JPH0812206A - Control device for elevator - Google Patents

Control device for elevator

Info

Publication number
JPH0812206A
JPH0812206A JP6150734A JP15073494A JPH0812206A JP H0812206 A JPH0812206 A JP H0812206A JP 6150734 A JP6150734 A JP 6150734A JP 15073494 A JP15073494 A JP 15073494A JP H0812206 A JPH0812206 A JP H0812206A
Authority
JP
Japan
Prior art keywords
car
weight
signal
control device
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6150734A
Other languages
Japanese (ja)
Other versions
JP3344087B2 (en
Inventor
Masanori Yasue
正徳 安江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15073494A priority Critical patent/JP3344087B2/en
Publication of JPH0812206A publication Critical patent/JPH0812206A/en
Application granted granted Critical
Publication of JP3344087B2 publication Critical patent/JP3344087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Elevator Control (AREA)

Abstract

PURPOSE:To provide automatic adjustability for a speed control device, which calculates the deadweight of an elevator car with a simple configuration even if the deadweight exceeds the extent according to the anticipation at the stage of design. CONSTITUTION:A weighing device 7 senses the load inside of an elevator car 4 and emits a weight signal 7a. A car deadweight calculating device 17 computes the deadweight of the car 4 from the weight signal 7a varying with the acceleration/deceleration of the car 4 and a speed signal 6a given by a speed sensor 6, calculates the inertial moment of the elevator mechanical system from the obtained deadweight. and adjusts thereupon the proportional gain of a speed control device 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、エレベーターのかご
側とつり合おもり側の不平衡荷重に基づいてトルク指令
値を補正する秤補償装置を有する制御装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a controller having a balance compensator for correcting a torque command value based on an unbalanced load on a car side and a counterweight side of an elevator.

【0002】[0002]

【従来の技術】図7は従来のエレベーターの制御装置を
示す構成図である。図において、(1)は巻上用電動機、
(2)は電動機(1)により駆動される巻上機の駆動綱車で、
主索(3)が巻き掛けられその両端にそれぞれかご(4)及び
つり合おもり(5)が結合されている。(6)は電動機(1)に
結合され電動機(1)の回転速度に対応する速度信号(6a)
を出力する速度検出器、(7)はかご(4)に設けられかご内
荷重を検出して秤信号(7a)を出力する秤装置である。
2. Description of the Related Art FIG. 7 is a block diagram showing a conventional elevator control device. In the figure, (1) is a hoisting motor,
(2) is the drive sheave of the hoist driven by the electric motor (1),
A main rope (3) is wound around and a car (4) and a counterweight (5) are connected to both ends of the main rope. (6) is a speed signal (6a) connected to the electric motor (1) and corresponding to the rotation speed of the electric motor (1)
And (7) is a weighing device provided in the car (4) for detecting the load inside the car and outputting a weighing signal (7a).

【0003】(8)は電動機(1)を駆動する電源を供給する
電力変換器、(9)は電動機(1)の電流を検出して電流信号
(9a)を出力する電流検出器、(10)はエレベーターの速度
指令値(10a)を発生する速度指令発生装置、(11)は速度
指令発生装置(10)及び速度検出器(6)に接続された速度
制御装置で、(11a)は第1のトルク指令値、(12)は秤装
置(7)に接続された秤補償装置で、(12a)はトルク補償信
号、(13)は速度制御装置(11)及び秤補償装置(12)に接続
された加算器で、(13a)は第2のトルク指令値、(14)は
加算器(13)、速度検出器(6)及び電流検出器(9)に接続さ
れたトルク制御装置で、(14a)はその出力である。
Reference numeral (8) is a power converter for supplying power to drive the electric motor (1), and reference numeral (9) is a current signal obtained by detecting the electric current of the electric motor (1).
Current detector that outputs (9a), (10) is a speed command generator that generates the elevator speed command value (10a), and (11) is connected to the speed command generator (10) and speed detector (6). (11a) is the first torque command value, (12) is the balance compensator connected to the balance device (7), (12a) is the torque compensation signal, and (13) is the speed control device. An adder connected to the device (11) and the balance compensator (12), (13a) is a second torque command value, (14) is an adder (13), a speed detector (6) and a current detector. A torque control device connected to (9), where (14a) is its output.

【0004】次に、上記のように構成された従来のエレ
ベーターの制御装置の動作を説明する。かご(4)に乗客
が乗り込むと、秤装置(7)によってかご内荷重が検出さ
れ、秤信号(7a)が出力される。秤補償装置(12)は秤信号
(7a)からかご(4)側の重量とつり合おもり(5)側の重量と
の差、すなわち不平衡荷重を演算し、この不平衡荷重に
基づいてトルク補償信号(12a)を演算する。このトルク
補償信号(12a)は不平衡荷重につり合うための電動機ト
ルクに相当する。
Next, the operation of the conventional elevator control device configured as described above will be described. When a passenger gets into the car (4), the load in the car is detected by the weighing device (7), and the weighing signal (7a) is output. Scale compensator (12) is the scale signal
The difference between the weight on the side of the car (4) and the weight on the side of the counterweight (5) from (7a), that is, the unbalanced load is calculated, and the torque compensation signal (12a) is calculated based on this unbalanced load. This torque compensation signal (12a) corresponds to the motor torque to balance the unbalanced load.

【0005】かご(4)の起動後、速度制御装置(11)は速
度指令値(10a)と速度信号(6a)に基づいて第1のトルク
指令値(11a)を出力する。通常、速度制御演算は、速度
指令値(10a)と速度信号(6a)との偏差によるPI演算が
用いられる。第1のトルク指令値(11a)はトルク補償信
号(12a)と加算器(13)で加算され、第2のトルク指令値
(13a)となる。トルク制御装置(14)は第2のトルク指令
値(13a)、速度信号(6a)及び電流信号(9a)から出力(14a)
を演算し、電力変換器(8)を介して電動機(1)のトルクを
制御する。これで、かご(4)及びつり合おもり(5)は昇降
する。
After starting the car (4), the speed control device (11) outputs the first torque command value (11a) based on the speed command value (10a) and the speed signal (6a). Normally, the PI calculation based on the deviation between the speed command value (10a) and the speed signal (6a) is used for the speed control calculation. The first torque command value (11a) is added to the torque compensation signal (12a) by the adder (13), and the second torque command value (11a) is added.
It becomes (13a). The torque control device (14) outputs (14a) from the second torque command value (13a), speed signal (6a) and current signal (9a).
Is calculated and the torque of the electric motor (1) is controlled via the power converter (8). The car (4) and the counterweight (5) are now raised and lowered.

