 2006005376W WO 2007067017 A1 WO2007067017 A1 WO 2007067017A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
coupler
cell
inferior
reader
Prior art date
Application number
PCT/KR2006/005376
Other languages
French (fr)
Inventor
Je-Hoon Yun
Original Assignee
Electronics And Telecommunications Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics And Telecommunications Research Institute filed Critical Electronics And Telecommunications Research Institute
Priority to US12/096,670 priority Critical patent/US7847743B2/en
Publication of WO2007067017A1 publication Critical patent/WO2007067017A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0095Testing the sensing arrangement, e.g. testing if a magnetic card reader, bar code reader, RFID interrogator or smart card reader functions properly
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10366Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications
    • G06K7/10465Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications the interrogation device being capable of self-diagnosis, e.g. in addition to or as part of the actual interrogation process
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2822Testing of electronic circuits specially adapted for particular applications not provided for elsewhere of microwave or radiofrequency circuits

Definitions

  • the present invention relates to a method for measuring inverse scattering wave and an apparatus for identifying an inferior Radio Frequency IDentification (RFID) transponder and reader using the same. More particularly, the invention relates to a method which measures an inverse scattering characteristic by installing a test object such as an RFTD transponder in a coupler and generating inverse scattering wave in the coupler, and an apparatus for identifying an inferior RFTD transponder and reader by being installed on a production line and by using the measuring method so as to remove the inferior RFTD transponder and reader during the mass production.
  • RFID Radio Frequency IDentification
  • an isolation antenna capable of isolating a transmitting signal and a receiving signal in an outdoor test station having a radio wave absorbent on its bottom, or a radio dark room having a radio wave absorbent on its ceiling, sidewall and bottom.
  • the antenna is generated and received through the antenna, thereby restricting a bandwidth, which is a general problem of the antenna.
  • a phase linear response to a frequency is not guaranteed in a broadband.
  • the size of the antenna is very large in a low frequency band, which is very difficult to measure inverse scattering in a low frequency.
  • the outdoor test station is also affected by the external electromagnetic wave environment.
  • measuring the inverse scattering wave which can measure performance of an RFlD transponder or reader in a narrow space such as a production line, regardless of the external electromagnetic wave environment.
  • Another object of the present invention is to provide an apparatus for identifying an inferior RFlD transponder and reader by being installed on a production line and by using the method for measuring the inverse scattering wave so as to remove the inferior RFlD transponder and reader during the mass production.
  • a method for measuring inverse scattering wave including the steps of: installing a scattering object which is a test object in a coupler; feeding an electrical signal to an input terminal of the coupler; terminating an output terminal and an isolation terminal of the coupler so that the electrical signal scattered by colliding with the scattering object is transmitted to a coupling terminal of the coupler; and measuring intensity of the electrical signal transmitted to the coupling terminal.
  • the electrical signal is an RF power signal.
  • the coupler is configured in such a manner that uniformity of electromagnetic wave is high in 1/3 center portion between inner conductors provided in the coupler.
  • the electrical signal is measured by using any one of a
  • 2-termianl GTEM cell a CTL cell, a strip line cell and an 8-terminal TEM cell which have a coupler structure.
  • a scattering object which is a test object in a coupler
  • feeding an electrical signal to an input terminal of the coupler
  • terminating an output terminal and a coupling terminal of the coupler so that the electrical signal scattered by colliding with the scattering object is transmitted to an isolation terminal of the coupler
  • measuring intensity of the electrical signal transmitted to the isolation terminal including the steps of: installing a scattering object which is a test object in a coupler; feeding an electrical signal to an input terminal of the coupler; terminating an output terminal and a coupling terminal of the coupler so that the electrical signal scattered by colliding with the scattering object is transmitted to an isolation terminal of the coupler; and measuring intensity of the electrical signal transmitted to the isolation terminal.
  • the electrical signal is an RF power signal.
  • the electrical signal is measured by using any one of a 2-termianl GTEM cell, a CTL cell, a strip line cell and an 8-terminal TEM cell which have a coupler structure.
  • an apparatus for identifying an inferior passive RFID transponder including: attenuators connected to each of an input terminal and an output terminal of a coupler; a passive RFID reader, which is normally operated, connected to the attenuators; and a passive RFTD transponder, which is a test object, installed in the coupler, whereby an inferior product is identified by using the method for measuring the inverse scattering wave; and there is further provided an apparatus for identifying an inferior active RFID transponder, including: attenuators connected to each of an input terminal and an output terminal of a coupler; a circulator connected to the attenuators; an active RFID reader, which is normally operated, connected to the circulator; and an active RFID transponder, which is a test object, installed in the coupler, whereby an inferior product is identified by using the method for measuring the inverse scattering wave.
  • an apparatus for identifying an inferior passive RFTD reader including: a passive transponder, which is normally operated, installed in a coupler; attenuators connected to each of an input terminal and an output terminal of the coupler; and an RFTD reader, which is a test object, installed in the attenuators, whereby an inferior product is identified by using the method for measuring the inverse scattering wave; and there is further provided an apparatus for identifying an inferior active RFID reader, including: an active transponder, which is normally operated, installed in a coupler; attenuators connected to each of an input terminal and an output terminal of the coupler; a circulator connected to the attenuators; and an active RFlD reader, which is a test object, installed in the circulator, whereby an inferior product is identified by using the method for measuring the inverse scattering wave.
  • measuring the inverse scattering wave measures the inverse scattering characteristic by installing the test object such as the RFlD transponder in the coupler, and generating the inverse scattering wave in the coupler, thereby reducing the installation cost and installing the measurement system in a narrow space. Accordingly, it is possible to conduct the measurement, regardless of the external electromagnetic wave environment.
  • the apparatus for identifying the inferior RFlD transponder and reader by using the method for measuring the inverse scattering wave is installed on the production line, thereby removing the inferior RFlD transponder and reader directly from the production line during the mass production.
  • FIG. 1 is a schematic view describing a principle of measuring inverse scattering wave using a coupler in accordance with a first embodiment of the present invention
  • FIG. 2 is a front view of a 2-terminal GTEM cell which does not have a distribution resistance plate;
  • FIG. 3 is a side view of the 2-terminal GTEM cell which does not have the distribution resistance plate;
  • FIG. 4 is a front view of a CTL cell
  • Fig. 5 is a side view of the CTL cell
  • Fig. 6 is a front view of a strip line cell
  • Fig. 7 is a side view of the strip line cell
  • FIG. 8 is a front view of an 8-termianl TEM cell
  • FIG. 9 is a side view of the 8-termianl TEM cell
  • FIG. 10 is a schematic view illustrating an apparatus for identifying an inferior passive RFlD transponder using a 2-terminal GTEM cell which does not have a distribution resistance plate in accordance with a second embodiment of the present invention
  • FIG. 11 is a schematic view illustrating an apparatus for identifying an inferior passive RFlD transponder using a CTL cell in accordance with the second embodiment of the present invention
  • Fig. 12 is a schematic view illustrating an apparatus for identifying an inferior
  • Fig. 13 is a schematic view illustrating an apparatus for identifying an inferior
  • Fig. 14 is a schematic view illustrating an apparatus for identifying an inferior
  • Fig. 15 is a schematic view illustrating an apparatus for identifying an inferior
