JPH08121991A - High anti-corrosion type corrugated pipe - Google Patents

High anti-corrosion type corrugated pipe

Info

Publication number
JPH08121991A
JPH08121991A JP28296894A JP28296894A JPH08121991A JP H08121991 A JPH08121991 A JP H08121991A JP 28296894 A JP28296894 A JP 28296894A JP 28296894 A JP28296894 A JP 28296894A JP H08121991 A JPH08121991 A JP H08121991A
Authority
JP
Japan
Prior art keywords
heat transfer
pipe
stainless steel
tube
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28296894A
Other languages
Japanese (ja)
Inventor
Masahiro Honchi
雅宏 本地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28296894A priority Critical patent/JPH08121991A/en
Publication of JPH08121991A publication Critical patent/JPH08121991A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PURPOSE: To provide a pipe having a high anti-corrosion against sea water and having a superior heat transfer characteristic. CONSTITUTION: High Cr ferrite stainless steel containing Cr of 25% or more and C+N limited to a value of 150ppm or less is applied as a raw material for pipe. The pipe is worked to have a corrugation. High anti-corrosion can be attained by high Cr, a cold machining work is improved under a limitation of C+N, resulting in that a corrugate machining can be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱交換器の伝熱管等と
して使用されるステンレス鋼製の高耐食性コルゲート管
に関し、更に詳しくは、発電プラントの復水器のように
管内および/または管外に海水が流通する海水熱交換器
の伝熱管に適した高耐食性コルゲート管に関する。な
お、本明細書では特にことわりのない限り%は重量%を
表わす。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stainless steel highly corrosive-resistant corrugated pipe used as a heat transfer pipe of a heat exchanger, and more particularly to a pipe and / or pipe such as a condenser of a power plant. The present invention relates to a highly corrosion-resistant corrugated pipe suitable for a heat transfer pipe of a seawater heat exchanger through which seawater flows. In this specification,% means% by weight unless otherwise specified.

【0002】[0002]

【従来の技術】発電プラントでは、ボイラからタービン
に送られた蒸気が復水器で冷却されてボイラに戻され
る。熱交換器の一種である復水器は、所定の間隔をあけ
て配列された多数の伝熱管を有し、各伝熱管の内側に海
水を通し、外側に蒸気を通すことで、蒸気を海水により
冷却する。
2. Description of the Related Art In a power plant, steam sent from a boiler to a turbine is cooled by a condenser and returned to the boiler. A condenser, which is a type of heat exchanger, has a large number of heat transfer tubes that are arranged at predetermined intervals.By passing seawater inside each heat transfer tube and letting steam pass outside, steam is converted into seawater. To cool.

【0003】復水器の伝熱管としては、アルミ黄銅等か
らなる銅合金管が、熱伝導度が優れる点から広く用いら
れている。しかし、銅合金管は海水に対する耐食性が十
分とは言えない。そのため、海水に対する耐食性の優れ
たチタニウム管やステンレス鋼管への転換が図られてお
り、なかでも材料コストが比較的安価なステンレス鋼管
が有望視されている。
As a heat transfer tube for a condenser, a copper alloy tube made of aluminum brass or the like is widely used because of its excellent thermal conductivity. However, it cannot be said that the copper alloy tube has sufficient corrosion resistance to seawater. For this reason, conversion to titanium pipes and stainless steel pipes, which have excellent corrosion resistance to seawater, is being pursued, and among them, stainless steel pipes with relatively low material costs are considered promising.

【0004】復水器のように管内を海水が流通する熱交
換器の伝熱管に用いられるステンレス鋼としては、Cr
を25%以上含む高Crフェライト系ステンレス鋼が適
する。このステンレス鋼は、スーパーステンレス鋼と呼
ばれ、29%Cr−4%Mo−2%Niが代表的な成分
系である。
[0004] As a stainless steel used for a heat transfer tube of a heat exchanger in which seawater flows in a condenser such as a condenser, Cr is used.
High Cr ferritic stainless steel containing 25% or more of is suitable. This stainless steel is called super stainless steel, and 29% Cr-4% Mo-2% Ni is a typical component system.