【0006】エレベーターの制御装置には、快適な乗心
地と良好な着床精度を実現することが要求される。その
ためには、かご(4)側とつり合おもり(5)側との不平衡荷
重の補償と、エレベーター機械系の慣性モーメントに応
じた比例ゲインの設定が必要である。秤装置(7)はこの
要求を満たすものであり、秤信号(7a)を秤補償装置(12)
で処理することにより、不平衡荷重を適切に補償するこ
とができる。
A control device for an elevator is required to realize comfortable riding comfort and good landing accuracy. For that purpose, it is necessary to compensate the unbalanced load between the car (4) side and the counterweight (5) side and set the proportional gain according to the moment of inertia of the elevator mechanical system. The weighing device (7) satisfies this requirement, and the weighing signal (7a) is applied to the weighing device (12).
The unbalanced load can be appropriately compensated by processing in (1).

【0007】一方、エレベーター機械系の慣性モーメン
トは、電動機(1)や巻上機の種類によって決まる高速側
GD2と、かご(4)自重や荷重の変動によって決まる低速
側GD2の和で表される。高速側GD2は使用する電動機
(1)と巻上機から決まるため、設計段階で見積ることが
できる。しかし、低速側GD2に寄与するかご(4)自重や
荷重の変動はエレベーターごとに変化するため、標準的
な低速側GD2を仮定して速度制御装置(11)の比例ゲイ
ンを設定している。
On the other hand, the moment of inertia of the elevator mechanical system includes a high-speed side GD 2 determined by the type of the electric motor (1) or hoist table by the sum of the low-speed side GD 2 determined by the basket (4) variation of its own weight and the load To be done. High-speed side GD 2 is the motor used
Since it is determined by (1) and the hoisting machine, it can be estimated at the design stage. However, the fluctuation of the weight of the car (4) that contributes to GD 2 on the low speed side and the fluctuation of the load change for each elevator. Therefore, assuming the standard GD 2 on the low speed side, set the proportional gain of the speed control device (11). There is.

【0008】そして、エレベーターの調整時に、エレベ
ーターごとに作業員が比例ゲインの最適値を模索し、微
調整するようにしている。
At the time of adjusting the elevator, a worker searches for the optimum value of the proportional gain for each elevator and finely adjusts it.

【0009】[0009]

【発明が解決しようとする課題】上記のように構成され
たエレベーターの制御装置では、エレベーターごとに作
業員が速度制御装置(11)を調整するようにしているが、
速度制御装置(11)の調整は時間と習熟が必要なため、作
業に手間がかかるとともに、作業員によって調整の具合
いが違うという問題点がある。また、かご(4)自重はエ
レベーターごとにばらつきが大きいため、設計段階で最
適な比例ゲインを設定することは困難である。特に、巻
上機の減速比が小さい場合や、歯車なしエレベーター、
リニアエレベーターなどのように、減速機が存在しない
場合には、電動機側から見たエレベーター機械系の慣性
モーメントは、かご自重の影響を大きく受けるため、所
望の制御性能を確保するためには、比例ゲインの調整は
不可欠なものとなる。
In the elevator control device configured as described above, the worker adjusts the speed control device (11) for each elevator.
Since the adjustment of the speed control device (11) requires time and proficiency, there is a problem that the work is troublesome and the adjustment condition differs depending on the worker. Further, since the weight of the car (4) varies widely among elevators, it is difficult to set the optimum proportional gain at the design stage. Especially when the reduction ratio of the hoisting machine is small,
When there is no speed reducer such as a linear elevator, the moment of inertia of the elevator mechanical system seen from the electric motor side is greatly affected by the weight of the car, so proportional control is required to ensure the desired control performance. Adjusting the gain is essential.

【0010】これに対し、かご(4)の走行時に、トルク
指令値と速度信号からエレベーターの慣性モーメントを
演算によって推定し、比例ゲインを自動調整することが
考えられるが、電動機(1)の特性が正確に把握されてい
る必要があるのと、演算が複雑で演算時間が長くなり、
実現が困難であるという問題点がある。
On the other hand, when the car (4) is running, it is conceivable that the inertia moment of the elevator is estimated by calculation from the torque command value and the speed signal and the proportional gain is automatically adjusted, but the characteristics of the electric motor (1) Needs to be accurately grasped, and the calculation is complicated and the calculation time becomes long,
There is a problem that it is difficult to realize.

【0011】この発明は上記問題点を解消するためにな
されたもので、かご自重が設計段階で予期した範囲を超
えている場合でも、簡単な構成でかご自重を演算し、速
度制御装置を自動調整することができるようにしたエレ
ベーターの制御装置を提供することを目的とする。
The present invention has been made to solve the above problems. Even when the car weight exceeds the range expected at the design stage, the car weight is calculated with a simple structure and the speed control device is automatically operated. It is an object of the present invention to provide an elevator control device that can be adjusted.

【0012】[0012]

【課題を解決するための手段】この発明の第1発明に係
るエレベーターの制御装置は、かごの加減速に伴う秤信
号の変化と速度信号からかごの自重を演算するかご自重
演算手段と、演算されたかご自重からエレベーター機械
系の慣性モーメントを算出する慣性モーメント算出手段
と、算出された慣性モーメントにより速度制御装置を調
整する自動調整手段とを備えたものである。
According to a first aspect of the present invention, there is provided an elevator control device for calculating the weight of a car from a change in a scale signal associated with the acceleration and deceleration of the car and a speed signal. The inertial moment calculating means for calculating the inertial moment of the elevator mechanical system from the car's own weight, and the automatic adjusting means for adjusting the speed control device by the calculated inertial moment are provided.