  • Fig. 16 is a schematic view illustrating an apparatus for identifying an inferior
  • Fig. 17 is a schematic view illustrating an apparatus for identifying an inferior
  • Fig. 18 is a schematic view illustrating an apparatus for identifying an inferior
  • Fig. 19 is a schematic view illustrating an apparatus for identifying an inferior
  • Fig. 20 is a schematic view illustrating an apparatus for identifying an inferior
  • Fig. 21 is a schematic view illustrating an apparatus for identifying an inferior
  • FIG. 1 through 21 illustrate a method for measuring inverse scattering wave and an apparatus for identifying an inferior RFID transponder and reader using the same in accordance with the present invention.
  • a method for measuring inverse scattering wave installs a scattering object S which is a test object in a coupler, feeds an electrical signal to an input terminal Tl of the coupler, terminates an output terminal T3 and an isolation terminal T4 of the coupler so that the electrical signal scattered by colliding with the scattering object S can be transmitted to a coupling terminal T2 of the coupler, and measures intensity of the electrical signal transmitted to the coupling terminal T2.
  • the electrical signal is an RF power signal.
  • the scattering object S such as an RFID transponder, which is the test object
  • the electrical signal is fed to the input terminal Tl of the coupler
  • the scattering object S is exposed to a Transverse Electro Magnetic (TEM) mode (wave impedance 377 W) similar to plane wave induced in the coupler, and scattering wave is converted into an RF power signal and transmitted to the input terminal Tl, the coupling terminal T2, the output terminal T3 and the isolation terminal T4.
  • TEM Transverse Electro Magnetic
  • the electrical signal has the same characteristic as the inverse scattering wave generated by the plane wave in a free space.
  • the coupler is designed in a manner that uniformity of the electromagnetic wave is high in 1/3 center portion between inner conductors provided in the coupler.
  • a quantity of forward scattering wave can be measured in the isolation terminal T4 in the same principle as the coupling terminal T2.
  • the electrical signal is an RF power signal.
  • a characteristic parameter of the inverse scattering wave is a Radar
  • test object S [63] To embody the aforementioned technique, as shown in Fig. 1, the test object S
  • the RF power signal is inputted to the input terminal Tl.
  • the incident wave Ei is formed in the coupler due to feeding of the signal to the input terminal Tl, and collides with the test object S, thereby generating scattering wave Es.
  • the scattering wave Es is transmitted to each terminal.
  • the inverse scattering performance can be measured by using the signal transmitted to the coupling terminal T2.
  • the representative facilities of the TEM line having the coupler structure with the uniform area include a 2-termianl Gigaherz TEM (GTEM) cell, a Coupled
  • Transmission Line (CTL) cell Transmission Line (CTL) cell
  • strip line cell an 8-terminal TEM cell
  • 8-terminal TEM cell an 8-terminal TEM cell
  • the electrical signal is measured by using any one of the 2-termianl GTEM cell, the CTL cell, the strip line cell and the 8-terminal TEM cell which have the coupler structure.
  • FIG. 2 illustrates a front view of a 2-terminal GTEM cell which does not have a dis- tribution resistance plate.
  • An outer conductor 2 is formed in a hollow rectangular conical shape, and two inner conductors 1 are installed in the outer conductor 2 to face each other.
  • the 2-terminal GTEM cell includes two Input/Output (FO) terminals, and also includes radio wave absorbents 3, impedance matching plates 6 and terminators 4 at the end.
  • FO Input/Output
  • the distribution resistance plate is installed at the ending points of the inner conductors to terminate a low frequency band.
  • this method is embodied in a manner that a plurality of resistance elements is connected in series and in parallel on a large PCB board, thereby increasing the production cost.
  • the impedance matching plates 6 made of metal are installed inside, the width of the inner conductors 1 is reduced to maintain impedance matching in order to keep characteristic impedance constant, and the final ends are connected to the terminators 4.
  • FIG. 3 shows a side view of the 2-terminal GTEM cell which does not have the distribution resistance plate, especially, setting of a test area.
  • EMS in 1/3 center portion between the inner conductors and the outer conductor or between the inner conductors.
  • Such an area is called a uniform area.
  • Figs. 4 and 5 present a front view and a side view of a general CTL cell, respectively.
  • Figs. 6 to 9 illustrate models having different coupler structures and capable of securing the uniform area, wherein Figs. 6 and 7 show the strip line cell. These structures show that conductor plates 9 are installed to face each other, dielectric supports 10 made of a nonconductor are installed to support the conductor plates 9, and impedance matching plates 6 for impedance matching are installed in the narrow width portions of the conductor plates 9.
  • FIGs. 8 and 9 describe a front view and a side view of an 8-termianl TEM cell, respectively.
  • This 8-termianl TEM cell includes four inner conductors 1 and the two facing inner conductors 1 form a same phase feeding structure. Therefore, it can be seen that the 8-termianl TEM cell has the coupler structure.
  • the 8-termianl TEM cell has a wider uniform area 8.
  • the 8-termianl TEM cell requires an in-phase feeding circuit to utilize in measuring inverse scattering.
  • Figs. 10 to 12 illustrate apparatuses for identifying an inferior passive RFID
  • transponder in accordance with a second embodiment of the present invention.
  • each of the apparatuses for identifying the inferior passive RFID transponder connects attenuators 12 to each of an input terminal Tl and an output terminal T3 of a coupler, connects a passive RFID reader 13 which is normally operated to the attenuators 12, installs a passive RFID transponder 16 which is a test object in the coupler, and identifies an inferior product 22 by using the method for measuring the inverse scattering wave.
  • a robot 18 is further configured to identify inferiority of the passive RFID transponder 16 through the passive RFID reader 13 which is normally operated, and remove the inferior RFTD transponder 22.
  • the coupler is comprised of any one of a 2-terminal GTEM cell, a CTL cell and a 4-terminal strip line cell.
  • Fig. 10 illustrates an apparatus for identifying an inferior passive RFID transponder using a 2-terminal GTEM cell which does not have a distribution resistance plate by applying the same principle as above.
  • an attenuator 12 is installed between the feeding terminal of the 2-terminal GTEM cell and a transmitting terminal (transmitting antenna coupling terminal) of the reader 13. This serves to attenuate wave loss caused by the positions of the reader 13 and the transponder 16. Further, an attenuator 12 is also installed between the receiving terminal (receiving antenna coupling terminal) of the 2-terminal GTEM cell and a receiving terminal of the reader 13. This functions to attenuate wave loss generated in a process of transmitting an inverse scattering signal to a receiving unit of the reader 13. In this case, the sensitivity measurement of the transponder 16 can be conducted, as done in a radio dark room.
  • an attenuation value of the attenuator 12 for maintaining the operation can be obtained. Also, a maximum operating distance can be measured by calculating a maximum attenuation value for maintaining the operation on the basis of the above attenuation value.
  • a(dB) of the attenuator for obtaining the same electromagnetic wave condition as that of the free space can be easily determined inversely.
  • a test object transponder 21 which is normally read by the reader 13 is not an inferior product 22 but a finished product 23, and thus is passed as it is. If the transponder 21 is not read by the reader 13, a speaker and an alarm lamp 17 for notifying an abnormal operation are operated, so that the operator can remove the inferior transponder, or the robot 18 for removing the inferior transponder is installed to thereby automatically remove it.
  • This system may be easily implemented by a control system using a computer as a whole.
  • FIG. 11 illustrates an apparatus for identifying an inferior passive RFID transponder using a CTL cell.
  • Terminals installed on the opposite surface are terminated by being connected to terminators 4.
  • a reference model which is a passive RFID reader 13 having verified performance and isolable transmitting/receiving antenna.
  • an attenuator 12 is installed between the feeding terminal of the CTL cell and a transmitting terminal (transmitting antenna coupling terminal) of the reader 13 for attenuating wave loss caused by the positions of the reader 13 and the transponder 16.
  • an attenuator 12 is also installed between the receiving terminal (receiving antenna coupling terminal) of the CTL cell and a receiving terminal of the reader 13 for attenuating wave loss generated in a process of transmitting an inverse scattering signal to a receiving unit of the reader 13.