【0005】29%Cr−4%Mo−2%Niに代表さ
れるスーパーステンレス鋼は、25%以上のCrを含む
ことで海水環境下でも高度の耐食性を発揮することがで
きる。しかし、アルミ黄銅等の銅合金に比べると熱伝達
率が劣る。それぞれの熱伝導度を表1に示す。スーパー
ステンレス鋼の熱伝導度はアルミ黄銅のそれに比べると
約1/6に過ぎない。一方、強度はスーパーステンレス
鋼の方が銅合金よりかなり大きい。そこで、管肉厚を薄
くすることにより、熱伝達率の悪さを補うことが行われ
ている。
Super stainless steel represented by 29% Cr-4% Mo-2% Ni can exhibit high corrosion resistance even in a seawater environment by containing 25% or more of Cr. However, the heat transfer coefficient is inferior to that of a copper alloy such as aluminum brass. The thermal conductivity of each is shown in Table 1. The thermal conductivity of super stainless steel is only about 1/6 that of aluminum brass. On the other hand, the strength of super stainless steel is considerably higher than that of copper alloy. Therefore, it is attempted to compensate for the poor heat transfer coefficient by reducing the wall thickness of the tube.

【0006】[0006]

【表1】 [Table 1]

【0007】例えば、肉厚が1.0mmであるアルミ黄銅
製の伝熱管に対応するスーパーステンレス鋼製の伝熱管
としては、強度がほぼ同等となる肉厚が0.5mmのもの
が用いられている。
For example, as a heat transfer tube made of super-stainless steel corresponding to a heat transfer tube made of aluminum brass having a wall thickness of 1.0 mm, a heat transfer tube having a wall thickness of 0.5 mm, which has almost the same strength, is used. There is.

【0008】[0008]

【発明が解決しようとする課題】このようなスーパース
テンレス鋼からなる薄肉の伝熱管は、同強度を有する銅
合金系の厚肉伝熱管と比べて、海水に対する耐食性が優
れる。しかし、熱伝達率は依然として劣る。その理由は
次の通りである。
The thin-walled heat transfer tube made of such super-stainless steel is superior in corrosion resistance to seawater as compared with a copper alloy-based thick-walled heat transfer tube having the same strength. However, the heat transfer rate is still poor. The reason is as follows.

【0009】 スーパーステンレス鋼の熱伝導度は銅
合金の熱伝導度の約1/6であるため、上述したような
1/2程度の薄肉化では、その熱伝導度の違いを十分に
補うことができない。1/2を超える薄肉化を行うと、
スーパーステンレス鋼と言えども、強度が不足する。
Since the thermal conductivity of super stainless steel is about 1/6 of the thermal conductivity of copper alloys, the difference in thermal conductivity should be sufficiently compensated for by reducing the thickness to about 1/2 as described above. I can't. When thinning more than 1/2,
Even super stainless steel lacks strength.

【0010】 伝熱管の外側に蒸気を通し、内側に海
水を通した場合、蒸気側から海水側への熱伝達は、一般
に図1のように行われる。図からわかるように熱伝達は
海水側で大きく阻害される。ステンレス鋼からなる伝熱
管では、銅合金からなる伝熱管に比べて管内面に海生生
物が付着しやすく、これによる海水側での熱伝達率の低
下が特に大きい。
When steam is passed through the heat transfer tube and seawater is passed through the heat transfer tube, heat is generally transferred from the steam side to the seawater side as shown in FIG. As can be seen from the figure, heat transfer is greatly hindered on the seawater side. In a heat transfer tube made of stainless steel, marine organisms are more likely to adhere to the inner surface of the tube than in a heat transfer tube made of a copper alloy, and the heat transfer coefficient on the seawater side is thereby greatly reduced.

【0011】 伝熱管の熱伝達率を高めるために、コ
ルゲート加工が有効なことは例えば特開昭62−114
731号公報等により周知である。コルゲート加工と
は、管を外面側からローラで螺旋状に絞る溝付け加工の
ことであり、その加工を受けた螺旋状の溝付き管はコル
ゲート管と呼ばれている(図2)。このコルゲート加工
は、実開昭57−127327号に述べられているよう
に、通常は加工性がよい鉄、銅、アルミニウム等の薄肉
管に適用される。また、特開昭51−14867号公報
に述べられているように、ステンレス鋼管に適用される
こともある。しかし、Cr量を25%以上に高めたスー
パーステンレス鋼は通常のステンレス鋼に比べて非常に
低延性、低靱性である。そのため、コルゲート加工を行
うと割れが生じ、その割れは薄肉管ほど顕著となる。従
って、スーパーステンレス鋼からなる薄肉管の場合は、
その熱伝達率をコルゲート加工により改善することは現
実には不可能である。
In order to increase the heat transfer coefficient of the heat transfer tube, corrugating is effective, for example, in Japanese Patent Laid-Open No. 62-114.
It is well known from Japanese Laid-Open Patent Application No. 731. The corrugating process is a grooving process for spirally squeezing the pipe from the outer surface side with a roller, and the spiral grooved pipe subjected to the process is called a corrugated pipe (FIG. 2). As described in Japanese Utility Model Application Laid-Open No. 57-127327, this corrugating process is usually applied to thin-walled pipes of iron, copper, aluminum, etc., which have good workability. It may also be applied to stainless steel pipes, as described in JP-A-51-14867. However, the super stainless steel having the Cr content increased to 25% or more has extremely low ductility and low toughness as compared with ordinary stainless steel. Therefore, cracking occurs when corrugating is performed, and the cracking becomes more remarkable in thin-walled pipes. Therefore, in the case of a thin wall tube made of super stainless steel,
In reality, it is impossible to improve the heat transfer coefficient by corrugating.