【0013】また、第2発明に係るエレベーターの制御
装置は、第1発明のものにおいて、演算されたかご自重
を記憶するかご自重記憶装置を設け、慣性モーメント算
出手段を、記憶されたかご自重により慣性モーメントを
算出する構成としたものである。
The elevator control apparatus according to the second aspect of the present invention is the elevator control apparatus according to the first aspect of the present invention, further comprising a car self-weight storage device for storing the calculated car self-weight, and the inertia moment calculation means is defined by the stored car self-weight. The configuration is such that the moment of inertia is calculated.

【0014】また、第3発明に係るエレベーターの制御
装置は、第1発明のものにおいて、かご自重演算手段
を、かごの非常停止時におけるかごの減速に伴う秤信号
の変化と速度信号からかごの自重を演算する構成とし、
演算されたかご自重を記憶するかご自重記憶装置を設
け、慣性モーメント算出手段を、記憶されたかご自重に
より慣性モーメントを算出する構成としたものである。
The elevator control device according to a third aspect of the present invention is the elevator control device according to the first aspect of the present invention, wherein the car weight calculating means changes the balance signal due to deceleration of the car during an emergency stop of the car and the speed signal from the car. It is configured to calculate its own weight,
A car self-weight storage device for storing the calculated car self-weight is provided, and the inertia moment calculation means is configured to calculate the inertia moment by the stored car self-weight.

【0015】また、第4発明に係るエレベーターの制御
装置は、第1〜第3発明のものにおいて、秤装置を、か
ご内荷重を検出する荷重検出器と、かご停止中の荷重検
出値を保持する荷重保持器と、かご走行中と停止中の荷
重検出値の差を増幅する誤差増幅器と、かご停止中は荷
重保持器の出力を秤信号とし、走行中は誤差増幅器の出
力を秤信号として出力する切換スイッチとで構成したも
のである。
The elevator control device according to a fourth aspect of the present invention is the elevator control device according to any one of the first to third aspects of the invention, wherein the weighing device holds a load detector for detecting a load inside the car and a load detection value while the car is stopped. Load retainer, an error amplifier that amplifies the difference between the load detection values when the car is running and stopped, and the output of the load retainer when the car is stopped as a scale signal, and the output of the error amplifier as a scale signal during running. It is composed of a changeover switch for outputting.

【0016】[0016]

【作用】この発明の第1発明においては、かごの加減速
に伴う秤信号の変化と速度信号からかごの自重を演算
し、このかご自重からエレベーター機械系の慣性モーメ
ントを算出し、これに基づいて速度制御装置を調整する
ようにしたため、電動機の特性等の把握は必要ない。
In the first aspect of the present invention, the weight of the car is calculated from the change in the scale signal due to the acceleration / deceleration of the car and the speed signal, and the inertia moment of the elevator mechanical system is calculated from the weight of the car. Since the speed control device is adjusted by adjusting the speed control device, it is not necessary to grasp the characteristics of the electric motor.

【0017】また、第2発明においては、演算されたか
ご自重を記憶させるようにしたため、かご自重は秤装置
の特性が劣化していないときに演算された値が用いられ
る。
Further, in the second aspect of the present invention, since the calculated car weight is stored, a value calculated when the characteristic of the weighing device is not deteriorated is used as the car weight.

【0018】また、第3発明においては、かごの非常停
止時の秤信号の変化を用いてかご自重を演算するように
したため、かご自重は秤信号の変化が大きいときに演算
される。
In the third aspect of the invention, the car weight is calculated by using the change in the scale signal when the car is in an emergency stop. Therefore, the car weight is calculated when the change in the scale signal is large.

【0019】また、第4発明においては、かご停止中は
この停止中に保持した荷重検出値を秤信号とし、かご走
行中は走行中と停止中の荷重検出値の差を増幅して秤信
号としたため、秤信号の変化分はアナログ信号の段階で
増幅したものがA/D変換されて取り込まれる。
Further, in the fourth aspect of the invention, when the car is stopped, the load detection value held while the car is stopped is used as a scale signal, and when the car is running, the difference between the load detection values during running and when the car is stopped is amplified to obtain the scale signal. Therefore, the change amount of the scale signal is A / D converted and taken in after being amplified at the stage of the analog signal.

【0020】[0020]

【実施例】【Example】

実施例1.図1〜図3はこの発明の第1発明の一実施例
を示す図で、図1は構成図、図2はかご自重演算及び速
度制御装置の自動調整処理を示すフローチャート、図3
はかご加速時の秤信号線図であり、従来装置と同様の部
分は同一符号で示す(以下の実施例も同じ)。
Example 1. 1 to 3 are diagrams showing an embodiment of the first invention of the present invention, FIG. 1 is a block diagram, FIG. 2 is a flowchart showing a car weight calculation and automatic adjustment processing of a speed control device, and FIG.
It is a balance signal line diagram at the time of basket car acceleration, and the same portions as those of the conventional device are indicated by the same reference numerals (the same applies to the following examples).

【0021】図1において、(17)は秤装置(7)と速度検
出器(6)に接続されたかご自重演算装置、(17a)はかご自
重信号である。すなわち、かご自重演算装置(17)は秤信
号(7a)及び速度信号(6a)に基づいてかご自重を演算し、
かご自重信号(17a)を速度制御装置(11)へ送出して、エ
レベーター機械系の電動機(1)軸換算による慣性モーメ
ントを算出して速度制御装置(11)を調整する。
In FIG. 1, (17) is a car weight calculating device connected to the weighing device (7) and the speed detector (6), and (17a) is a car weight signal. That is, the car weight calculation device (17) calculates the car weight based on the scale signal (7a) and the speed signal (6a),
The car weight signal (17a) is sent to the speed control device (11) to calculate the moment of inertia by converting the axis of the electric motor (1) of the elevator machine system to adjust the speed control device (11).