  • the sensitivity measurement of the transponder 16 can be conducted, as done in a radio dark room.
  • An attenuation value is defined as in the example of Fig. 10.
  • An attenuation value of the attenuator 12 for maintaining the operation can be also calculated inversely. As described above, a maximum operating distance can be measured based on the attenuation value.
  • test object transponder 21 which is normally read by the reader 13 is not an
  • Fig. 12 illustrates an apparatus for identifying an inferior passive RFID transponder using a 4-terminal strip line cell.
  • a reference model which is a passive RFED reader 13 having verified performance and isolable transmitting/receiving antenna.
  • an attenuator 12 is installed between the feeding terminal of the 4-terminal strip line cell and a transmitting terminal (transmitting antenna coupling terminal) of the reader 13 for attenuating wave loss caused by the positions of the reader 13 and the transponder 16. Further, an attenuator 12 is also installed between the receiving terminal (receiving antenna coupling terminal) of the 4-terminal strip line cell and a receiving terminal of the reader 13 for attenuating wave loss generated in a process of transmitting an inverse scattering signal to a receiving unit of the reader 13.
  • the sensitivity measurement of the transponder 16 can be conducted, as done in a radio dark room.
  • An attenuation value is defined as in the example of Fig. 10.
  • An attenuation value of the attenuator 12 for maintaining the operation can be also found inversely.
  • a maximum operating distance can be measured on the basis of the attenuation value.
  • test object transponder 21 which is normally read by the reader 13 is not an
  • Figs. 13 to 15 illustrate apparatuses for identifying an inferior active RFID
  • transponder in accordance with a third embodiment of the present invention.
  • each of the apparatuses for identifying the inferior active RFID transponder connects attenuators 12 to each of an input terminal Tl and an output terminal T3 of a coupler, connects a circulator 14 to the attenuators 12, connects an active RFTD reader 15 which is normally operated to the circulator 14, installs an active RFTD transponder 16 which is a test object in the coupler, and identifies an inferior product 22 by using the method for measuring the inverse scattering wave.
  • a robot 18 identifies inferiority of the active transponder 16 through the active RFID reader 13 which is normally operated, and removes the inferior active RFID transponder 22.
  • the coupler is comprised of any one of a 2-terminal GTEM cell, a CTL cell and a 4-terminal strip line cell.
  • Fig. 13 illustrates an apparatus for identifying an inferior active RFID transponder using a 2-terminal GTEM cell which does not have a distribution resistance plate.
  • a reference model which is an active RFID reader 15 having verified performance and one transmitting/receiving antenna.
  • an attenuator 12 and a circulator 14 are installed between the feeding terminal of the 2-terminal GTEM cell and a transmitting terminal of the reader 13 for attenuating wave loss caused by the positions of the reader 15 and the transponder 16.
  • an attenuator 12 and the circulator 14 are also installed between the receiving terminal of the 2-terminal GTEM cell and a receiving terminal of the reader 15 for attenuating wave loss generated in a process of transmitting an inverse scattering signal to a receiving unit of the reader 15.
  • the sensitivity measurement of the transponder 16 can be
  • test object transponder 21 which is normally read by the reader 15 is not an
  • a connecting terminal can be formed to connect transmitting and receiving signal lines from the active RFID reader 15 to the antenna, it can be installed as shown in Fig. 10.
  • Fig. 14 illustrates an apparatus for identifying an inferior active RFID transponder using a CTL cell.
  • a reference model which is an active RFID reader 15 having verified performance and one transmitting/receiving antenna.
  • an attenuator 12 and a circulator 14 are installed between the feeding terminal of the CTL cell and a transmitting terminal of the reader 15 for attenuating wave loss caused by the positions of the reader 15 and the transponder 16.
  • an attenuator 12 and the circulator 14 are also installed between the receiving terminal of the CTL cell and a receiving terminal of the reader 15 for attenuating wave loss generated in a process of transmitting an inverse scattering signal to a receiving unit of the reader 15.
  • the sensitivity measurement of the transponder 16 can be conducted, as done in a radio dark room.
  • test object transponder 21 which is normally read by the reader 15 is not an
  • a connecting terminal can be formed to connect transmitting and receiving signal lines from the active RFlD reader 15 to the antenna, it can be installed as shown in Fig. 11.
  • Fig. 15 illustrates an apparatus for identifying an inferior active RFlD transponder using a 4-terminal strip line cell.
  • a reference model which is an active RFlD reader 15 having verified performance and one transmitting/receiving antenna.
  • an attenuator 12 and a circulator 14 are installed between the feeding terminal of the 4-terminal strip line cell and a transmitting terminal of the reader 15 for attenuating wave loss caused by the positions of the reader 15 and the transponder 16.
  • an attenuator 12 and the circulator 14 are also installed between the receiving terminal of the 4-terminal strip line cell and a receiving terminal of the reader 15 for attenuating wave loss generated in a process of transmitting an inverse scattering signal to a receiving unit of the reader 15.
  • the sensitivity measurement of the transponder 16 can be conducted, as done in a radio dark room.
  • test object transponder 21 which is normally read by the reader 15 is not an
  • a connecting terminal can be formed to connect transmitting and receiving signal lines from the active RFlD reader
  • FIGs. 16 to 18 illustrate apparatuses for identifying an inferior passive RFlD reader in accordance with a fourth embodiment of the present invention.
  • each of the apparatuses for identifying the inferior passive RFlD reader installs a passive transponder
  • the coupler is comprised of any one of a 2-terminal GTEM cell, a CTL cell and a
  • Fig. 16 illustrates an apparatus for identifying an inferior passive RFlD reader using a 2-terminal GTEM cell which does not have a distribution resistance plate.
  • a transmitting antenna and a receiving antenna are used separately from each other.
  • the apparatus for identifying the inferior passive RFID reader installs a transponder
  • Fig. 17 illustrates an apparatus for identifying an inferior passive RFID reader using a CTL cell.
  • a transmitting antenna and a receiving antenna are used separately from each other.
  • the apparatus for identifying the inferior passive RFID reader installs a transponder
  • Fig. 14 illustrates an apparatus for identifying an inferior passive RFID reader using a 4-terminal strip line cell.
  • a transmitting antenna and a receiving antenna are used separately from each other.
  • the apparatus for identifying the inferior passive RFID reader installs a transponder
  • FIGs. 19 to 21 illustrate apparatuses for identifying an inferior active RFTD reader in accordance with a fifth embodiment of the present invention.
  • each of the apparatuses for identifying the inferior active RFID reader installs an active transponder 16 which is normally operated in a coupler, connects attenuators 12 to each of an input terminal Tl and an output terminal T3 of the coupler, connects a circulator 14 to the attenuators 12, installs an active RFTD reader 15 which is a test object in the circulator 14, and identifies an inferior product by using the method for measuring the inverse scattering wave.
  • the coupler is comprised of any one of a 2-terminal GTEM cell, a CTL cell and a
  • Fig. 19 illustrates an apparatus for identifying an inferior active RFID reader using a 2-terminal GTEM cell which does not have a distribution resistance plate, especially, an apparatus for identifying an inferior active RFTD reader which is a test object using one transmitting/receiving antenna and separately connecting an antenna feeding terminal.
  • the operating principle of the apparatus is identical to that of the apparatus of Fig. 16.
  • Fig. 20 illustrates an apparatus for identifying an inferior active RFID reader using a CTL cell, especially, an apparatus for identifying an inferior active RFID reader using one transmitting/receiving antenna and separately connecting an antenna feeding terminal.
  • the operating principle of the apparatus is identical to that of the apparatus of Fig. 17.
  • Fig. 21 illustrates an apparatus for identifying an inferior active RFID reader using a 4-terminal strip line cell, especially, an apparatus for identifying an inferior active RFID reader using one transmitting/receiving antenna and separately connecting an antenna feeding terminal.
  • the operating principle of the apparatus is identical to that of the apparatus of Fig. 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