【0012】このような理由から、スーパーステンレス
鋼からなる伝熱管は、銅合金系の伝熱管と比べて、海水
に対する耐食性は優れるものの、熱伝達率は依然として
劣るものであった。
For these reasons, the heat transfer tube made of superstainless steel is superior in corrosion resistance to seawater, but still inferior in heat transfer coefficient, as compared with the copper alloy heat transfer tube.

【0013】本発明の目的は、海水に対する耐食性に優
れ、しかも熱伝達率の優れた高耐食性コルゲート管を提
供することにある。
An object of the present invention is to provide a highly corrosion-resistant corrugated pipe having excellent corrosion resistance against seawater and excellent heat transfer coefficient.

【0014】[0014]

【課題を解決するための手段】以前より本発明者はステ
ンレス鋼の清浄化の研究を続けている。その過程で今
回、スーパーステンレス鋼中の(C+N)量を150pp
m 以下に低減すると、その薄肉管に対するコルゲート加
工が可能となること、これによりスーパーステンレス鋼
の薄肉管で問題となる熱伝達率の低さが解消されること
を知見した。
The present inventor has been researching stainless steel cleaning for a long time. In the process, this time, the amount of (C + N) in super stainless steel was 150 pp.
It has been found that when the thickness is reduced to m or less, corrugation of the thin-walled pipe becomes possible, and thereby the low heat transfer coefficient which is a problem in the thin-walled pipe of super stainless steel is solved.

【0015】本発明は上記知見に基づきなされたもの
で、重量比でCrを25%以上含み、(C+N)を15
0ppm 以下に制限した高Crフェライト系ステンレス鋼
からなる管に、コルゲート加工により螺旋状の溝を形成
したことを特徴とする高耐食性コルゲート管を要旨とす
る。
The present invention has been made on the basis of the above findings, and contains 25% by weight or more of Cr and 15% of (C + N).
A gist of a high corrosion-resistant corrugated pipe characterized in that a spiral groove is formed by corrugating in a pipe made of high Cr ferritic stainless steel limited to 0 ppm or less.

【0016】請求項2に記載の高耐食性コルゲート管
は、コルゲート加工を受けていない山部の管内径をDi
とするとき、溝深さHを0.01×Di以上とし、溝ピッ
チPを0.6×Di以下としたものである。
In the highly corrosion-resistant corrugated pipe according to the second aspect, the pipe inner diameter of the mountain portion which is not subjected to corrugation is Di.
In this case, the groove depth H is 0.01 × Di or more and the groove pitch P is 0.6 × Di or less.

【0017】[0017]

【作用】本発明の高耐食性コルゲート管は、例えば管内
を海水が流通する復水器等の海水熱交換器の伝熱管に用
いて、優れた耐食性を示し、しかもコルゲート加工によ
り管内を流通する海水に乱流が生じ、管内面への海生生
物の付着が抑えられると共に、管内面側の水膜抵抗が低
減するので、高い熱伝達率を示す。
The highly corrosive corrugated pipe of the present invention is used, for example, as a heat transfer pipe of a seawater heat exchanger such as a condenser in which seawater flows, and shows excellent corrosion resistance. A turbulent flow is generated in the pipe, which suppresses the adhesion of marine organisms to the inner surface of the pipe and reduces the water film resistance on the inner surface of the pipe, resulting in a high heat transfer coefficient.