【0022】ここで、かご(4)容量をL[kg]、かご(4)
自重をWc[kg]、重力加速度をg[m/s2]とし、負荷
率βのときに加速度α[m/s2]で走行したとすると、
図3に示す秤信号(7a)は次の(1)式及び(2)式で表され
る。 停止中又は一定速中 W=βL[kg] …(1) 一定加速中 Wa=βL+(Wc+βL)α/g[kg] …(2) ここで、加速度αは速度信号(6a)から求められる。上記
(1)式及び(2)式からかご(4)自重Wcは(3)式により求め
ることができる。 Wc=(Wa−W)g/α−W [kg] …(3)
Here, the capacity of the car (4) is L [kg], and the capacity of the car (4) is
If the weight is Wc [kg], the gravitational acceleration is g [m / s 2 ], and the vehicle travels at acceleration α [m / s 2 ] when the load factor β,
The balance signal (7a) shown in FIG. 3 is expressed by the following equations (1) and (2). During stop or constant speed W = βL [kg] (1) During constant acceleration Wa = βL + (Wc + βL) α / g [kg] (2) Here, the acceleration α is obtained from the speed signal (6a). the above
From equations (1) and (2), the weight Wc of the car (4) can be calculated by equation (3). Wc = (Wa−W) g / α−W [kg] (3)

【0023】次に、かご自重演算及び速度制御装置(11)
の自動調整処理の過程を図2及び図3を参照して説明す
る。まず、ステップ(21)でかご(4)が停止中かを判断
し、停止中であればステップ(22)へ進み、このときの秤
信号(7a)をWとして処理を終了し、次の演算サイクルま
で待つ。
Next, the car weight calculation and speed control device (11)
The automatic adjustment process will be described with reference to FIGS. 2 and 3. First, in step (21), it is judged whether or not the car (4) is stopped, and if it is stopped, the process proceeds to step (22), the weighing signal (7a) at this time is set as W, and the processing is ended, and the next calculation Wait until the cycle.

【0024】一方、ステップ(21)でかごが停止中でなけ
れば、ステップ(23)へ進み、速度信号(6a)から加速度α
を算出する。次に、ステップ(24)で加速度αからかご
(4)が一定加速中であるかを判断し、一定加速中でない
ときは処理を終了し、次の演算サイクルまで待つ。ステ
ップ(24)で一定加速中の場合はステップ(25)へ進み、こ
のときの秤信号(7a)をWaとし、ステップ(26)(かご自
重演算手段)でかご(4)自重を(3)式に従って演算する。
On the other hand, if the car is not stopped in step (21), the process proceeds to step (23), where the acceleration α is calculated from the speed signal (6a).
To calculate. Next, in step (24), the acceleration α
If (4) is accelerating at a constant level, if it is not accelerating at a constant level, the process ends and waits until the next operation cycle. If constant acceleration is being performed in step (24), proceed to step (25), set the weighing signal (7a) at this time to Wa, and use step (26) (car self-weight calculation means) to determine the car (4) self-weight (3) Calculate according to the formula.

【0025】更に、ステップ(27)(慣性モーメント算出
手段)でかご(4)自重Wcから低速側GD2を算出し、あ
らかじめ設定してある高速側GD2との和から、電動機
(1)軸回りの慣性モーメントを算出する。例えば、つり
合おもり比率をC[%]とすれば、かご(4)側重量Wcarと
つり合おもり(5)重量Wcwtは、およそ Wcar=Wc+βL [kg] …(4) Wcwt=Wc+CL [kg] …(5) となる。
Further, in step (27) (inertia moment calculation means), the low speed side GD 2 is calculated from the car (4) own weight Wc, and the motor is calculated from the preset sum with the high speed side GD 2.
(1) Calculate the moment of inertia about the axis. For example, if the balance weight ratio is C [%], the car (4) side weight Wcar and the balance weight (5) weight Wcwt are approximately Wcar = Wc + βL [kg] (4) Wcwt = Wc + CL [kg] … (5).

【0026】したがって、巻上機の駆動綱車(2)周上で
見た慣性重量は、 Wcar+Wcwt=2Wc+(β+C)L [kg] …(6) となる。この慣性重量から減速比を考慮して電動機(1)
軸から見た慣性モーメントに換算して低速側GD2とす
る。高速側GD2、すなわち電動機(4)や巻上機の慣性モ
ーメントは設計段階で分かっているので、これにより電
動機(4)軸回りの慣性モーメントが算出できる。
Therefore, the inertial weight seen on the circumference of the drive sheave (2) of the hoisting machine is Wcar + Wcwt = 2Wc + (β + C) L [kg] (6). Considering the reduction ratio from this inertia weight, the electric motor (1)
Convert to the moment of inertia seen from the shaft and set it as GD 2 on the low speed side. Since the moment of inertia of the high speed side GD 2 , that is, the moment of inertia of the electric motor (4) and the hoisting machine is known at the design stage, the moment of inertia about the axis of the electric motor (4) can be calculated from this.

【0027】これで、ステップ(28)(自動調整手段)で
速度制御装置(11)を調整する。この調整手段としては、
エレベーター機械系の慣性モーメントに比例して速度制
御系の比例ゲインを設定するのが一般的である。また、
慣性力を補償するためのフィードフォワード補償の制御
ブロックを備えた速度制御装置では、慣性に比例してフ
ィードフォワードゲインを調整する。以上の処理を繰り
返すことで、走行中はかご(4)自重の演算と、速度制御
装置(11)の自動調整を絶えず実行する。
Then, the speed control device (11) is adjusted in step (28) (automatic adjustment means). As this adjustment means,
Generally, the proportional gain of the speed control system is set in proportion to the moment of inertia of the elevator mechanical system. Also,
In a speed control device including a feedforward compensation control block for compensating an inertial force, the feedforward gain is adjusted in proportion to the inertia. By repeating the above-mentioned processing, calculation of the weight of the car (4) and automatic adjustment of the speed control device (11) are continuously executed during traveling.

【0028】このように、かご(4)自重に応じた適切な
速度制御を行うことができるため、良好な乗心地と着床
精度を実現する。また、秤信号(7a)の変化に基づいてか
ご(4)自重を演算し、電動機(1)の特性の把握等の必要は
ないため、構成は簡単となり、演算時間も短くなる。
As described above, since it is possible to perform an appropriate speed control according to the weight of the car (4), good riding comfort and landing accuracy are realized. Moreover, since the weight of the car (4) is calculated based on the change of the scale signal (7a) and it is not necessary to grasp the characteristics of the electric motor (1), the configuration is simplified and the calculation time is shortened.