Provided is a method for measuring inverse scattering wave, which includes installing a scattering object which is a test object in a coupler, feeding an electrical signal to an input terminal of the coupler, terminating an output terminal and an isolation terminal of the coupler so that the electrical signal scattered by colliding with the scattering object is transmitted to a coupling terminal of the coupler, and measuring intensity of the electrical signal transmitted to the coupling terminal. In addition, provided is an apparatus for identifying an inferior Radio Frequency IDentification (RFID) transponder and an inferior RFID reader by using the method for measuring the inverse scattering wave. Accordingly, the installation cost thereof is reduced. Furthermore, the facilities for the measurement can be installed in a narrow space, and the measurement can be done regardless of an external electromagnetic wave environment. Moreover, the apparatus for identifying the inferior RFID transponder and reader is installed on a production line, thereby removing the inferior RFID transponder and reader directly from the production line during the mass production.

Description

Description
METHOD FOR MEASURING INVERSE SCATTERING WAVE,
AND APPARATUS FOR IDENTIFYING INFERIOR RFID
TRANSPONDER AND READER USING THE SAME
Technical Field
[1] The present invention relates to a method for measuring inverse scattering wave and an apparatus for identifying an inferior Radio Frequency IDentification (RFID) transponder and reader using the same. More particularly, the invention relates to a method which measures an inverse scattering characteristic by installing a test object such as an RFTD transponder in a coupler and generating inverse scattering wave in the coupler, and an apparatus for identifying an inferior RFTD transponder and reader by being installed on a production line and by using the measuring method so as to remove the inferior RFTD transponder and reader during the mass production.
[2]
Background Art
[3] A technique of measuring electromagnetic wave generated by scattering is
dependent upon a technique of measuring electromagnetic wave by installing an isolation antenna capable of isolating a transmitting signal and a receiving signal in an outdoor test station having a radio wave absorbent on its bottom, or a radio dark room having a radio wave absorbent on its ceiling, sidewall and bottom.
[4] On the other hand, an inverse scattering measurement must satisfy a far field
condition, and thus, an antenna and a test object must be spaced far from each other.
[5] Therefore, a large radio dark room is necessary, and electromagnetic wave is
generated and received through the antenna, thereby restricting a bandwidth, which is a general problem of the antenna. In addition, a phase linear response to a frequency is not guaranteed in a broadband. Especially, the size of the antenna is very large in a low frequency band, which is very difficult to measure inverse scattering in a low frequency.
[6] Furthermore, in case of implementing an isolation antenna for measuring inverse scattering, a transmitting antenna and a receiving antenna must be installed adjacently to each other. Moreover, interference wave scattered from accidental scattering objects (such as receiving antenna, transmitting/receiving antenna cable, signal generator, receiver, etc.) except its adjacent test object may be mixed with an original signal, thereby making it difficult to embody the measurement system.
[7] To solve the above problem, a technique of removing an interference wave signal is applied to a receiver in which the receiving antenna is installed. However, this technique requires very high-priced facilities and circuit system, and is very sensitive to environmental variations of the radio dark room. Therefore, if there is a change in the surrounding environment, it is difficult to ensure that the signal has been scattered directly from the test object. In addition, reproducibility and accuracy in measurement are low. Also, since the radio wave absorbent must be installed on all of the bottom, sidewall and ceiling of the radio dark room, the installation space is inevitably enlarged to satisfy the far field condition, which increases expenses.
[8] Besides, the outdoor test station is also affected by the external electromagnetic wave environment.
[9] As a result, the above-mentioned prior art does not embody the method for
measuring the inverse scattering wave, which can measure performance of an RFlD transponder or reader in a narrow space such as a production line, regardless of the external electromagnetic wave environment.
[10]
Disclosure of Invention
Technical Problem
[11] It is, therefore, an object of the present invention to provide a method which
measures an inverse scattering characteristic by installing a test object such as an RFTD transponder in a coupler and generating inverse scattering wave in the coupler.
[12] Another object of the present invention is to provide an apparatus for identifying an inferior RFlD transponder and reader by being installed on a production line and by using the method for measuring the inverse scattering wave so as to remove the inferior RFlD transponder and reader during the mass production.
[13] The other objectives and advantages of the invention will be understood by the following description and will also be appreciated by the embodiments of the invention more clearly. Further, the objectives and advantages of the invention will readily be seen that they can be realized by the means and its combination specified in the claims.
[14]
Technical Solution
[15] In accordance with one aspect of the present invention, there is provided a method for measuring inverse scattering wave, including the steps of: installing a scattering object which is a test object in a coupler; feeding an electrical signal to an input terminal of the coupler; terminating an output terminal and an isolation terminal of the coupler so that the electrical signal scattered by colliding with the scattering object is transmitted to a coupling terminal of the coupler; and measuring intensity of the electrical signal transmitted to the coupling terminal.
[16] Further, it is preferred that the electrical signal is an RF power signal. [17] Furthermore, it is advantageous that the coupler is configured in such a manner that uniformity of electromagnetic wave is high in 1/3 center portion between inner conductors provided in the coupler.
[18] Also, it is preferred that the electrical signal is measured by using any one of a
2-termianl GTEM cell, a CTL cell, a strip line cell and an 8-terminal TEM cell which have a coupler structure.
[19] In accordance with another aspect of the present invention, there is provided a
method for measuring forward scattering wave, including the steps of: installing a scattering object which is a test object in a coupler; feeding an electrical signal to an input terminal of the coupler; terminating an output terminal and a coupling terminal of the coupler so that the electrical signal scattered by colliding with the scattering object is transmitted to an isolation terminal of the coupler; and measuring intensity of the electrical signal transmitted to the isolation terminal.
[20] Further, it is preferred that the electrical signal is an RF power signal.
[21] Moreover, it is advantageous that the electrical signal is measured by using any one of a 2-termianl GTEM cell, a CTL cell, a strip line cell and an 8-terminal TEM cell which have a coupler structure.
[22] In accordance with still another aspect of the present invention, there is provided an apparatus for identifying an inferior passive RFID transponder, including: attenuators connected to each of an input terminal and an output terminal of a coupler; a passive RFID reader, which is normally operated, connected to the attenuators; and a passive RFTD transponder, which is a test object, installed in the coupler, whereby an inferior product is identified by using the method for measuring the inverse scattering wave; and there is further provided an apparatus for identifying an inferior active RFID transponder, including: attenuators connected to each of an input terminal and an output terminal of a coupler; a circulator connected to the attenuators; an active RFID reader, which is normally operated, connected to the circulator; and an active RFID transponder, which is a test object, installed in the coupler, whereby an inferior product is identified by using the method for measuring the inverse scattering wave.
[23] In accordance with still yet another aspect of the present invention, there is
provided an apparatus for identifying an inferior passive RFTD reader, including: a passive transponder, which is normally operated, installed in a coupler; attenuators connected to each of an input terminal and an output terminal of the coupler; and an RFTD reader, which is a test object, installed in the attenuators, whereby an inferior product is identified by using the method for measuring the inverse scattering wave; and there is further provided an apparatus for identifying an inferior active RFID reader, including: an active transponder, which is normally operated, installed in a coupler; attenuators connected to each of an input terminal and an output terminal of the coupler; a circulator connected to the attenuators; and an active RFlD reader, which is a test object, installed in the circulator, whereby an inferior product is identified by using the method for measuring the inverse scattering wave.
Advantageous Effects
[24] As discussed earlier, in accordance with the present invention, the method for
measuring the inverse scattering wave measures the inverse scattering characteristic by installing the test object such as the RFlD transponder in the coupler, and generating the inverse scattering wave in the coupler, thereby reducing the installation cost and installing the measurement system in a narrow space. Accordingly, it is possible to conduct the measurement, regardless of the external electromagnetic wave environment.
[25] In addition, the apparatus for identifying the inferior RFlD transponder and reader by using the method for measuring the inverse scattering wave is installed on the production line, thereby removing the inferior RFlD transponder and reader directly from the production line during the mass production.
[26]
Brief Description of the Drawings
[27] The above and other objects and features of the present invention will become apparent from the following description of the preferred embodiments given in conjunction with the accompanying drawings, in which:
[28] Fig. 1 is a schematic view describing a principle of measuring inverse scattering wave using a coupler in accordance with a first embodiment of the present invention;
[29] Fig. 2 is a front view of a 2-terminal GTEM cell which does not have a distribution resistance plate;
[30] Fig. 3 is a side view of the 2-terminal GTEM cell which does not have the distribution resistance plate;
[31] Fig. 4 is a front view of a CTL cell;
[32] Fig. 5 is a side view of the CTL cell;
[33] Fig. 6 is a front view of a strip line cell;
[34] Fig. 7 is a side view of the strip line cell;
[35] Fig. 8 is a front view of an 8-termianl TEM cell;
[36] Fig. 9 is a side view of the 8-termianl TEM cell;
[37] Fig. 10 is a schematic view illustrating an apparatus for identifying an inferior passive RFlD transponder using a 2-terminal GTEM cell which does not have a distribution resistance plate in accordance with a second embodiment of the present invention;
[38] Fig. 11 is a schematic view illustrating an apparatus for identifying an inferior passive RFlD transponder using a CTL cell in accordance with the second embodiment of the present invention;
[39] Fig. 12 is a schematic view illustrating an apparatus for identifying an inferior
passive RFlD transponder using a 4-terminal strip line cell in accordance with the second embodiment of the present invention;
[40] Fig. 13 is a schematic view illustrating an apparatus for identifying an inferior
active RFlD transponder using a 2-terminal GTEM cell which does not have a distribution resistance plate in accordance with a third embodiment of the present invention;
[41] Fig. 14 is a schematic view illustrating an apparatus for identifying an inferior
active RFlD transponder using a CTL cell in accordance with the third embodiment of the present invention;
[42] Fig. 15 is a schematic view illustrating an apparatus for identifying an inferior
active RFlD transponder using a 4-terminal strip line cell in accordance with the third embodiment of the present invention;
[43] Fig. 16 is a schematic view illustrating an apparatus for identifying an inferior
passive RFlD reader using a 2-terminal GTEM cell which does not have a distribution resistance plate in accordance with a fourth embodiment of the present invention;
[44] Fig. 17 is a schematic view illustrating an apparatus for identifying an inferior
passive RFlD reader using a CTL cell in accordance with the fourth embodiment of the present invention;
[45] Fig. 18 is a schematic view illustrating an apparatus for identifying an inferior
passive RFlD reader using a 4-terminal strip line cell in accordance with the fourth embodiment of the present invention;
[46] Fig. 19 is a schematic view illustrating an apparatus for identifying an inferior
active RFlD reader using a 2-terminal GTEM cell which does not have a distribution resistance plate in accordance with a fifth embodiment of the present invention;
[47] Fig. 20 is a schematic view illustrating an apparatus for identifying an inferior
active RFlD reader using a CTL cell in accordance with the fifth embodiment of the present invention; and
[48] Fig. 21 is a schematic view illustrating an apparatus for identifying an inferior
active RFlD reader using a 4-terminal strip line cell in accordance with the fifth embodiment of the present invention.
[49]
Best Mode for Carrying Out the Invention
[50] Hereinafter, preferred embodiments of the present invention will be set forth in detail with reference to the accompanying drawings. [51] Figs. 1 through 21 illustrate a method for measuring inverse scattering wave and an apparatus for identifying an inferior RFID transponder and reader using the same in accordance with the present invention.
[52] In accordance with a first embodiment of the present invention, as illustrated in Fig.
1, a method for measuring inverse scattering wave installs a scattering object S which is a test object in a coupler, feeds an electrical signal to an input terminal Tl of the coupler, terminates an output terminal T3 and an isolation terminal T4 of the coupler so that the electrical signal scattered by colliding with the scattering object S can be transmitted to a coupling terminal T2 of the coupler, and measures intensity of the electrical signal transmitted to the coupling terminal T2.
[53] In the measuring method, it is preferred that the electrical signal is an RF power signal.
[54] When the scattering object S such as an RFID transponder, which is the test object, is installed at the center of the coupler and the electrical signal is fed to the input terminal Tl of the coupler, the scattering object S is exposed to a Transverse Electro Magnetic (TEM) mode (wave impedance 377 W) similar to plane wave induced in the coupler, and scattering wave is converted into an RF power signal and transmitted to the input terminal Tl, the coupling terminal T2, the output terminal T3 and the isolation terminal T4.
[55] In the above arrangement, if the coupler has a small coupling quantity, the intensity of the RF electrical signal coupled by incident wave Ei is very small. Therefore, the RF electrical signal transmitted to the coupling terminal T2 will be deemed to have been generated by inverse scattering wave.
[56] Except the intensity, the electrical signal has the same characteristic as the inverse scattering wave generated by the plane wave in a free space.
[57] An inverse scattering quantity of the test object S can be measured by using
correlation between the electromagnetic wave transmitted to the coupling terminal T2 and inverse scattering wave generated by a general isolation antenna [see Eq. (1) to be described later].
[58] Preferably, the coupler is designed in a manner that uniformity of the electromagnetic wave is high in 1/3 center portion between inner conductors provided in the coupler.
[59] On the other hand, a quantity of forward scattering wave can be measured in the isolation terminal T4 in the same principle as the coupling terminal T2.
[60] That is, a method for measuring forward scattering wave installs a scattering object
S which is a test object in a coupler, feeds an electrical signal to an input terminal Tl of the coupler, terminates an output terminal T3 and a coupling terminal T2 of the coupler so that the electrical signal scattered by colliding with the scattering object S can be transmitted to an isolation terminal T4 of the coupler, and measures intensity of the electrical signal transmitted to the isolation terminal T4.
[61] In the measuring method, the electrical signal is an RF power signal.
[62] For reference, a characteristic parameter of the inverse scattering wave is a Radar
Cross Section (RCS).
[63] To embody the aforementioned technique, as shown in Fig. 1, the test object S
intended to be measured is installed at the center portion having a uniform electromagnetic field between conductor plates installed in the coupler, the output terminal T3 and the isolation terminal T4 of the coupler are terminated, and the RF power signal is inputted to the input terminal Tl.
[64] The incident wave Ei is formed in the coupler due to feeding of the signal to the input terminal Tl, and collides with the test object S, thereby generating scattering wave Es.
[65] The scattering wave Es is transmitted to each terminal. Thus, the inverse scattering performance can be measured by using the signal transmitted to the coupling terminal T2.
[66] Since reflected wave generated by a mismatching characteristic of the coupler itself and the incident wave Ei coexist in the input terminal Tl, it is difficult to measure the scattering wave Es only. Further, as shown in Fig. 1, since non-scattered wave Et is transmitted to the output terminal T3 at the same time, it is difficult to individually measure the scattering wave Es.
[67] Accordingly, it is advantageous to measure performance of the inverse scattering wave by measuring only the intensity of the electrical signal transmitted to the coupling terminal T2.
[68] In the coupler used for measuring the inverse scattering performance, an important issue is that uniformity of the electromagnetic wave must be secured in the test area in which the inverse scattering object is installed.
[69] This is because reproducibility and accuracy in measurement can be acquired by high uniformity of the electromagnetic wave.
[70] The representative facilities of the TEM line having the coupler structure with the uniform area include a 2-termianl Gigaherz TEM (GTEM) cell, a Coupled
Transmission Line (CTL) cell, a strip line cell, an 8-terminal TEM cell and a
6-termianl TEM cell.
[71] In the method for measuring the inverse scattering wave and the method for
measuring the forward scattering wave as mentioned above, the electrical signal is measured by using any one of the 2-termianl GTEM cell, the CTL cell, the strip line cell and the 8-terminal TEM cell which have the coupler structure.
[72] Fig. 2 illustrates a front view of a 2-terminal GTEM cell which does not have a dis- tribution resistance plate.
[73] An outer conductor 2 is formed in a hollow rectangular conical shape, and two inner conductors 1 are installed in the outer conductor 2 to face each other.
[74] The 2-terminal GTEM cell includes two Input/Output (FO) terminals, and also includes radio wave absorbents 3, impedance matching plates 6 and terminators 4 at the end.
[75] In the general 2-terminal GTEM cell, the distribution resistance plate is installed at the ending points of the inner conductors to terminate a low frequency band. However, this method is embodied in a manner that a plurality of resistance elements is connected in series and in parallel on a large PCB board, thereby increasing the production cost. To solve the foregoing problem, it is designed in such a way that the impedance matching plates 6 made of metal are installed inside, the width of the inner conductors 1 is reduced to maintain impedance matching in order to keep characteristic impedance constant, and the final ends are connected to the terminators 4.
[76] Fig. 3 shows a side view of the 2-terminal GTEM cell which does not have the distribution resistance plate, especially, setting of a test area.
[77] Uniformity of electromagnetic wave must exist in a predetermined range (+/-3dB in
EMS) in 1/3 center portion between the inner conductors and the outer conductor or between the inner conductors. Such an area is called a uniform area.
[78] As the uniformity of the electromagnetic wave increases, reproducibility and
accuracy in measurement are improved.
[79] There is provided one example where an RFID transponder which is an inverse scattering object is installed in the uniform area 8. This area is defined in International Standardization IEC61000-4.
[80] Figs. 4 and 5 present a front view and a side view of a general CTL cell, respectively.
[81] From the drawings, it can be seen that the CTL cell has a coupler structure
including two inner conductors 2.
[82] The great differences between the 2-terminal GTEM cell and the CTL cell are that the latter is more restricted in a usable frequency band than the former, but more cheap in the production cost and smaller than the former.
[83] Figs. 6 to 9 illustrate models having different coupler structures and capable of securing the uniform area, wherein Figs. 6 and 7 show the strip line cell. These structures show that conductor plates 9 are installed to face each other, dielectric supports 10 made of a nonconductor are installed to support the conductor plates 9, and impedance matching plates 6 for impedance matching are installed in the narrow width portions of the conductor plates 9.
[84] Although the aforementioned models are more advantageous in easy production and low cost than the models of Figs. 2 to 5, those models are affected by the external electromagnetic wave environment, and cause electromagnetic wave interferences to other peripheral devices during the test.
[85] Figs. 8 and 9 describe a front view and a side view of an 8-termianl TEM cell, respectively. This 8-termianl TEM cell includes four inner conductors 1 and the two facing inner conductors 1 form a same phase feeding structure. Therefore, it can be seen that the 8-termianl TEM cell has the coupler structure.
[86] If a section size of an outer conductor of the 8-terminal TEM cell is identical to that of the CTL cell of Figs. 4 and 5, the 8-termianl TEM cell has a wider uniform area 8. However, the 8-termianl TEM cell requires an in-phase feeding circuit to utilize in measuring inverse scattering.
[87] Figs. 10 to 12 illustrate apparatuses for identifying an inferior passive RFID
transponder in accordance with a second embodiment of the present invention.
[88] In accordance with the second embodiment of the present invention, each of the apparatuses for identifying the inferior passive RFID transponder connects attenuators 12 to each of an input terminal Tl and an output terminal T3 of a coupler, connects a passive RFID reader 13 which is normally operated to the attenuators 12, installs a passive RFID transponder 16 which is a test object in the coupler, and identifies an inferior product 22 by using the method for measuring the inverse scattering wave.
[89] In the above arrangement, a robot 18 is further configured to identify inferiority of the passive RFID transponder 16 through the passive RFID reader 13 which is normally operated, and remove the inferior RFTD transponder 22. The coupler is comprised of any one of a 2-terminal GTEM cell, a CTL cell and a 4-terminal strip line cell.
[90] Fig. 10 illustrates an apparatus for identifying an inferior passive RFID transponder using a 2-terminal GTEM cell which does not have a distribution resistance plate by applying the same principle as above.
[91] It is designed in such a way that one terminal of the 2-terminal GTEM cell is used as a feeding terminal, and the other terminal is used as a receiving terminal.
[92] There is installed a reference model which is a passive RFID reader 13 having
verified performance and isolable transmitting/receiving antenna. Specifically, an attenuator 12 is installed between the feeding terminal of the 2-terminal GTEM cell and a transmitting terminal (transmitting antenna coupling terminal) of the reader 13. This serves to attenuate wave loss caused by the positions of the reader 13 and the transponder 16. Further, an attenuator 12 is also installed between the receiving terminal (receiving antenna coupling terminal) of the 2-terminal GTEM cell and a receiving terminal of the reader 13. This functions to attenuate wave loss generated in a process of transmitting an inverse scattering signal to a receiving unit of the reader 13. In this case, the sensitivity measurement of the transponder 16 can be conducted, as done in a radio dark room. For example, in case where 910 MHz RFID transponder antenna operated in 5 m is provided and an apparatus for identifying an inferior transponder antenna is formed therein, if a reference reader incorporates therein a transmitting/receiving antenna having 4 Watts of Effective Isotropically Radiared Power (EIRP) and 6 dB of gain as defined in Korea standardization, it can be seen that a value obtained by subtracting the transmitting antenna gain (6 dB) from spatial loss (25 dB) generated due to wave radiation to the space using the antenna should be 19 dB and the transmitting power should be 1 Watt, and thus, power density in 5 m point is -19 dBW/m. Further, in case where the 2-terminal GTEM cell (or CTL cell) in which a distance d between inner conductors is 1 m is used, if 1 Watt is fed as input, power density is -8.7 dBW/m in the uniform area. Therefore, it can be easily found that an attenuation value of the attenuator 12 installed in the input terminal Tl of Fig. 10 must be maintained as 10.3 dB in order to keep the same power density in the space. If the attenuator 12 installed in the output terminal T3 also maintains the same value, it is possible to identify the RFID transponder 16 which is not operated in the distance 5 m.
[93] Conversely, an attenuation value of the attenuator 12 for maintaining the operation can be obtained. Also, a maximum operating distance can be measured by calculating a maximum attenuation value for maintaining the operation on the basis of the above attenuation value.
[94]
[95]
Figure imgf000012_0001
Eq. (1)
[96]
[97] When the transponder is installed in the 2-terminal GTEM cell (or CTL cell) in which the characteristic impedance is Zc(W) and the distance between the inner conductors is d (see Figs. 2 to 5), and when the maximum attenuation value for maintaining the normal operation of the reader using the transmitting/receiving antenna having a gain of Gr(dB) is a(dB), the operating distance R(m) in the free space can be easily obtained by Eq. (1) above.
[98] Also, when the operating distance is acquired by Eq. (1), the attenuation value
a(dB) of the attenuator for obtaining the same electromagnetic wave condition as that of the free space can be easily determined inversely.
[99] In Fig. 10, a test object transponder 21 which is normally read by the reader 13 is not an inferior product 22 but a finished product 23, and thus is passed as it is. If the transponder 21 is not read by the reader 13, a speaker and an alarm lamp 17 for notifying an abnormal operation are operated, so that the operator can remove the inferior transponder, or the robot 18 for removing the inferior transponder is installed to thereby automatically remove it. This system may be easily implemented by a control system using a computer as a whole.
[100] Fig. 11 illustrates an apparatus for identifying an inferior passive RFID transponder using a CTL cell.
[101] In two terminals installed on one surface of the CTL cell having four terminals, one is used as a feeding terminal, and the other is used as a receiving terminal.
[102] Terminals installed on the opposite surface are terminated by being connected to terminators 4. In addition, there is installed a reference model which is a passive RFID reader 13 having verified performance and isolable transmitting/receiving antenna. Specifically, an attenuator 12 is installed between the feeding terminal of the CTL cell and a transmitting terminal (transmitting antenna coupling terminal) of the reader 13 for attenuating wave loss caused by the positions of the reader 13 and the transponder 16. Further, an attenuator 12 is also installed between the receiving terminal (receiving antenna coupling terminal) of the CTL cell and a receiving terminal of the reader 13 for attenuating wave loss generated in a process of transmitting an inverse scattering signal to a receiving unit of the reader 13.
[103] In this case, the sensitivity measurement of the transponder 16 can be conducted, as done in a radio dark room.
[104] An attenuation value is defined as in the example of Fig. 10. An attenuation value of the attenuator 12 for maintaining the operation can be also calculated inversely. As described above, a maximum operating distance can be measured based on the attenuation value.
[105] A test object transponder 21 which is normally read by the reader 13 is not an
inferior product 22 but a finished product 23, and thus is passed as it is. If the transponder 21 is not read by the reader 13, a speaker and an alarm lamp 17 for notifying an abnormal operation are operated, so that the operator can remove the inferior transponder, or a robot 18 for removing an inferior product is installed to thereby automatically remove it. This system can be easily embodied by a control system using a computer as a whole.
[106] Fig. 12 illustrates an apparatus for identifying an inferior passive RFID transponder using a 4-terminal strip line cell.
[107] Identically to the CTL cell as described above, out of two terminals installed on one surface of the 4-terminal strip line cell having four terminals, one is used as a feeding terminal, and the other is used as a receiving terminal.
[108] In addition, there is installed a reference model which is a passive RFED reader 13 having verified performance and isolable transmitting/receiving antenna. Specifically, an attenuator 12 is installed between the feeding terminal of the 4-terminal strip line cell and a transmitting terminal (transmitting antenna coupling terminal) of the reader 13 for attenuating wave loss caused by the positions of the reader 13 and the transponder 16. Further, an attenuator 12 is also installed between the receiving terminal (receiving antenna coupling terminal) of the 4-terminal strip line cell and a receiving terminal of the reader 13 for attenuating wave loss generated in a process of transmitting an inverse scattering signal to a receiving unit of the reader 13.
[109] In this case, the sensitivity measurement of the transponder 16 can be conducted, as done in a radio dark room.
[110] An attenuation value is defined as in the example of Fig. 10. An attenuation value of the attenuator 12 for maintaining the operation can be also found inversely. As described above, a maximum operating distance can be measured on the basis of the attenuation value.
[Ill] A test object transponder 21 which is normally read by the reader 13 is not an
inferior product 22 but a finished product 23, and thus is passed as it is. If the transponder 21 is not read by the reader 13, a speaker and an alarm lamp 17 for notifying an abnormal operation are operated, so that the operator can remove the inferior transponder, or a robot 18 for removing an inferior product is installed to thereby automatically remove it. This system can be easily built by a control system using a computer as a whole.
[112] Figs. 13 to 15 illustrate apparatuses for identifying an inferior active RFID
transponder in accordance with a third embodiment of the present invention.
[113] In accordance with the third embodiment of the present invention, each of the apparatuses for identifying the inferior active RFID transponder connects attenuators 12 to each of an input terminal Tl and an output terminal T3 of a coupler, connects a circulator 14 to the attenuators 12, connects an active RFTD reader 15 which is normally operated to the circulator 14, installs an active RFTD transponder 16 which is a test object in the coupler, and identifies an inferior product 22 by using the method for measuring the inverse scattering wave.
[114] In addition, a robot 18 identifies inferiority of the active transponder 16 through the active RFID reader 13 which is normally operated, and removes the inferior active RFID transponder 22. The coupler is comprised of any one of a 2-terminal GTEM cell, a CTL cell and a 4-terminal strip line cell.
[115] Fig. 13 illustrates an apparatus for identifying an inferior active RFID transponder using a 2-terminal GTEM cell which does not have a distribution resistance plate.
[116] It is designed in such a way that one terminal of the 2-terminal GTEM cell is used as a feeding terminal, and the other terminal is used as a receiving terminal.
[117] In addition, there is installed a reference model which is an active RFID reader 15 having verified performance and one transmitting/receiving antenna. Specifically, an attenuator 12 and a circulator 14 are installed between the feeding terminal of the 2-terminal GTEM cell and a transmitting terminal of the reader 13 for attenuating wave loss caused by the positions of the reader 15 and the transponder 16. Further, an attenuator 12 and the circulator 14 are also installed between the receiving terminal of the 2-terminal GTEM cell and a receiving terminal of the reader 15 for attenuating wave loss generated in a process of transmitting an inverse scattering signal to a receiving unit of the reader 15.
[118] In this arrangement, the sensitivity measurement of the transponder 16 can be
conducted, as done in a radio dark room.
[119] A test object transponder 21 which is normally read by the reader 15 is not an
inferior product 22 but a finished product 23, and thus is passed as it is. If the transponder 21 is not read by the reader 15, a speaker and an alarm lamp 17 for notifying an abnormal operation are operated, and a robot 18 for removing an inferior product is installed to thereby automatically remove it.
[120] If a connecting terminal can be formed to connect transmitting and receiving signal lines from the active RFID reader 15 to the antenna, it can be installed as shown in Fig. 10.
[121] Fig. 14 illustrates an apparatus for identifying an inferior active RFID transponder using a CTL cell.
[122] It is designed in such a way that one terminal of the CTL cell is used as a feeding terminal, and the other terminal is used as a receiving terminal.
[123] In addition, there is installed a reference model which is an active RFID reader 15 having verified performance and one transmitting/receiving antenna. Specifically, an attenuator 12 and a circulator 14 are installed between the feeding terminal of the CTL cell and a transmitting terminal of the reader 15 for attenuating wave loss caused by the positions of the reader 15 and the transponder 16. Further, an attenuator 12 and the circulator 14 are also installed between the receiving terminal of the CTL cell and a receiving terminal of the reader 15 for attenuating wave loss generated in a process of transmitting an inverse scattering signal to a receiving unit of the reader 15.
[124] In this case, the sensitivity measurement of the transponder 16 can be conducted, as done in a radio dark room.
[125] A test object transponder 21 which is normally read by the reader 15 is not an
inferior product 22 but a finished product 23, and thus is passed as it is. If the transponder 21 is not read by the reader 15, a speaker and an alarm lamp 17 for notifying an abnormal operation are operated, and a robot 18 for removing an inferior product is installed to thereby automatically remove it. If a connecting terminal can be formed to connect transmitting and receiving signal lines from the active RFlD reader 15 to the antenna, it can be installed as shown in Fig. 11.
[126] Fig. 15 illustrates an apparatus for identifying an inferior active RFlD transponder using a 4-terminal strip line cell.
[127] It is designed in such a manner that one terminal of the 4-terminal strip line cell is used as a feeding terminal, and the other terminal is used as a receiving terminal.
[128] In addition, there is installed a reference model which is an active RFlD reader 15 having verified performance and one transmitting/receiving antenna. Specifically, an attenuator 12 and a circulator 14 are installed between the feeding terminal of the 4-terminal strip line cell and a transmitting terminal of the reader 15 for attenuating wave loss caused by the positions of the reader 15 and the transponder 16. Further, an attenuator 12 and the circulator 14 are also installed between the receiving terminal of the 4-terminal strip line cell and a receiving terminal of the reader 15 for attenuating wave loss generated in a process of transmitting an inverse scattering signal to a receiving unit of the reader 15.
[129] In this case, the sensitivity measurement of the transponder 16 can be conducted, as done in a radio dark room.
[130] A test object transponder 21 which is normally read by the reader 15 is not an
inferior product 22 but a finished product 23, and thus is passed at it is. In case where the transponder 21 is not read by the reader 15, a speaker and an alarm lamp 17 for notifying an abnormal operation are operated, and a robot 18 for removing an inferior product is installed to thereby automatically remove it. If a connecting terminal can be formed to connect transmitting and receiving signal lines from the active RFlD reader
15 to the antenna, it can be installed as shown in Fig. 12.
[131] Figs. 16 to 18 illustrate apparatuses for identifying an inferior passive RFlD reader in accordance with a fourth embodiment of the present invention.
[132] In accordance with the fourth embodiment of the present invention, each of the apparatuses for identifying the inferior passive RFlD reader installs a passive transponder
16 which is normally operated in a coupler, connects attenuators 12 to each of an input terminal Tl and an output terminal T3 of the coupler, installs an RFlD reader 13 which is a test object in the attenuators 12, and identifies an inferior product by using the method for measuring the inverse scattering wave.
[133] The coupler is comprised of any one of a 2-terminal GTEM cell, a CTL cell and a
4-terminal strip line cell.
[134] Fig. 16 illustrates an apparatus for identifying an inferior passive RFlD reader using a 2-terminal GTEM cell which does not have a distribution resistance plate. Here, a transmitting antenna and a receiving antenna are used separately from each other.
[135] The apparatus for identifying the inferior passive RFID reader installs a transponder
16 having verified performance in an inside uniform area, adjusts or selects attenuation values of the attenuators 12 as in Fig. 10, installs a passive RFID reader 13 which is a test object, and checks a normal operation thereof, thereby identifying an inferior product 22.
[136] Fig. 17 illustrates an apparatus for identifying an inferior passive RFID reader using a CTL cell. Here, a transmitting antenna and a receiving antenna are used separately from each other.
[137] The apparatus for identifying the inferior passive RFID reader installs a transponder
16 having verified performance in an inside uniform area, adjusts or selects attenuation values of attenuators 12 as in Fig. 11, installs a passive RFTD reader 13 which is a test object, and checks a normal operation thereof, thereby identifying an inferior product 22.
[138] Fig. 14 illustrates an apparatus for identifying an inferior passive RFID reader using a 4-terminal strip line cell. Here, a transmitting antenna and a receiving antenna are used separately from each other.
[139] The apparatus for identifying the inferior passive RFID reader installs a transponder
16 having verified performance in an inside uniform area, adjusts or selects attenuation values of attenuators 12 as in Fig. 12, installs a passive RFTD reader 13 which is a test object, and checks a normal operation thereof, thereby identifying an inferior product 22.
[140] Figs. 19 to 21 illustrate apparatuses for identifying an inferior active RFTD reader in accordance with a fifth embodiment of the present invention.
[141] In accordance with the fifth embodiment of the present invention, each of the apparatuses for identifying the inferior active RFID reader installs an active transponder 16 which is normally operated in a coupler, connects attenuators 12 to each of an input terminal Tl and an output terminal T3 of the coupler, connects a circulator 14 to the attenuators 12, installs an active RFTD reader 15 which is a test object in the circulator 14, and identifies an inferior product by using the method for measuring the inverse scattering wave.
[142] The coupler is comprised of any one of a 2-terminal GTEM cell, a CTL cell and a
4-terminal strip line cell.
[143] Fig. 19 illustrates an apparatus for identifying an inferior active RFID reader using a 2-terminal GTEM cell which does not have a distribution resistance plate, especially, an apparatus for identifying an inferior active RFTD reader which is a test object using one transmitting/receiving antenna and separately connecting an antenna feeding terminal. The operating principle of the apparatus is identical to that of the apparatus of Fig. 16.
[144] Fig. 20 illustrates an apparatus for identifying an inferior active RFID reader using a CTL cell, especially, an apparatus for identifying an inferior active RFID reader using one transmitting/receiving antenna and separately connecting an antenna feeding terminal. The operating principle of the apparatus is identical to that of the apparatus of Fig. 17.
[145] Fig. 21 illustrates an apparatus for identifying an inferior active RFID reader using a 4-terminal strip line cell, especially, an apparatus for identifying an inferior active RFID reader using one transmitting/receiving antenna and separately connecting an antenna feeding terminal. The operating principle of the apparatus is identical to that of the apparatus of Fig. 18.
[146] The present application contains subject matter related to Korean patent application
No. 2005-120460, filed in the Korean Intellectual Property Office on December 9, 2005, the entire contents of which are incorporated herein by reference.
[147] While the present invention has been described with respect to certain preferred embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the scope of the invention as defined in the following claims.

Claims

Claims
[1] A method for measuring inverse scattering wave, comprising the steps of:
installing a scattering object which is a test object in a coupler;
feeding an electrical signal to an input terminal of the coupler;
terminating an output terminal and an isolation terminal of the coupler so that the electrical signal scattered by colliding with the scattering object is transmitted to a coupling terminal of the coupler; and
measuring intensity of the electrical signal transmitted to the coupling terminal.
[2] The method as recited in claim 1, wherein the electrical signal is an RF power signal.
[3] The method as recited in claim 1, wherein the coupler is implemented in such a manner that uniformity of electromagnetic wave is high in 1/3 center portion between inner conductors provided in the coupler.
[4] The method as recited in claim 1, wherein the electrical signal is measured by using any one of a 2-termianl Gigaherz Transverse Electro Magnetic (GTEM) cell, a Coupled Transmission Line (CTL) cell, a strip line cell and an 8-terminal
TEM cell which have a coupler structure.
[5] A method for measuring forward scattering wave, comprising the steps of:
installing a scattering object which is a test object in a coupler;
feeding an electrical signal to an input terminal of the coupler;
terminating an output terminal and a coupling terminal of the coupler so that the electrical signal scattered by colliding with the scattering object is transmitted to an isolation terminal of the coupler; and
measuring intensity of the electrical signal transmitted to the isolation terminal.
[6] The method as recited in claim 5, wherein the electrical signal is an RF power signal.
[7] The method as recited in claim 5, wherein the electrical signal is measured by using any one of a 2-termianl GTEM cell, a CTL cell, a strip line cell and an
8-terminal TEM cell which have a coupler structure.
[8] An apparatus for identifying an inferior passive Radio Frequency IDentification
(RFID) transponder, comprising:
attenuators connected to each of an input terminal and an output terminal of a coupler;
a passive RFID reader, which is normally operated, connected to the attenuators; and
a passive RFID transponder, which is a test object, installed in the coupler, whereby an inferior product is identified by using the method for measuring the inverse scattering wave as recited in claim 1.
[9] The apparatus as recited in claim 8, further comprising a robot for identifying inferiority of the passive RFlD transponder through the passive RFlD reader which is normally operated, and removing the inferior RFlD transponder.
[10] The apparatus as recited in claim 8, wherein the coupler is comprised of any one of a 2-terminal GTEM cell, a CTL cell and a 4-terminal strip line cell.
[11] An apparatus for identifying an inferior active RFlD transponder, comprising:
attenuators connected to each of an input terminal and an output terminal of a coupler;
a circulator connected to the attenuators;
an active RFlD reader, which is normally operated, connected to the circulator; and
an active RFlD transponder, which is a test object, installed in the coupler, whereby an inferior product is identified by using the method for measuring the inverse scattering wave as recited in claim 1.
[12] The apparatus as recited in claim 11, further comprising a robot for identifying inferiority of the active RFlD transponder through the active RFlD reader which is normally operated, and removing the inferior active RFlD transponder.
[13] The apparatus as recited in claim 11, wherein the coupler is comprised of any one of a 2-terminal GTEM cell, a CTL cell and a 4-terminal strip line cell.
[14] An apparatus for identifying an inferior passive RFlD reader, comprising:
a passive transponder, which is normally operated, installed in a coupler;
attenuators connected to each of an input terminal and an output terminal of the coupler; and
an RFlD reader, which is a test object, installed in the attenuators, whereby an inferior product is identified by using the method for measuring the inverse scattering wave as recited in claim 1.
[15] The apparatus as recited in claim 14, wherein the coupler is comprised of any one of a 2-terminal GTEM cell, a CTL cell and a 4-terminal strip line cell.
[16] An apparatus for identifying an inferior active RFID reader, comprising:
an active transponder, which is normally operated, installed in a coupler;
attenuators connected to each of an input terminal and an output terminal of the coupler;
a circulator connected to the attenuators; and
an active RFlD reader, which is a test object, installed in the circulator, whereby an inferior product is identified by using the method for measuring the inverse scattering wave as recited in claims 1.
[17] The apparatus as recited in claim 16, wherein the coupler is comprised of any one of a 2-terminal GTEM cell, a CTL cell and a 4-terminal strip line cell.
PCT/KR2006/005376 2005-12-09 2006-12-11 Method for measuring inverse scattering wave, and apparatus for identifying inferior rfid transponder and reader using the same WO2007067017A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/096,670 US7847743B2 (en) 2005-12-09 2006-12-11 Method for measuring inverse scattering wave, and apparatus for identifying inferior RFID transponder and reader using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020050120460A KR100815151B1 (en) 2005-12-09 2005-12-09 Method for measurement inverse scattering wave and apparatus for identification inferior RFID transponder and RFID reader using the same
KR10-2005-0120460 2005-12-09

Publications (1)

Publication Number Publication Date
WO2007067017A1 true WO2007067017A1 (en) 2007-06-14

Family

ID=38123107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2006/005376 WO2007067017A1 (en) 2005-12-09 2006-12-11 Method for measuring inverse scattering wave, and apparatus for identifying inferior rfid transponder and reader using the same

Country Status (3)

Country Link
US (1) US7847743B2 (en)
KR (1) KR100815151B1 (en)
WO (1) WO2007067017A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110138494A (en) * 2019-01-29 2019-08-16 努比亚技术有限公司 A kind of transmitting signal interference optimization method, display module and terminal

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101289266B1 (en) * 2009-12-04 2013-07-24 한국전자통신연구원 Apparatus and method for measuring radiated power of terminal
KR101045845B1 (en) * 2010-05-04 2011-07-01 국방과학연구소 Portable radar measuring device using microwave lens
US9086432B1 (en) 2013-06-07 2015-07-21 The Boeing Company Rapid configuration adapter
CN108256365B (en) * 2018-01-26 2021-01-15 山东大学 Test method for evaluating signal modulation characteristics of RFID reader
JP7368309B2 (en) 2020-05-01 2023-10-24 E&Cエンジニアリング株式会社 Strip line lifting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122379A (en) * 1994-10-25 1996-05-17 Matsushita Electric Ind Co Ltd Cell for measuring minute electromagnetic wave and generating strong electromagnetic wave
JPH10332754A (en) * 1997-05-28 1998-12-18 Sega Enterp Ltd Proximity electromagnetic field probe, electromagnetic field measuring device using it, and method thereof
US6114860A (en) * 1997-11-20 2000-09-05 Electronics And Telecommunications Research Institute Rotary coupled transmission line cell
US6456070B1 (en) * 1999-01-13 2002-09-24 Taiyo Yuden Co., Ltd. Method and device for measuring intensity of electromagnetic field, method and device for measuring current-voltage distribution, and method for judging quality of electronic device, and electronic device therefor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674968B2 (en) * 1988-03-15 1994-09-21 三菱電機株式会社 Optical measuring device
JP2878409B2 (en) * 1989-09-04 1999-04-05 株式会社リコー 3D object imaging method
JPH0545393A (en) 1991-08-20 1993-02-23 Tokin Corp Measuring method of strength of scattered wave in radio wave darkroom
JP3358099B2 (en) * 1994-03-25 2002-12-16 オムロン株式会社 Optical sensor device
KR0136047B1 (en) * 1994-12-30 1998-04-30 구자홍 Apparatus and method of measuring a gap and equilbrium of objects
JP3617576B2 (en) * 1996-05-31 2005-02-09 倉敷紡績株式会社 Optical measuring device for light scatterers
DE19955268C2 (en) * 1999-11-17 2001-09-06 Isis Optronics Gmbh Method and device for the interferometric examination of scattering objects
US7225992B2 (en) 2003-02-13 2007-06-05 Avery Dennison Corporation RFID device tester and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122379A (en) * 1994-10-25 1996-05-17 Matsushita Electric Ind Co Ltd Cell for measuring minute electromagnetic wave and generating strong electromagnetic wave
JPH10332754A (en) * 1997-05-28 1998-12-18 Sega Enterp Ltd Proximity electromagnetic field probe, electromagnetic field measuring device using it, and method thereof
US6114860A (en) * 1997-11-20 2000-09-05 Electronics And Telecommunications Research Institute Rotary coupled transmission line cell
US6456070B1 (en) * 1999-01-13 2002-09-24 Taiyo Yuden Co., Ltd. Method and device for measuring intensity of electromagnetic field, method and device for measuring current-voltage distribution, and method for judging quality of electronic device, and electronic device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110138494A (en) * 2019-01-29 2019-08-16 努比亚技术有限公司 A kind of transmitting signal interference optimization method, display module and terminal
CN110138494B (en) * 2019-01-29 2022-09-02 山东龙迅网联科技有限公司 Method for optimizing interference of transmitted signal, display module and terminal

Also Published As

Publication number Publication date
US20080297423A1 (en) 2008-12-04
KR20070060629A (en) 2007-06-13
KR100815151B1 (en) 2008-03-19
US7847743B2 (en) 2010-12-07

Similar Documents

Publication Publication Date Title
EP3553535A1 (en) Wireless test system for testing microelectronic devices integrated with antenna
US7847743B2 (en) Method for measuring inverse scattering wave, and apparatus for identifying inferior RFID transponder and reader using the same
US7323884B2 (en) RF test chamber
US6088582A (en) Controlled environment radio test apparatus and method
JP2007526576A (en) Method and apparatus for determining at least one characteristic parameter of a resonant structure
CN105049130A (en) Radio communication distance testing apparatus and method
US7173434B2 (en) Method for determining the RF shielding effectiveness of a shielding structure
CN107026325B (en) Impedance matching connection device for radio frequency identification tag antenna
Jayawardana et al. Measurement system with a RFID tag antenna mounted on structural members for infrastructure health monitoring
CN115932690A (en) Device and method for real-time verification of radiation disturbance measurement system
Kuester et al. Forward and reverse link constraints in UHF RFID with passive tags
Pouzin et al. Measurement of radar cross section for passive UHF RFID tags
CN210037986U (en) Antenna testing device
Luz et al. RFID tag tests: Comparison between GTEM cell and anechoic chamber results
CN219105143U (en) Device and application structure for verifying radiation disturbance measurement system in real time
EP3420654B1 (en) Method and system for over-the-air testing of unwanted emissions
KR0144869B1 (en) 3p-tem cell
CN113078965B (en) Debugging method and debugging system for antenna system in MIMO terminal
CN215641428U (en) RFID test shielding box and system
Jayawardana et al. Construction material mountable UHF RFID tag antenna
Azhar et al. A T-shaped partial ground microstrip patch antenna based UHF sensor for partial discharge detection
JP2000039460A (en) Evaluation method for radio apparatus
MUSIAL et al. Threats associated with electromagnetic field immunity tests of electronic devices according to selected standards
Pouzin et al. Automated bench test for UHF RFID tags measurement in operational environment
Imrane et al. Identification of New EMC Factors of UAV FHSS Datalink in the Pre-Compliance Test Phase.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12096670

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06824082

Country of ref document: EP

Kind code of ref document: A1