【0018】本発明のコルゲート管の材質は、Crを2
5%以上含み、(C+N)を150ppm 以下に制限した
高Crフェライト系ステンレス鋼(スーパーステンレス
鋼)とする。他の成分は特に限定しないが、通常はM
o:1〜8%、Ni:3%以下を含み、更にSi,M
n,P,S,その他の合金元素を一般のフェライト系ス
テンレス鋼と同強度に含有しても問題はない。
The material of the corrugated pipe of the present invention is Cr 2
High Cr ferritic stainless steel (super stainless steel) containing 5% or more and limiting (C + N) to 150 ppm or less. Other components are not particularly limited, but usually M
o: 1 to 8%, Ni: 3% or less, Si, M
There is no problem even if n, P, S and other alloy elements are contained in the same strength as general ferritic stainless steel.

【0019】Crは25%未満では耐食性が不十分であ
る。その上限としては脆化を抑えるために35%以下が
望ましい。Moは耐孔食性改善の目的で添加されるが、
1%未満ではその効果がなく、8%超では鋼が脆くなる
と共にコスト上昇を招き実用的でない。Niは加工性改
善目的で添加されるが、3%超では金属間化合物の粒界
析出を招いて耐食性が劣化する。
If Cr is less than 25%, the corrosion resistance is insufficient. The upper limit is preferably 35% or less in order to suppress embrittlement. Mo is added for the purpose of improving pitting corrosion resistance,
If it is less than 1%, there is no effect, and if it exceeds 8%, the steel becomes brittle and the cost increases, which is not practical. Ni is added for the purpose of improving workability, but if it exceeds 3%, grain boundary precipitation of intermetallic compounds is caused and corrosion resistance deteriorates.

【0020】コルゲート加工での加工性、すなわち冷間
加工性は材料の靱性、延性の影響を大きく受ける。Cお
よびNは炭窒化物の析出を促進し、材料の靱性、延性を
低下させて、冷間加工性を悪化させる。そのため、C+
Nを150ppm 以下に制限し、120ppm 以下が特に望
ましい。C+Nが150ppm を超えると、コルゲート加
工で割れが生じ、その加工が困難になる。(C+N)量
の下限については、(C+N)量が少ないほど加工性が
良くなるので、その下限は特に規定しないが、精鋼コス
トの点からは30ppm 以上が望ましい。
The workability in corrugating, that is, the cold workability is greatly affected by the toughness and ductility of the material. C and N accelerate the precipitation of carbonitrides, reduce the toughness and ductility of the material, and deteriorate the cold workability. Therefore, C +
N is limited to 150 ppm or less, and 120 ppm or less is particularly desirable. If C + N exceeds 150 ppm, cracking will occur during corrugation processing, making the processing difficult. Regarding the lower limit of the (C + N) amount, the lower the (C + N) amount, the better the workability. Therefore, the lower limit is not particularly specified, but from the viewpoint of the cost of refined steel, 30 ppm or more is preferable.

【0021】スーパーステンレス鋼のような高Cr鋼で
は、C,N等の不純物を取り除くことは一般には難しい
とされているが、例えばVOD(真空精練)による精鋼
工程で鉄鉱石などの粉体を上吹きすることにより、C+
Nを150ppm 以下に制限することが可能である。
In high Cr steel such as super stainless steel, it is generally difficult to remove impurities such as C and N. For example, powder of iron ore or the like is produced in the steel refining process by VOD (vacuum refining). C + by blowing up
It is possible to limit N to 150 ppm or less.

【0022】コルゲート管の素管であるフラット管は、
通常は上記成分組成を有するステンレス鋼の帯板を素材
とする電縫製管により製造される。そして、このフラッ
ト管に周知のコルゲート加工を施して本発明のコルゲー
ト管とする。
The flat tube, which is the base tube of the corrugated tube, is
Usually, it is manufactured by an electric resistance welded pipe made of a stainless steel strip having the above composition. Then, this flat tube is subjected to a well-known corrugating process to obtain the corrugated tube of the present invention.

【0023】フラット管の肉厚は、材料コストを低減す
るためと、熱伝達率を改善するために、0.7mm以下が
望ましい。肉厚の下限については、機械的強度を確保す
るために、0.3mm以上が望ましい。
The wall thickness of the flat tube is preferably 0.7 mm or less in order to reduce the material cost and improve the heat transfer coefficient. The lower limit of the wall thickness is preferably 0.3 mm or more in order to secure the mechanical strength.

【0024】本発明のコルゲート管では、溝の深さHと
ピッチPが熱伝達率に大きな影響を及ぼす。本発明者の
調査によると、 H≧0.01Di P≦0.6Di Di:未加工部である山部の管内径(フラット管の内
径) のとき、同強度の銅合金管と同等以上の熱伝達率が得ら
れることが判明した。従って、溝深さHは0.01Di以
上が望ましく、溝ピッチPは0.6Di以下が望ましい。
溝深さHの上限については、溝深さを大きくすると、か
えって管内の圧力損失が大きくなり、むだなエネルギー
が必要となることと、管外での蒸気の凝縮量が増大し、
凝縮液の表面張力により溝部に残存する滞留時間が長く
なり、外面の熱伝達率も悪くなることから、0.06Di
以下が望ましく、溝ピッチPの下限については、ピッチ
が小さくなると熱伝達率は飽和状態になり、圧力損失だ
けが大きくなることから、0.3Di以上が望ましい。
In the corrugated pipe of the present invention, the groove depth H and the pitch P have a great influence on the heat transfer coefficient. According to the investigation by the present inventor, when H ≧ 0.01 Di P ≦ 0.6 Di Di: the pipe inner diameter of the unprocessed mountain portion (the inner diameter of the flat pipe), the heat is equal to or higher than that of the copper alloy pipe of the same strength It was found that the transfer rate was obtained. Therefore, the groove depth H is preferably 0.01 Di or more, and the groove pitch P is preferably 0.6 Di or less.
Regarding the upper limit of the groove depth H, when the groove depth is increased, the pressure loss inside the tube is rather increased, wasteful energy is required, and the amount of vapor condensation outside the tube is increased.
Due to the surface tension of the condensate, the residence time remaining in the groove becomes longer and the heat transfer coefficient on the outer surface also deteriorates.
It is desirable that the lower limit of the groove pitch P be 0.3 Di or more, since the heat transfer coefficient becomes saturated and the pressure loss increases as the pitch becomes smaller.

【0025】本発明の高耐食性コルゲート管は、発電プ
ラントの復水器のような管内または管外もしくはその両
方を海水が流通する熱交換器の伝熱管に特に適し、その
伝熱管に適用して従来の銅合金管を凌ぐ耐食性と熱伝達
率を得ることができる。
The high corrosion resistant corrugated pipe of the present invention is particularly suitable for a heat transfer pipe of a heat exchanger in which seawater flows inside or outside the pipe such as a condenser of a power plant, or both, and is applied to the heat transfer pipe. It is possible to obtain the corrosion resistance and the heat transfer coefficient which are superior to those of the conventional copper alloy tube.

【0026】[0026]

【実施例】以下に本発明の実施例を示し、比較例と対比
することにより、本発明の効果を明らかにする。
EXAMPLES Examples of the present invention will be shown below, and the effects of the present invention will be clarified by comparison with Comparative Examples.

【0027】表2に化学組成を示す10種類の高Crフ
ェライト系ステンレス鋼A〜Jを電気炉〜VOD粉体上
吹法により溶製した。VOD粉体上吹法は前述した通り
VODにて溶鋼中に鉄鉱石などの粉体を上吹きすること
により、脱炭反応、脱窒反応を促進して、低(C+N)
化を達成する方法である。
Ten kinds of high Cr ferritic stainless steels A to J whose chemical compositions are shown in Table 2 were melted by an electric furnace to a VOD powder top blowing method. The VOD powder top-blowing method promotes decarburization reaction and denitrification reaction by spraying powder of iron ore etc. into molten steel by VOD, as described above, to reduce (C + N)
Is a method of achieving

【0028】溶製された各鋼の鋼塊を分塊して熱間圧延
〜冷間圧延により厚さが0.5mmの薄板とした。更に各
薄板を素材として連続溶接製管ラインにより外径25.4
mm×内径24.4mm(Di)、肉厚0.5mmの薄肉電
縫鋼管(フラット管)を製造した。そして、各フラット
管に溝の深さHが1.44mm(=0.06Di)、ピッチ
Pが14.4mm(=0.6Di)のコルゲート加工を施し
た。
The molten steel ingots of each steel were agglomerated and hot rolled to cold rolled into a thin plate having a thickness of 0.5 mm. Furthermore, using each thin plate as a material, an outer diameter of 25.4 by a continuous welding pipe production line
mm, an inner diameter of 24.4 mm (Di), and a wall thickness of 0.5 mm, a thin electric resistance welded steel pipe (flat pipe) was manufactured. Then, each flat tube was corrugated with a groove depth H of 1.44 mm (= 0.06 Di) and a pitch P of 14.4 mm (= 0.6 Di).

【0029】熱延板より採取した試験片にシャルピー試
験を実施した結果と、フラット管から採取した試験片を
海水中に6ケ月間浸漬して隙間腐食が発生するか否かを
調査した結果と、更にコルゲート加工で割れ疵が発生す
るか否かを調査した結果とを表3に示す。
A Charpy test was carried out on a test piece taken from a hot-rolled sheet, and a test piece taken from a flat tube was immersed in seawater for 6 months to investigate whether crevice corrosion occurred or not. Further, Table 3 shows the results of an examination as to whether or not cracks would occur during corrugation.

【0030】鋼A〜JはいずれもCrを25%以上含む
高Crフェライト系ステンレス鋼(スーパーステンレス
鋼)であるため、耐食性試験で隙間腐食は生じなかっ
た。そのうち鋼A〜EはC+Nが150ppm 以下のた
め、靱性が良好であり、コルゲート加工でも割れ疵が生
じなかった。しかし、C+Nが150ppm を超える鋼F
〜Jは、靱性が低くコルゲート加工で割れ疵を生じ、コ
ルゲート管の製造が不可能であった。
Since all of the steels A to J are high Cr ferritic stainless steels containing 25% or more of Cr (super stainless steel), crevice corrosion did not occur in the corrosion resistance test. Among them, Steels A to E had a C + N of 150 ppm or less, and thus had good toughness, and cracks and flaws did not occur even during corrugation. However, steel F with C + N exceeding 150ppm
Samples J to J had low toughness and cracked due to corrugation, making it impossible to manufacture corrugated pipes.

【0031】ちなみに、同強度を有する外径25.4m
m、肉厚1.0mmのアルミ黄銅管は、耐食性試験で隙間
腐食を生じた。
By the way, the outer diameter having the same strength is 25.4 m.
An aluminum brass tube having a thickness of 1.0 mm and a wall thickness of 1.0 mm caused crevice corrosion in the corrosion resistance test.

【0032】[0032]

【表2】 *本発明の範囲外[Table 2] * Outside the scope of the present invention

【0033】[0033]

【表3】 * ○腐食なし ×腐食あり ** ○割れなし ×割れあり[Table 3] * ○ No corrosion × Corrosion ** ○ ○ No cracks × Cracks

【0034】次に、鋼Aのフラット管に対して種々の条
件でコルゲート加工を行い、得られたコルゲート管の熱
伝達率を測定した。熱伝達率の測定では、図3の装置を
用い、管内に海水を通し、管外に水蒸気を通し、下式に
より熱貫流率を求めた。海水の流速は1.0m/s、蒸気
温度は35℃(真空)とした。 K=Q/S・(TO −Ti )/(Ts −T) K:熱貫流率(W/m2 K) Q:冷却水量(m3 /s) S:管表面積(m2 ) TO :海水出口温度(K) Ti :海水入口温度(K) Ts :蒸気温度(K) T:冷却水温度(K)
Next, the flat tube of the steel A was corrugated under various conditions, and the heat transfer coefficient of the obtained corrugated tube was measured. In the measurement of the heat transfer coefficient, the apparatus of FIG. 3 was used, seawater was passed through the pipe, steam was passed outside the pipe, and the heat transmission coefficient was determined by the following formula. The flow rate of seawater was 1.0 m / s, and the steam temperature was 35 ° C. (vacuum). K = Q / S · (T o −T i ) / (T s −T) K: Heat transmission coefficient (W / m 2 K) Q: Cooling water amount (m 3 / s) S: Pipe surface area (m 2 ) T O : Seawater outlet temperature (K) T i : Seawater inlet temperature (K) T s : Steam temperature (K) T: Cooling water temperature (K)

【0035】コルゲート加工を施さないフラット管の熱
貫流率は3200W/m2 Kであった。これを1とした
ときの各コルゲート管の熱貫流率の比を、コルゲート加
工条件と共に表4に示す。また、この比に溝の深さHお
よびピッチPが与えた影響を図4に示す。同強度のアル
ミ黄銅管(外径25.4mm、肉厚1.0mmのフラット
管)の熱貫流率は3630W/m2 K(比1.13)であ
る。
The heat transmission coefficient of the flat tube without corrugation was 3200 W / m 2 K. Table 4 shows the ratio of the heat transmission coefficient of each corrugated pipe when this is set to 1, together with the corrugating conditions. FIG. 4 shows the influence of the groove depth H and the pitch P on this ratio. An aluminum brass tube of the same strength (a flat tube having an outer diameter of 25.4 mm and a wall thickness of 1.0 mm) has a heat transmission coefficient of 3630 W / m 2 K (ratio 1.13).

【0036】鋼Aのコルゲート管a〜iはコルゲート加
工なしのフラット管より熱伝達率が高い。コルゲート管
の熱伝達率は、溝深さHが大きくなるほど、また溝ピッ
チPが小さくなるほど高くなり、溝深さHが0.01Di
以上、溝ピッチPが0.6D以下で同強度のアルミ黄銅管
(フラット管)を凌ぐ。
The corrugated pipes a to i of steel A have a higher heat transfer coefficient than the flat pipe without corrugation. The heat transfer coefficient of the corrugated pipe increases as the groove depth H increases and the groove pitch P decreases, and the groove depth H is 0.01 Di.
As mentioned above, it exceeds the aluminum brass tube (flat tube) of the same strength with the groove pitch P of 0.6D or less.

【0037】[0037]

【表4】 * 望ましい条件を外れる ** コルゲート加工なし(フラット管)[Table 4] * Desirable conditions are deviated ** No corrugated (flat tube)

【0038】[0038]

【発明の効果】以上に説明した通り、本発明の高耐食性
コルゲート管は、高Crフェライト系ステンレス鋼から
なるので、海水に対する耐食性が非常に良好である。し
かも、コルゲート加工が困難とされていたその高Cr鋼
の冷間加工性を改善して、コルゲート加工を施したの
で、熱伝達率も高い。従って、例えば発電プラントの復
水器のような管内を海水が流通する海水熱交換器の伝熱
管に適用して、熱伝達率を低下させることなくその寿命
を著しく延長することができる。
As described above, since the high corrosion-resistant corrugated pipe of the present invention is made of high Cr ferritic stainless steel, it has very good corrosion resistance against seawater. Moreover, since the cold workability of the high Cr steel, which has been considered difficult to corrugate, is improved and corrugated, the heat transfer coefficient is high. Therefore, it can be applied to a heat transfer tube of a seawater heat exchanger in which seawater flows, such as a condenser of a power plant, and its life can be remarkably extended without lowering the heat transfer coefficient.

【0039】特に、請求項2に記載の高耐食性コルゲー
ト管は、熱伝達率が良好とされている銅合金管よりも更
に高い熱伝達率を有する。
In particular, the high corrosion-resistant corrugated pipe according to claim 2 has a higher heat transfer coefficient than the copper alloy pipe which is considered to have a good heat transfer coefficient.

【図面の簡単な説明】[Brief description of drawings]

【図1】復水器の伝熱管での熱伝達の状況を示す説明図
である。
FIG. 1 is an explanatory diagram showing a state of heat transfer in a heat transfer tube of a condenser.

【図2】コルゲート管の形状を示す模式図である。FIG. 2 is a schematic diagram showing the shape of a corrugated tube.

【図3】熱伝達率測定装置の概略構成を示す模式図であ
る。
FIG. 3 is a schematic diagram showing a schematic configuration of a heat transfer coefficient measuring apparatus.

【図4】コルゲート管の溝深さおよび溝ピッチが熱伝達
率に及ぼす影響を示す図表である。
FIG. 4 is a chart showing the influence of the groove depth and groove pitch of the corrugated tube on the heat transfer coefficient.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比でCrを25%以上含み、(C+
N)を150ppm 以下に制限した高Crフェライト系ス
テンレス鋼からなる管に、コルゲート加工により螺旋状
の溝を形成したことを特徴とする高耐食性コルゲート
管。
1. A weight ratio of Cr is 25% or more, and (C +
A highly corrosion-resistant corrugated pipe, characterized in that a spiral groove is formed by corrugating in a pipe made of high Cr ferritic stainless steel with N) limited to 150 ppm or less.
【請求項2】 コルゲート加工を受けていない山部の管
内径をDiとするとき、溝深さHが0.01×Di以上で
あり、溝ピッチPが0.6×Di以下であることを特徴と
する請求項1に記載の高耐食性コルゲート管。
2. The groove depth H is 0.01 × Di or more, and the groove pitch P is 0.6 × Di or less, where Di is the inner diameter of the corrugated pipe. The highly corrosion-resistant corrugated pipe according to claim 1.
JP28296894A 1994-10-21 1994-10-21 High anti-corrosion type corrugated pipe Pending JPH08121991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28296894A JPH08121991A (en) 1994-10-21 1994-10-21 High anti-corrosion type corrugated pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28296894A JPH08121991A (en) 1994-10-21 1994-10-21 High anti-corrosion type corrugated pipe

Publications (1)

Publication Number Publication Date
JPH08121991A true JPH08121991A (en) 1996-05-17

Family

ID=17659471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28296894A Pending JPH08121991A (en) 1994-10-21 1994-10-21 High anti-corrosion type corrugated pipe

Country Status (1)

Country Link
JP (1) JPH08121991A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218486A (en) * 2006-02-15 2007-08-30 Hitachi Cable Ltd Heat transfer tube for heat exchanger, and heat exchanger using the same
JP2010255036A (en) * 2009-04-23 2010-11-11 Nisshin Steel Co Ltd Ferritic stainless steel for corrugate tube
JP2013166141A (en) * 2012-01-16 2013-08-29 Sasakura Engineering Co Ltd Vacuum evaporation type fresh water generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218486A (en) * 2006-02-15 2007-08-30 Hitachi Cable Ltd Heat transfer tube for heat exchanger, and heat exchanger using the same
JP2010255036A (en) * 2009-04-23 2010-11-11 Nisshin Steel Co Ltd Ferritic stainless steel for corrugate tube
JP2013166141A (en) * 2012-01-16 2013-08-29 Sasakura Engineering Co Ltd Vacuum evaporation type fresh water generator
JP2016193437A (en) * 2012-01-16 2016-11-17 株式会社ササクラ Vacuum evaporation type fresh water generator
TWI617342B (en) * 2012-01-16 2018-03-11 Sasakura Engineering Co Ltd Vacuum evaporation water generator
JP2018114501A (en) * 2012-01-16 2018-07-26 株式会社ササクラ Vacuum evaporation type fresh water generator

Similar Documents

Publication Publication Date Title
TWI531665B (en) Ferritic stainless steel having excellent oxidation resistance
JP4007241B2 (en) Austenitic stainless steel excellent in high-temperature strength and corrosion resistance, heat-resistant pressure-resistant member made of this steel, and manufacturing method thereof
JPS5831383B2 (en) Fin material for aluminum alloy heat exchanger and its manufacturing method
EP0834580A1 (en) Alloy having high corrosion resistance in environment of high corrosiveness, steel pipe of the same alloy and method of manufacturing the same steel pipe
EP0819775B1 (en) A nickel-based alloy excellent in corrosion resistance and workability
CN109563597A (en) Ferrite-group stainless steel
CN100497705C (en) High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof
CN111989417A (en) Duplex stainless steel clad steel sheet and method for manufacturing same
JP5978834B2 (en) Steel material with excellent alcohol corrosion resistance
KR102442836B1 (en) Ferritic stainless steel with excellent salt and corrosion resistance
WO2011059030A1 (en) Duplex stainless steel having excellent alkali resistance
WO1999009231A1 (en) Austenitic stainless steel excellent in resistance to sulfuric acid corrosion and workability
CN108884540B (en) Austenitic stainless steel and method for producing same
JPH0693389A (en) High si stainless steel excellent in corrosion resistance and ductility-toughness and its production
JPH08121991A (en) High anti-corrosion type corrugated pipe
CN110669988A (en) Ferritic stainless steel for nuclear power heat exchanger and preparation method thereof
JP2020033601A (en) Seamless steel pipe
JP4457492B2 (en) Stainless steel with excellent workability and weldability
JP2896077B2 (en) Ferrite stainless steel with excellent high-temperature oxidation resistance and scale adhesion
JP3705391B2 (en) Nb-containing ferritic stainless steel with excellent low temperature toughness of hot-rolled sheet
JP2643709B2 (en) High corrosion resistant alloy for boiler heat transfer tubes
JPH09296248A (en) High strength chromium-molybdenum-tungsten steel
JP3177555B2 (en) Method for producing stainless steel seamless steel pipe containing high Si with excellent corrosion resistance and ductility
JPH04365838A (en) Ferritic heat resisting steel excellent in hot workability and strength at high temperature
JPH05195127A (en) Highly corrosion resistant alloy for heat exchanger tube of boiler