【0029】実施例2.図4はこの発明の第2発明の一
実施例を示す構成図である。図において、(31)は据付調
整終了条件の検出手段、手動スイッチ(いずれも図示し
ない)等から出力されるかご自重演算指令信号、(32)は
かご自重演算装置(17)に接続されたメモリからなるかご
自重記憶装置、(32a)はその出力でかご自重信号であ
る。すなわち、かご自重演算装置(17)はかご自重演算指
令信号(31)が入力されたときだけかご自重を演算してか
ご自重信号(17a)を出力する。これがかご自重記憶装置
(32)に記憶され、かご自重信号(32a)が出力される。
Example 2. FIG. 4 is a block diagram showing an embodiment of the second invention of the present invention. In the figure, (31) is a car weight calculation command signal output from a means for detecting installation adjustment end conditions, a manual switch (neither is shown), etc., and (32) is a memory connected to the car weight calculation device (17). The car self-weight storage device, (32a), outputs the car self-weight signal. That is, the car weight calculation device (17) calculates the car weight only when the car weight calculation command signal (31) is input, and outputs the car weight signal (17a). This is a car weight storage device
It is stored in (32), and the car weight signal (32a) is output.

【0030】実施例1では、かご(4)の走行の度にかご
(4)自重を演算するものとしたが、かご(4)自重はエレベ
ーターの据付後に変化することはないため、かご(4)自
重を演算してかご自重記憶装置(32)に記憶し、記憶した
かご(4)自重に基づいて速度制御装置(11)を調整するよ
うにすれば、走行の度にかご(4)自重を演算する必要は
なく、演算時間を節約することが可能である。
In the first embodiment, the car (4) is run every time the car runs.
(4) Although the self-weight is calculated, the car (4) self-weight does not change after installation of the elevator, so the car (4) self-weight is calculated and stored in the car self-weight storage device (32) and stored. If the speed control device (11) is adjusted based on the own weight of the car (4), it is not necessary to calculate the own weight of the car (4) each time the vehicle travels, and the calculation time can be saved.

【0031】特に、エレベーターを据付調整した直後
は、秤装置(7)の経年変化による影響がなく、荷重の検
出精度も高いため、据付時や定期点検の際にかご自重演
算指令信号(31)を与えてかご(4)自重を演算することに
すれば、精度高くかご(4)自重が演算できるので、いっ
そう良好な制御性能が得られる。
In particular, immediately after the elevator is installed and adjusted, the weighing device (7) is not affected by the secular change and the load detection accuracy is high. If the car (4) dead weight is calculated by giving, the car (4) dead weight can be calculated with high accuracy, so that better control performance can be obtained.

【0032】実施例3.図5はこの発明の第3発明の一
実施例を示すかごの非常停止時の秤信号線図である。こ
の実施例は据付時にブレーキによってかご(4)を非常停
止させ、かご(4)の減速中に秤信号(7a)を入力するもの
である。
Example 3. FIG. 5 is a balance signal line diagram showing an embodiment of the third invention of the present invention when the car is in an emergency stop. In this embodiment, the car (4) is brought to an emergency stop by a brake during installation, and the scale signal (7a) is input during deceleration of the car (4).

【0033】さて、秤信号(7a)はアナログ信号であり、
これをソフトウエアで処理するために、A/D変換器
(図示しない)を通してディジタル信号に変換してCP
U(図示しない)に取り込まれる。したがって、A/D
変換器の分解能と比較して微小な信号は、精度良く取り
込むことはできない。
Now, the scale signal (7a) is an analog signal,
In order to process this with software, it is converted into a digital signal through an A / D converter (not shown) and CP
It is taken in by U (not shown). Therefore, A / D
Signals that are minute compared to the resolution of the converter cannot be captured accurately.

【0034】通常の加速度αは約0.1g以下であり、
かご自重Wcがかご(4)容量L程度であることを考慮す
ると、加速による秤信号(7a)の変化分(Wa−W)=(W
c+βL)α/gは停止時の秤信号βLに対して小さい
値である。一方、秤装置(7)の検出範囲は無負荷から約
150%の過負荷までは確保しなければならないから、
A/D変換器のダイナミックレンジは、少なくとも1.
5L[kg]に相当する程度は見込む必要がある。したが
って、実施例1では、(Wa−W)[kg]の微小な信号は
精度良く取り込むことができず、かご(4)自重の演算精
度が悪くなる。
The normal acceleration α is about 0.1 g or less,
Considering that the car's own weight Wc is about the capacity of the car (4) L, the change of the scale signal (7a) due to acceleration (Wa-W) = (W
c + βL) α / g is a small value with respect to the balance signal βL at the time of stop. On the other hand, the detection range of the weighing device (7) must be secured from no load to about 150% overload.
The dynamic range of the A / D converter is at least 1.
It is necessary to estimate the extent equivalent to 5 L [kg]. Therefore, in the first embodiment, a minute signal of (Wa-W) [kg] cannot be accurately captured, and the calculation accuracy of the weight of the car (4) becomes poor.

【0035】実施例3では、ブレーキによってかご(4)
を非常停止させ、かご(4)の減速中にかご(4)自重を演算
するようにしている。非常停止の減速度は通常の加減速
度よりは高めに設定され、約0.3g程度である。した
がって、図5に示すように、非常停止による減速中の秤
信号(7a1)と通常走行の減速中の秤信号(7a2)の差、すな
わち秤信号(7a)の変化分(We−W)は大きくなり、かご
(4)自重の演算精度は高くなる。
In the third embodiment, the car (4) is braked.
The car (4) dead weight is calculated during the deceleration of the car (4). The deceleration for emergency stop is set higher than the normal acceleration / deceleration and is about 0.3 g. Therefore, as shown in FIG. 5, the difference between the scale signal (7a1) during deceleration due to an emergency stop and the scale signal (7a2) during deceleration during normal traveling, that is, the change (We-W) of the scale signal (7a) is Growing up and basket
(4) The calculation accuracy of the own weight is high.

【0036】実施例4.図6はこの発明の第4発明の一
実施例を示す秤装置のブロック線図である。図におい
て、(7A)は荷重検出器、(7B)はかご(4)の停止中は端子
(a)に、走行中は端子(b)に接続される切換スイッチ、(7
C)は切換スイッチ(7B)の端子(a)に接続され入力値を保
持する荷重保持器、(7D)は荷重保持器(7C)と切換スイッ
チ(7B)の端子(b)に接続され、端子(+)への入力値と端
子(−)への入力値の差を増幅する誤差増幅器である。
Example 4. FIG. 6 is a block diagram of a weighing device showing an embodiment of the fourth invention of the present invention. In the figure, (7A) is the load detector and (7B) is the terminal when the car (4) is stopped.
In (a), the selector switch connected to the terminal (b) while traveling, (7
C) is a load holder that is connected to the terminal (a) of the changeover switch (7B) and holds the input value, (7D) is connected to the load holder (7C) and the terminal (b) of the changeover switch (7B), This is an error amplifier that amplifies the difference between the input value to the terminal (+) and the input value to the terminal (-).

【0037】この実施例の秤装置(7)は、かご(4)の停止
中と走行中で秤信号(7a)のダイナミックレンジを切り換
えるようにしたものである。まず、かご(4)の停止中は
荷重検出器(7A)の検出値が荷重保持器(7C)を介して秤信
号(7a)として出力される。かご(4)が走行を開始する
と、切換スイッチ(7B)が切り換えられ、誤差増幅器(7D)
は走行中の荷重検出器(7A)の検出値と、荷重保持器(7C)
に保持された荷重検出器(7A)の検出値の差を増幅して秤
信号(7a)として出力する。
The weighing device (7) of this embodiment is adapted to switch the dynamic range of the weighing signal (7a) while the car (4) is stopped and running. First, while the car (4) is stopped, the detection value of the load detector (7A) is output as the balance signal (7a) via the load holder (7C). When the car (4) starts running, the changeover switch (7B) is switched and the error amplifier (7D)
Is the detected value of the load detector (7A) during running and the load holder (7C)
The difference between the detection values of the load detector (7A) held at is amplified and output as a scale signal (7a).

【0038】すなわち、かご(4)が停止中のときには、
人が乗降して荷重の増減があるため、秤装置(7)は既述
のように、1.5L[kg]以上のダイナミックレンジを持
つように設定されている。いったんかご(4)が走行を開
始すると、人の乗降はないので、起動直前の秤信号Wに
よって負荷率を求めて不平衡荷重が演算される。一方、
走行中の秤信号(7a)は、図3に示すように、停止中の秤
信号値を中心にして、加減速による慣性分だけ変化し、
(Wa−W)が出力される。この信号が図2のステップ(2
6)の(Wa−W)として用いられる。
That is, when the car (4) is stopped,
Since a person gets on and off and the load increases and decreases, the scale device (7) is set to have a dynamic range of 1.5 L [kg] or more as described above. Once the car (4) starts traveling, there is no person getting on and off, so the unbalanced load is calculated by obtaining the load factor from the scale signal W immediately before starting. on the other hand,
As shown in FIG. 3, the running scale signal (7a) changes by the amount of inertia due to acceleration / deceleration, centered on the scale signal value at rest,
(Wa-W) is output. This signal corresponds to the step (2
Used as (Wa-W) in 6).

【0039】このようにして、一定加速中の秤信号Wa
と一定速中の秤信号Wを求めることにより、秤信号(7a)
の変化を精度高く検出できるため、かご(4)自重の演算
精度が高まり、良好な速度制御が可能となる。
In this way, the balance signal Wa during constant acceleration is
And the scale signal W at a constant speed is obtained, the scale signal (7a)
Since it is possible to accurately detect the change in, the calculation accuracy of the weight of the car (4) is increased, and good speed control can be performed.

【0040】[0040]

【発明の効果】以上説明したとおりこの発明の第1発明
では、かごの加減速に伴う秤信号の変化と速度信号から
かごの自重を演算し、このかご自重からエレベーター機
械系の慣性モーメントを算出し、これに基づいて速度制
御装置を調整するようにしたので、電動機の特性等の把
握は必要なく、簡単な構成でかご自重に影響されない良
好な乗心地と着床精度を実現できる効果がある。
As described above, in the first invention of the present invention, the weight of the car is calculated from the change in the scale signal due to the acceleration / deceleration of the car and the speed signal, and the inertia moment of the elevator machine system is calculated from the weight of the car. Since the speed control device is adjusted based on this, it is not necessary to grasp the characteristics of the electric motor, etc., and it is possible to achieve good riding comfort and landing accuracy with a simple configuration that is not affected by the weight of the car. .

【0041】また、第2発明では、演算されたかご自重
を記憶させるようにしたので、かご自重ははかり装置の
特性が劣化していないときに演算される値が用いられ、
演算時間が節約できるとともに、秤装置の特性の経年変
化に影響されることなく良好な制御性能を実現できる効
果がある。
Further, in the second invention, since the calculated car weight is stored, the value calculated when the characteristics of the car weighing device is not deteriorated is used.
The calculation time can be saved and good control performance can be realized without being affected by the secular change in the characteristics of the weighing device.

【0042】また、第3発明では、かごの非常停止時の
秤信号の変化を用いてかご自重を演算するようにしたの
で、かご自重は秤信号の変化が大きいときに演算され、
かご自重を精度高く演算できる効果がある。
Further, in the third invention, the car weight is calculated by using the change of the scale signal at the time of the emergency stop of the car. Therefore, the car weight is calculated when the change of the scale signal is large,
This has the effect of accurately calculating the car weight.

【0043】また、第4発明では、かご停止中はこの停
止中に保持した荷重検出値を秤信号とし、かご走行中は
走行中と停止中の荷重検出値の差を増幅して秤信号とし
たので、秤信号の変化分はアナログ信号の段階で増幅し
たものがA/D変換されて取り込まれ、かご自重を精度
高く演算できる効果がある。
According to the fourth aspect of the invention, when the car is stopped, the load detection value held while the car is stopped is used as a scale signal, and when the car is running, the difference between the load detection values during running and when the car is stopped is amplified to obtain a scale signal. Therefore, the change amount of the balance signal is A / D converted and taken in after being amplified at the stage of the analog signal, and there is an effect that the car weight can be accurately calculated.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示す構成図。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】図1によるかご自重演算及び速度制御装置の自
動調整処理を示すフローチャート。
FIG. 2 is a flowchart showing an automatic adjustment process of the car weight calculation and speed control device according to FIG.

【図3】図1のかご加速時の秤信号線図。FIG. 3 is a scale signal line diagram during car acceleration in FIG. 1.

【図4】この発明の実施例2を示す構成図。FIG. 4 is a configuration diagram showing a second embodiment of the present invention.

【図5】この発明の実施例3を示すかごの非常停止時の
秤信号線図。
FIG. 5 is a scale signal line diagram showing a third embodiment of the present invention when a car is in an emergency stop.

【図6】この発明の実施例4を示す秤装置のブロック線
図。
FIG. 6 is a block diagram of a weighing device showing Embodiment 4 of the present invention.

【図7】従来のエレベーターの制御装置を示す構成図。FIG. 7 is a configuration diagram showing a conventional elevator control device.

【符号の説明】[Explanation of symbols]

1 巻上用電動機、4 かご、5 つり合おもり、6a
速度信号、7 秤装置、7a 秤信号、7A 荷重検
出器、7B 切換スイッチ、7C 荷重保持器、7D
誤差増幅器、10a 速度指令値、11 速度制御装
置、11a 第1のトルク指令値、12 秤補償装置、
13a 第2のトルク指令値、17 かご自重演算装
置、17a かご自重信号、32 かご自重記憶装置、
32a かご自重信号。
1 hoisting motor, 4 cages, 5 counterweights, 6a
Speed signal, 7 scale device, 7a scale signal, 7A load detector, 7B changeover switch, 7C load holder, 7D
Error amplifier, 10a speed command value, 11 speed control device, 11a first torque command value, 12 scale compensator,
13a second torque command value, 17 car self weight calculation device, 17a car self weight signal, 32 car self weight storage device,
32a Car weight signal.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 速度指令値と速度信号からトルク指令値
を発生する速度制御装置を有し、上記トルク指令値によ
り電動機を制御してかご及びつり合おもりを昇降させ、
かご内荷重を検出して秤信号を出力する秤装置を設け、
上記秤信号により上記かご側とつり合おもり側の不平衡
荷重を演算し、この不平衡荷重に基づいて上記トルク指
令値を補正するエレベーターにおいて、上記かごの加減
速に伴う上記秤信号の変化と上記速度信号から上記かご
の自重を演算するかご自重演算手段と、上記演算された
かご自重からエレベーター機械系の慣性モーメントを算
出する慣性モーメント算出手段と、上記算出された慣性
モーメントにより上記速度制御装置を調整する自動調整
手段とを備えたことを特徴とするエレベーターの制御装
置。
1. A speed control device for generating a torque command value from a speed command value and a speed signal, and controlling a motor by the torque command value to raise and lower a car and a counterweight,
A weighing device that detects the load inside the car and outputs a weighing signal is installed.
In the elevator that calculates the unbalanced load on the car side and the counterweight side by the balance signal and corrects the torque command value based on this unbalanced load, the change of the balance signal due to the acceleration / deceleration of the car and A car weight calculating means for calculating the weight of the car from the speed signal, an inertia moment calculating means for calculating an inertia moment of the elevator mechanical system from the calculated car weight, and the speed control device based on the calculated inertia moment. An elevator control device, comprising: an automatic adjustment means for adjusting the.
【請求項2】 演算されたかご自重を記憶するかご自重
記憶装置を設け、慣性モーメント算出手段を、上記記憶
されたかご自重により慣性モーメントを算出する構成と
したことを特徴とする請求項1記載のエレベーターの制
御装置。
2. The car weight storage device for storing the calculated car weight, and the inertia moment calculation means is configured to calculate the inertia moment based on the stored car weight. Elevator control device.
【請求項3】 かご自重演算手段を、かごの非常停止時
における上記かごの減速に伴う秤信号の変化と速度信号
から上記かごの自重を演算する構成とし、上記演算され
たかご自重を記憶するかご自重記憶装置を設け、慣性モ
ーメント算出手段を、上記記憶されたかご自重により慣
性モーメントを算出する構成としたことを特徴とする請
求項1記載のエレベーターの制御装置。
3. The car self-weight calculating means is configured to calculate the car self-weight based on a change in the scale signal associated with the car deceleration and a speed signal when the car is in an emergency stop, and the calculated car self-weight is stored. 2. The elevator control device according to claim 1, wherein a car weight storage device is provided, and the inertia moment calculation means is configured to calculate the inertia moment by the stored car weight.
【請求項4】 秤装置を、かご内荷重を検出する荷重検
出器と、かご停止中の上記荷重検出値を保持する荷重保
持器と、上記かご走行中と停止中の上記荷重検出値の差
を増幅する誤差増幅器と、上記かご停止中は上記荷重保
持器の出力を秤信号とし、走行中は上記誤差増幅器の出
力を秤信号として出力する切換スイッチとで構成したこ
とを特徴とする請求項1〜請求項3のいずれかに記載の
エレベーターの制御装置。
4. A weighing device, a load detector for detecting a load in a car, a load retainer for holding the load detection value when the car is stopped, and a difference between the load detection values when the car is running and when the car is stopped. And a changeover switch that outputs the output of the load retainer as a scale signal while the car is stopped and outputs the output of the error amplifier as a scale signal during traveling. The elevator control device according to any one of claims 1 to 3.
JP15073494A 1994-07-01 1994-07-01 Elevator control device Expired - Fee Related JP3344087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15073494A JP3344087B2 (en) 1994-07-01 1994-07-01 Elevator control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15073494A JP3344087B2 (en) 1994-07-01 1994-07-01 Elevator control device

Publications (2)

Publication Number Publication Date
JPH0812206A true JPH0812206A (en) 1996-01-16
JP3344087B2 JP3344087B2 (en) 2002-11-11

Family

ID=15503253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15073494A Expired - Fee Related JP3344087B2 (en) 1994-07-01 1994-07-01 Elevator control device

Country Status (1)

Country Link
JP (1) JP3344087B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005300A1 (en) * 2003-07-09 2005-01-20 Kone Corporation Control of an elevator
WO2007055020A1 (en) * 2005-11-14 2007-05-18 Mitsubishi Denki Kabushiki Kaisha Elevator device
WO2009007492A1 (en) * 2007-07-09 2009-01-15 Kone Corporation Elevator system
CN100465604C (en) * 2002-11-20 2009-03-04 三菱电机建筑技术服务株式会社 Device and method for measuring torque of elevator
KR100904800B1 (en) * 2007-05-21 2009-06-25 미쓰비시덴키 가부시키가이샤 Elevator device
FR2933249A1 (en) * 2008-06-30 2010-01-01 Schneider Toshiba Inverter METHOD FOR ADJUSTING THE SPEED LOOP OF A SPEED DRIVE
WO2012124067A1 (en) * 2011-03-16 2012-09-20 三菱電機株式会社 Rope-type gap adjusting device, and elevator control device
CN105236223A (en) * 2015-09-23 2016-01-13 日立电梯(中国)有限公司 Inertia measuring system and method
JP2018193161A (en) * 2017-05-15 2018-12-06 フジテック株式会社 Elevator control device and control method
CN109095301A (en) * 2018-09-25 2018-12-28 日立楼宇技术(广州)有限公司 A kind of elevator control method, device, equipment and medium
CN109693982A (en) * 2017-10-24 2019-04-30 上海三菱电梯有限公司 Elevator meausring apparatus abnormality judgment method
CN113697621A (en) * 2021-08-25 2021-11-26 杭州优迈科技有限公司 Elevator starting control method, device and system and electronic device
CN114920101A (en) * 2022-05-27 2022-08-19 日立电梯(中国)有限公司 Elevator verification method, system, device, computer equipment and storage medium

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100465604C (en) * 2002-11-20 2009-03-04 三菱电机建筑技术服务株式会社 Device and method for measuring torque of elevator
WO2005005300A1 (en) * 2003-07-09 2005-01-20 Kone Corporation Control of an elevator
US7264087B2 (en) 2003-07-09 2007-09-04 Kone Corporation Control of a counterweightless elevator using total mass of the elevator
WO2007055020A1 (en) * 2005-11-14 2007-05-18 Mitsubishi Denki Kabushiki Kaisha Elevator device
KR100904800B1 (en) * 2007-05-21 2009-06-25 미쓰비시덴키 가부시키가이샤 Elevator device
WO2009007492A1 (en) * 2007-07-09 2009-01-15 Kone Corporation Elevator system
FR2933249A1 (en) * 2008-06-30 2010-01-01 Schneider Toshiba Inverter METHOD FOR ADJUSTING THE SPEED LOOP OF A SPEED DRIVE
WO2010003740A3 (en) * 2008-06-30 2010-06-10 Schneider Toshiba Inverter Europe Sas Method for setting the speed loop of a speed variator
CN102076589A (en) * 2008-06-30 2011-05-25 施耐德东芝换流器欧洲公司 Method for setting the speed loop of a speed variator
JP2011526233A (en) * 2008-06-30 2011-10-06 シュネーデル、トウシバ、インベーター、ヨーロッパ、ソシエテ、パル、アクション、セプリフエ How to set the speed loop of a variable speed drive
WO2012124067A1 (en) * 2011-03-16 2012-09-20 三菱電機株式会社 Rope-type gap adjusting device, and elevator control device
CN105236223A (en) * 2015-09-23 2016-01-13 日立电梯(中国)有限公司 Inertia measuring system and method
CN105236223B (en) * 2015-09-23 2018-01-02 日立电梯(中国)有限公司 inertia measuring system and method
JP2018193161A (en) * 2017-05-15 2018-12-06 フジテック株式会社 Elevator control device and control method
CN109693982A (en) * 2017-10-24 2019-04-30 上海三菱电梯有限公司 Elevator meausring apparatus abnormality judgment method
CN109693982B (en) * 2017-10-24 2023-02-03 上海三菱电梯有限公司 Abnormity judgment method for elevator weighing device
CN109095301A (en) * 2018-09-25 2018-12-28 日立楼宇技术(广州)有限公司 A kind of elevator control method, device, equipment and medium
CN113697621A (en) * 2021-08-25 2021-11-26 杭州优迈科技有限公司 Elevator starting control method, device and system and electronic device
CN114920101A (en) * 2022-05-27 2022-08-19 日立电梯(中国)有限公司 Elevator verification method, system, device, computer equipment and storage medium
CN114920101B (en) * 2022-05-27 2024-05-07 日立电梯(中国)有限公司 Elevator verification method, system, device, computer equipment and storage medium

Also Published As

Publication number Publication date
JP3344087B2 (en) 2002-11-11

Similar Documents

Publication Publication Date Title
JP3344087B2 (en) Elevator control device
JP3420146B2 (en) Leveling control device for elevator system
JP5036147B2 (en) Elevator speed control device, speed control method, and speed control program
JP5322102B2 (en) elevator
CA1290478C (en) Method for providing a load compensation signal for a traction elevator system
JP2007217101A (en) Start compensating device of elevator
JP4727234B2 (en) Elevator equipment
JP4839006B2 (en) Elevator load detection device
JPH06321440A (en) Elevator controller
KR960003012B1 (en) Elevator control device
JP4174632B2 (en) Light load speed increaser for inverter controlled crane / hoist
JP3255552B2 (en) Elevator control device
JP2005170537A (en) Elevator control device
JP3255579B2 (en) Elevator control device
JP2000211829A (en) Elevator control device
JPWO2021186680A5 (en)
JPH07125945A (en) Control device for elevator
JP3908323B2 (en) Elevator speed control device
JPH0550435B2 (en)
JP4216671B2 (en) Elevator scale device calibration apparatus and elevator scale apparatus calibration method
JP2005060074A (en) Automatic load factor control system for elevator and its method
JPH10167595A (en) Elevator load detecting device
JP2001122536A (en) Control device for elevator
JP2004091199A (en) Elevator controller
JP2635759B2 (en) Control device for elevator with reduction gear

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070830

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees