JPH08119766A - Porous ceramic sintered compact and its production - Google Patents

Porous ceramic sintered compact and its production

Info

Publication number
JPH08119766A
JPH08119766A JP6287400A JP28740094A JPH08119766A JP H08119766 A JPH08119766 A JP H08119766A JP 6287400 A JP6287400 A JP 6287400A JP 28740094 A JP28740094 A JP 28740094A JP H08119766 A JPH08119766 A JP H08119766A
Authority
JP
Japan
Prior art keywords
waste catalyst
binder
catalytic cracking
porous ceramic
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6287400A
Other languages
Japanese (ja)
Inventor
Osamu Yamase
修 山瀬
Yasuaki Tsukada
安明 塚田
Mitsuo Iguchi
允生 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP6287400A priority Critical patent/JPH08119766A/en
Publication of JPH08119766A publication Critical patent/JPH08119766A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1324Recycled material, e.g. tile dust, stone waste, spent refractory material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To obtain a porous ceramic sintered compact excellent in chemical durability, heat resistance and rigidity, etc., by selecting sintered compact of a composition containing each prescribed amount of a waste catalyst which was used for fluidized bed catalytic cracking and a binder. CONSTITUTION: A sintered compact of a composition containing 20-90wt.% of a waste catalyst (e.g. silica-alumina waste catalyst) which was used for fluidized bed catalytic cracking, 10-80 pts.wt. of a binder (e.g. kibushi powder soil) and as necessary, 5-25wt.% of a sintering accelerator (e.g. limestone) are selected. The sintered compact is obtained by forming a mixture obtained by mixing a waste catalyst for fluidized bed catalytic cracking, as necessary, previously calcined at 900-1450 deg.C with a binder and water, drying the formed material and baking the formed material at 1000-1500 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、産業廃棄物である流動
接触分解廃触媒を有効利用した建材、構造材、耐熱材、
防音材などに好適な多孔質陶磁器焼結体に関する。
TECHNICAL FIELD The present invention relates to a building material, a structural material, a heat-resistant material, which effectively utilizes a fluid catalytic cracking waste catalyst which is an industrial waste.
The present invention relates to a porous ceramic sinter that is suitable as a soundproof material.

【0002】[0002]

【従来の技術】従来の多孔質陶磁器焼結体は骨格部分を
形成する骨材粒子とそれをつなぐ結合材とから構成され
ている。一般には、長石、陶石、硅石等の骨材粒子を主
原料に、これに粘土等の結合剤を加え、必要に応じて、
焼結促進剤として石灰質を更にはセルロース類、ポリビ
ニール、高級アルコール、ワックス、樹脂等のバインダ
ー成分、およびグリセリン、ステアリン酸エマルジョン
等の保水、潤滑剤等を加え、成形、乾燥、焼結して多孔
質陶磁器焼結体としている。
2. Description of the Related Art A conventional porous ceramic sinter is composed of aggregate particles forming a skeleton and a binder connecting them. Generally, aggregate particles such as feldspar, porcelain stone, and silica are used as a main raw material, and a binder such as clay is added to this as a raw material.
As a sintering accelerator, calcareous is further added with cellulose, polyvinyl, higher alcohol, wax, a binder component such as resin, water retention such as glycerin and stearic acid emulsion, a lubricant, and the like, followed by molding, drying and sintering. It is made of porous ceramic sinter.

【0003】多孔質陶磁器焼結体の製造工程は一般のセ
ラミックス製造工程と類似している。すなわち、先ず、
主原料である、長石、陶石、硅石、セルベン等の骨材お
よび粘土、石灰石等の結合材をそれぞれ別々に粉砕、乾
燥後、用途に応じ粒度を分級する。分級された各々の原
料は目的、用途に応じた比率で、混合、乾燥し、解砕さ
れる。ついでバインダー、保水剤、または必要に応じ発
泡剤が添加され混練される。次いで、押出成形法、プレ
ス成形法、鋳込み成形法等により成形され、乾燥、焼成
して多孔質陶磁器焼結体を得ている。
The manufacturing process of the porous ceramic sinter is similar to the general ceramic manufacturing process. That is, first,
The main raw materials such as feldspar, porcelain stone, silica stone, cerben and the like and binder such as clay and limestone are crushed separately and dried, and then the particle size is classified according to the application. The respective classified raw materials are mixed, dried and crushed at a ratio according to the purpose and application. Then, a binder, a water retention agent, or a foaming agent as needed is added and kneaded. Then, it is molded by an extrusion molding method, a press molding method, a casting molding method or the like, dried and fired to obtain a porous ceramic sinter.

【0004】この際、細孔構造を制御するために骨材粒
子の形状や平均粒子径、粒子径分布、結合材の種類及び
添加量に特に注意が払われる。
At this time, particular attention is paid to the shape and average particle size of the aggregate particles, the particle size distribution, the type of binder and the amount added in order to control the pore structure.

【0005】まず、好ましい多孔質陶磁器の骨材に要求
される性状を解析すると、 (1)耐熱性と耐食性の優れていること (2)粒形が、球状に近いこと (3)所定粒度範囲に造粒されていること などが要求され、これらの条件を満足するため、原料の
調製過程は非常に複雑になっており、その対応策などが
強く求められている。
First, the properties required for the aggregate of the preferred porous ceramics are analyzed. (1) The heat resistance and the corrosion resistance are excellent. (2) The grain shape is close to spherical. (3) The predetermined grain size range. In order to satisfy these conditions, the raw material preparation process is extremely complicated, and countermeasures against it are strongly required.

【0006】一方、石油精製工程である接触分解装置に
使用されたアルミナ−シリカ、ゼオライト等の廃触媒
は、一部セメントのフィラーとして使用される以外は、
その大部分が産業廃棄物として有料で埋没処理されてい
る。試みに、接触分解装置から排出される廃触媒の量を
見ると真空軽油を処理する装置では、30,000バー
レル/日の処理量に対し、1トン/日、常圧蒸留残渣を
処理する50,000バーレル/日の装置では13トン
/日という莫大な量に達する。しかも、これは一製油所
の1例であって全国の製油所に存在する装置からの合計
の廃触媒量を見れば驚異に値する量である。したがっ
て、この廃触媒の新しい用途を提供することは緊急の課
題となっている。
On the other hand, the waste catalysts such as alumina-silica and zeolite used in the catalytic cracking unit in the petroleum refining process are partially used as fillers for cement,
Most of them are disposed of as industrial waste for a fee. Looking at the amount of waste catalyst discharged from the catalytic cracking unit in an attempt, an apparatus for treating vacuum gas oil treats 1 ton / day of atmospheric distillation residue with respect to the throughput of 30,000 barrels / day. With a 1,000 barrel / day machine, it reaches a huge amount of 13 tons / day. Moreover, this is an example of one refinery, and it is a surprising amount when the total amount of waste catalyst from the devices existing in refineries nationwide is seen. Therefore, providing new uses for this spent catalyst has become an urgent task.

【0007】流動接触分解触媒の新品の段階における組
成は、シリカ−アルミナの混合物あるいはアルミナをマ
トリックスとしたゼオライト等であり、一般にこれらの
前駆体(ゲル状物)をスプレードライニング方法により
粒状としたものであって、その比表面積は200〜30
0m2/g以上、平均粒子径は80〜100μのもので
ある。この新触媒は接触分解装置内で反応に関与した後
再生されるという循環をくり返し、分解活性が低下した
段階で廃触媒として装置外に排出されるが、この時の廃
触媒は比表面積80〜100m2/g、平均粒子径は6
0μ前後に変化している。触媒の比表面積の減少は、装
置系内で触媒表面上に堆積したカーボンを680〜77
0℃で燃焼、除去して再生されるため、その時の燃焼温
度により触媒組成物がシンタリングを起こすためによる
ものである。また、触媒粒子径の減少はシンタリングに
よる縮みと、装置系内を流動循環する際、粒子間相互の
接触により摩耗するためである。
The composition of the fluid catalytic cracking catalyst in a new stage is a mixture of silica-alumina or zeolite having alumina as a matrix. Generally, these precursors (gel-like substances) are granulated by a spray drying method. The specific surface area is 200 to 30
The average particle size is 0 m 2 / g or more and the average particle size is 80 to 100 μm. This new catalyst repeats the cycle of being involved in the reaction and then being regenerated in the catalytic cracking apparatus, and is discharged as a waste catalyst to the outside of the apparatus when the decomposition activity is lowered. 100 m 2 / g, average particle size is 6
It changes to around 0μ. The reduction of the specific surface area of the catalyst is to reduce the carbon deposited on the surface of the catalyst in the device system from 680 to 77.
This is because the catalyst composition causes sintering due to the combustion temperature at that time, because the catalyst composition is burned and removed at 0 ° C. to be regenerated. Further, the decrease in the catalyst particle size is due to shrinkage due to sintering and abrasion due to mutual contact between particles during fluid circulation in the apparatus system.

【0008】ところで本発明者は、これらの廃触媒の性
質が、不思議なことに前述の多孔質陶磁器焼結体の骨材
として要求されている厳しい(1)〜(3)の条件を良
く満していることに気が付いた。すなわち、多孔質陶磁
器焼結体の骨材に適したアルミナ−シリカあるいはアル
ミナをマトリックスとするゼオライトなどはいずれの廃
触媒においても耐熱性を示すシリカが含有されているこ
と、又耐食性に関しては、アルミナが含有されているこ
と、およびその廃触媒の形状は、球形を有し、その粒度
は平均粒子径が40〜70μの範囲にあり粒子径が10
〜110μの間に分布し、更に触媒の再生処理により廃
触媒は680〜770℃の熱を受けてシンタリングさ
れ、その密度が増加している(このことはまた焼結時に
寸法安定性が良好であることを意味している)。したが
って、これら廃触媒は、多孔質陶磁器を製造するうえ
で、何ら手を加えるまでもなく、好ましい要件を具備し
ている。
The inventor of the present invention, mysteriously, satisfies the strict conditions (1) to (3) required for the aggregate of the above-mentioned porous ceramic porcelain strangely. I realized that I was doing it. That is, alumina-silica suitable for the aggregate of the porous ceramics sintered body or zeolite having alumina as a matrix contains silica showing heat resistance in any of the waste catalysts, and the corrosion resistance is Is contained, and the shape of the spent catalyst has a spherical shape, and the particle size thereof is in the range of 40 to 70 μm as the average particle size and 10 as the particle size.
˜110 μm, and the catalyst is regenerated and the waste catalyst is sintered by receiving heat of 680 to 770 ° C. and its density is increased. (This also shows good dimensional stability during sintering. Is meant). Therefore, these waste catalysts satisfy the preferable requirements without any modification in manufacturing the porous ceramics.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、流動
接触分解の廃触媒を利用した新規な多孔質陶磁器焼結体
とその製法を提供する点にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a novel porous ceramic sinter using a waste catalyst of fluid catalytic cracking and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】本発明は、 (a)流動接触分解廃触媒20〜90重量%、好ましく
は、50〜80重量% (b)結合剤10〜80重量%、好ましくは、20〜5
0重量%とを含有する組成物の焼結体であることを特徴
とする多孔質陶磁器焼結体に関する。
The present invention provides (a) 20 to 90% by weight of fluid catalytic cracking waste catalyst, preferably 50 to 80% by weight, and (b) 10 to 80% by weight of binder, preferably 20. ~ 5
It relates to a porous ceramic sinter, which is a sintered body of a composition containing 0% by weight.

【0011】前記結合剤としては、無機質結合剤であ
り、代表的なものが粘土であり、陶磁器用粘土が好まし
い。これらの粘土は75μ以下に分級して使用すること
が好ましい。粘土としては信楽すいひ粘土、木節粉末
土、黄の瀬白土、萩土、磁器土、栗田土およびそれらの
混合粘土などを挙げることができる。
The binder is an inorganic binder, a typical one is clay, and clay for ceramics is preferable. It is preferable to classify these clays to 75 μ or less before use. Examples of the clay include Shigaraki Suihi clay, Kibushi powder soil, Huangose clay, Hagi earth, porcelain earth, Kurita earth and mixed clays thereof.

【0012】本発明においては、前記結合剤に、焼結促
進剤(融解剤)を併用することが好ましい。焼結促進剤
の例としては、石灰石、カオリン、マグネサイト、木
灰、酢灰、重炭酸ソーダ、炭酸カルシウム、炭酸マグネ
シウム、骨灰、ソーダ灰およびそれらの混合物を挙げる
ことができる。また、これらの焼結促進剤(融解剤)も
75μ以下に分級して使用することが好ましい。
In the present invention, it is preferable to use a sintering accelerator (melting agent) in combination with the binder. Examples of sintering accelerators include limestone, kaolin, magnesite, wood ash, vinegar ash, sodium bicarbonate, calcium carbonate, magnesium carbonate, bone ash, soda ash and mixtures thereof. It is also preferable to classify these sintering accelerators (melting agents) to 75 μ or less before use.

【0013】この焼結促進剤(融解剤)を配合する場合
は、 (a)流動接触分解廃触媒20〜90重量%、好ましく
は50〜80重量% (b)結合剤10〜80重量%、好ましくは20〜50
重量% (c)焼結促進剤(融解剤)3〜25重量%、好ましく
は6〜15重量%である。
When this sintering accelerator (melting agent) is blended, (a) 20 to 90% by weight of fluid catalytic cracking waste catalyst, preferably 50 to 80% by weight, (b) 10 to 80% by weight of binder, Preferably 20-50
% By weight (c) Sintering accelerator (melting agent) 3 to 25% by weight, preferably 6 to 15% by weight.

【0014】前記接触分解廃触媒は分級することもでき
るが、分級しなくても充分使用できる粒度分布を有して
いる。
The catalytic cracking waste catalyst can be classified, but has a particle size distribution that can be sufficiently used without classification.

【0015】多孔質陶磁器焼結体の製法について以下に
説明する。まず、所定量の廃触媒を分級または分級する
ことなしに結合剤および必要に応じて焼結促進剤を添加
し、撹拌混合機により十分混合する。次いで、40〜6
0wt%の範囲で水を加え混練する。次に型枠に取り、
常圧またはプレスにより圧力50kg/cm2以下また
はそれ以上の圧力で加圧成型したり、押出成形などによ
り所定の形状に成形する。
The method for producing the porous ceramic sinter will be described below. First, a binder and, if necessary, a sintering accelerator are added without classifying or classifying a predetermined amount of waste catalyst, and they are sufficiently mixed by a stirring mixer. Then 40-6
Add water in the range of 0 wt% and knead. Next, take the formwork,
It is pressure-molded under normal pressure or a pressure of 50 kg / cm 2 or less or higher, or is molded into a predetermined shape by extrusion molding or the like.

【0016】成形後の試料は常温または真空乾燥し、次
いで、120℃で2〜5時間乾燥し、昇温プログラム付
の電気炉等を用い、1000〜1500℃の範囲、好ま
しくは1250〜1450℃の範囲で大気雰囲気下で2
〜5時間焼成して多孔質陶磁器焼結体を得る。
The sample after molding is dried at room temperature or vacuum and then at 120 ° C. for 2 to 5 hours, and the temperature is in the range of 1000 to 1500 ° C., preferably 1250 to 1450 ° C., using an electric furnace with a heating program. 2 in the atmosphere in the range of
It is fired for ~ 5 hours to obtain a porous ceramic sinter.

【0017】前記操作により成形された成形体は成形時
の粘土の量および含水量、また廃触媒の焼結による体積
変化から寸法が成形時より焼成後において10〜15%
減少する。しかし、この点は原料管理および焼結条件を
厳密に制御することで縮みの影響を充分制御することが
可能である。
The molded product molded by the above-mentioned operation has a size of 10 to 15% after baking from that at the time of molding because of the amount of clay and water content at the time of molding, and the volume change due to the sintering of the waste catalyst.
Decrease. However, in this respect, it is possible to sufficiently control the influence of shrinkage by strictly controlling the raw material management and the sintering conditions.

【0018】他方、このように成形時と焼成時の寸法変
化に関係する廃触媒の焼結による縮みを最小限にするた
め、予め廃触媒を電気炉等により大気雰囲気下で900
〜1450℃の範囲で2〜5時間仮焼することが好まし
い。これを骨材とした廃触媒をこのように仮焼すること
により、比表面積は0.1〜0.06m2/gとなり、
ほぼ幾何学的表面積に近くなる。真比重は2.3〜2.
5g/cm3、粒子の平均真球度は1.05〜1.25
である。分級された粒子において粒子径が大きくなるに
従って真球度が低下する傾向を示す。また、平均粒子径
は25〜60μmであり、通常10〜100μmの間に
おさまる程度の粒度分布を示す。
On the other hand, in order to minimize the shrinkage of the waste catalyst due to sintering, which is related to the dimensional changes during molding and firing, the waste catalyst is preliminarily stored in an electric furnace or the like in an atmosphere of 900 times.
It is preferable to perform calcination in the range of ˜1450 ° C. for 2 to 5 hours. By calcining the waste catalyst using this as an aggregate, the specific surface area becomes 0.1 to 0.06 m 2 / g,
It is close to the geometric surface area. True specific gravity is 2.3-2.
5 g / cm 3 , average sphericity of particles is 1.05 to 1.25
Is. In the classified particles, the sphericity tends to decrease as the particle size increases. The average particle size is 25 to 60 μm, and the particle size distribution is such that it is usually within the range of 10 to 100 μm.

【0019】このようにして予め仮焼した廃触媒を原料
として多孔質陶磁器焼結体を製造する方法について以下
に説明する。まず所定量の仮焼した廃触媒を分級または
分級することなしに粘土および必要に応じて焼結促進剤
を添加し、撹拌混合機により十分混合する。次いで前記
混合物に対し、40〜60wt%の範囲の水を加え混練
する。次に型枠に取り、常圧またはプレスにより加圧、
成形したり、押出成形などにより所定の形状に成形す
る。
A method for producing a porous ceramic sinter using the thus-preliminarily-calcined waste catalyst as a raw material will be described below. First, a predetermined amount of the calcined waste catalyst is added without adding classification or classification, and clay and a sintering accelerator are added, and they are sufficiently mixed with a stirring mixer. Next, 40 to 60 wt% of water is added to the mixture and kneaded. Next, put it in a mold and press it with normal pressure or press,
It is formed into a predetermined shape by molding or extrusion molding.

【0020】成形後の試料は常温又は真空乾燥し、次い
で、120℃で2〜5時間乾燥し、昇温プログラム付き
の電気炉等を用い1000〜1500℃の範囲、好まし
くは1250〜1450℃の範囲で大気雰囲気下で2〜
5時間焼成して多孔質陶磁器焼結体を得る。
The molded sample is dried at room temperature or vacuum, and then dried at 120 ° C. for 2 to 5 hours, and the temperature is in the range of 1000 to 1500 ° C., preferably 1250 to 1450 ° C., using an electric furnace equipped with a heating program. 2 to 2 under atmospheric atmosphere
It is fired for 5 hours to obtain a porous ceramic sinter.

【0021】この方法により得られた多孔質陶磁器焼結
体は廃触媒を直接骨材として用いた場合に比較して成形
体乾燥時においては、ほとんど体積変化は見られず、ま
た焼結による体積変化から寸法成型性に及ぼす影響は1
〜10%の範囲内におさまり、好ましい結果を示す。
The porous ceramic sinter obtained by this method shows almost no change in volume when the compact is dried, as compared with the case where the waste catalyst is directly used as an aggregate, and the volume due to sintering Effect of change on dimensional formability is 1
It falls within the range of -10% and shows favorable results.

【0022】本発明により得られた多孔質陶磁器焼結体
の見掛け比重は、1.5〜2.5g/cm3の範囲にあ
り、マーキュリーポロンメータにより測定された気孔率
は10〜40%であり、力学的万能試験機(島津製作所
製オートグラフ)による曲げ強度は130〜300kg
f/cm2を示した。
The apparent specific gravity of the porous ceramic sinter obtained according to the present invention is in the range of 1.5 to 2.5 g / cm 3 , and the porosity measured by a Mercury polon meter is 10 to 40%. Yes, bending strength by mechanical universal testing machine (Shimadzu Autograph) is 130-300kg
It showed f / cm 2 .

【0023】製油所の灯油、軽油、重質油の水素化脱硫
反応に用いられたNiO−MoO3−γAl23,Co
O−MoO3−γAl23系廃触媒のように担体として
流動接触分解触媒と同様あるいは、類似の組成をもちこ
れにNi,CoあるいはMoを担持した触媒の廃触媒も
必要に応じて、前記廃触媒に混合して利用できる。この
場合、その粒度、粒度分布、寸法安定性についての配慮
は、流動接触分解廃触媒に対するのと同様である。Ni
−Mo系廃触媒を混合したものはうぐいす色に、またC
o−Mo系廃触媒を混合したものは青色に発色するが、
添加されたCoの濃度により発色の色帯は著しく変化す
る。更に前記脱硫系廃触媒には処理する原料油の種類に
より原料中に存在する有機金属化合物、すなわちバナジ
ルポルフィリン、ニッケルポルフィリンなどの分解によ
り脱金属されたバナジウム、ニッケル等が触媒に堆積し
ているが、バナジウムは5酸化バナジウムとして焼結時
に融解剤や結晶化剤として有効に作用し、活性金属種で
あるMoO3も同様の作用を有する。一方、前述の流動
床接触分解装置からの廃触媒についても処理原料油中に
有機金属化合物が含まれる場合、その有機金属による触
媒被毒を防止するため、パッシベーターとして五酸化ア
ンチモンが数ppmのオーダーで添加されることもある
が、これも融解剤、結晶化剤として有利に作用する。
The kerosene refineries, gas oil, NiO-MoO used in hydrodesulfurization of heavy oil 3 -γAl 2 O 3, Co
If necessary, a waste catalyst of a catalyst having the same or similar composition as that of a fluid catalytic cracking catalyst such as an O-MoO 3 -γAl 2 O 3 -based waste catalyst and having Ni, Co or Mo supported thereon may be used. It can be used by mixing with the waste catalyst. In this case, the considerations regarding the particle size, particle size distribution, and dimensional stability are the same as for the fluid catalytic cracking waste catalyst. Ni
-A mixture of Mo-based waste catalyst has a yellowish color and C
A mixture of o-Mo waste catalysts develops blue color,
The color band of the color change remarkably changes depending on the concentration of Co added. Further, in the desulfurization system waste catalyst, organometallic compounds existing in the raw material depending on the type of raw material oil to be treated, namely vanadium porphyrin, vanadium demetalized by decomposition of nickel porphyrin, nickel, etc. are deposited on the catalyst. As vanadium pentoxide, vanadium effectively acts as a melting agent or a crystallization agent during sintering, and MoO 3 which is an active metal species also has the same action. On the other hand, regarding the waste catalyst from the fluidized bed catalytic cracker described above, when an organometallic compound is contained in the treated feed oil, in order to prevent catalyst poisoning by the organometallic, antimony pentoxide of several ppm is used as a passivator. It may be added in the order, but it also acts advantageously as a melting agent and a crystallization agent.

【0024】[0024]

【実施例】以下に実施例により本発明を詳細に説明する
が、本発明はこれに限定されるものではない。
The present invention is described in detail below with reference to examples, but the present invention is not limited thereto.

【0025】実施例1 流動接触分解装置に使用されたシリカ−アルミナ廃触媒
を骨材とした。分級されないシリカ−アルミナ廃触媒と
75μ以下の木節粉末土を重量比で6:4に秤量し、混
合撹拌機で20分間混合し、純水60wt%を加え、混
練機により30分間混練した。それを縦100mm、横
50mm、深さ10mmのステンレス製型枠に入れ、常
圧で成型した。成型後、一昼夜常温乾燥し、更に120
℃で3時間乾燥後電気炉により200℃/1時間の速度
で昇温し、1350℃で3時間焼成、焼結した。常温
に、冷却後、見掛け比重、気孔率、収縮率、曲げ強度を
測定した。その結果は以下のとおりであった。 見掛け比重 2.12 気孔率(%) 34.4 収縮率(%)* 16.5 曲げ強度(kgf/cm2) 225 尚、亀裂や変形は認められなかった。 *成形時の寸法が焼成後にどの程度縮んだかを示すもの
である。
Example 1 The silica-alumina waste catalyst used in the fluid catalytic cracking apparatus was used as an aggregate. Unclassified silica-alumina waste catalyst and Kibushi powder soil of 75 μm or less were weighed at a weight ratio of 6: 4, mixed for 20 minutes with a mixing stirrer, added with 60 wt% of pure water, and kneaded for 30 minutes with a kneader. It was placed in a stainless steel mold having a length of 100 mm, a width of 50 mm, and a depth of 10 mm, and molded under normal pressure. After molding, dry at room temperature for one day and then 120
After drying at ℃ for 3 hours, the temperature was raised in an electric furnace at a rate of 200 ℃ / 1 hour, and baked and sintered at 1350 ℃ for 3 hours. After cooling to room temperature, the apparent specific gravity, porosity, shrinkage, and bending strength were measured. The results were as follows. Apparent specific gravity 2.12 Porosity (%) 34.4 Shrinkage rate (%) * 16.5 Bending strength (kgf / cm 2 ) 225 No cracking or deformation was observed. * Indicates how much the dimensions during molding shrink after firing.

【0026】実施例2 流動接触分解装置に使用されたアルミナをマトリックス
とするUSYゼオライト廃触媒を骨材とした。75μ以
下に分級された廃触媒と75μ以下の木節粉末土を重量
比で6:4に秤量し、混合撹拌機で20分間混合し、純
水50wt%を加え、混練機により30分間混練した。
それを縦100mm,横50mm,深さ50mmのステ
ンレス製型枠に入れ、油圧プレスにより10kg/cm2
で厚さ10mmに成型した。型枠から取り出した成型品
は、常温で一昼夜自然乾燥し、その後更に120℃で3
時間乾燥した。次いで、電気炉により200℃/1時間
の速度で昇温し、1350℃で3時間焼成、焼結した。
常温に、冷却後、見掛け比重、気孔率、収縮率および、
曲げ強度を測定した。その結果は以下のとおりであっ
た。 見掛け比重 2.21 気孔率(%) 31.7 収縮率(%) 10.6 曲げ強度(kgf/cm2) 210 尚、製造された多孔質陶磁器焼結体において亀裂およ
び、変形は認められなかった。
Example 2 A USY zeolite waste catalyst having an alumina matrix used in a fluid catalytic cracking apparatus was used as an aggregate. Waste catalyst classified to 75μ or less and Kibushi powder soil of 75μ or less were weighed in a weight ratio of 6: 4, mixed for 20 minutes by a mixing stirrer, added with 50 wt% of pure water, and kneaded for 30 minutes by a kneader. .
It is placed in a stainless steel mold with a length of 100 mm, a width of 50 mm, and a depth of 50 mm, and is 10 kg / cm 2 by a hydraulic press.
Was molded to a thickness of 10 mm. The molded product taken out of the mold is naturally dried at room temperature for one day and then at 120 ° C for 3 days.
Dried for hours. Then, the temperature was raised in an electric furnace at a rate of 200 ° C./1 hour, and the mixture was baked and sintered at 1350 ° C. for 3 hours.
After cooling to room temperature, apparent specific gravity, porosity, shrinkage and
The bending strength was measured. The results were as follows. Apparent specific gravity 2.21 Porosity (%) 31.7 Shrinkage (%) 10.6 Bending strength (kgf / cm 2 ) 210 It should be noted that cracks and deformation were not observed in the manufactured porous ceramic sinter. It was

【0027】実施例3 実施例2で使用したゼオライト廃触媒を骨材とした。こ
の骨材を分級することなしに75μ以下の木節粉末土、
および75μ以下に分級された石灰石とをそれぞれ重量
比で60%、35%、5%の割合に秤量し、混合撹拌機
によりドライボックス中で20分間混合し、純水50w
t%を加え、混練機により30分間混練した。これを縦
100mm,横50mm,深さ50mmのステンレス製
型枠に入れ、油圧プレスにより30kg/cm2で厚さ1
0mmに成形した。型枠から取り出された成形品は常温
で一昼夜、自然乾燥し、その後更に120℃で3時間、
乾燥器中で乾燥した。次いで、電気炉により大気雰囲気
下で1350℃で3時間焼成、焼結した。常温に冷却
後、見掛け比重、気孔率、収縮率および曲げ強度を測定
した。その結果は以下のとおりであった。 見掛け比重 2.27 気孔率(%) 30.8 収縮率(%) 9.7 曲げ強度(kgf/cm2) 189 尚、製造された多孔質陶磁器焼結体において亀裂およ
び、変形は認められなかった。
Example 3 The waste zeolite catalyst used in Example 2 was used as an aggregate. Without sieving this aggregate, the grain soil of less than 75μ,
And limestone classified to 75μ or less are weighed at a weight ratio of 60%, 35%, and 5%, and mixed in a dry box for 20 minutes by a mixing stirrer, and pure water 50w
t% was added, and the mixture was kneaded for 30 minutes with a kneader. This is put in a stainless steel mold having a length of 100 mm, a width of 50 mm, and a depth of 50 mm, and the thickness is 1 at 30 kg / cm 2 by a hydraulic press.
It was molded to 0 mm. The molded product taken out from the mold is air dried at room temperature for one day and then at 120 ° C for 3 hours.
Dried in oven. Then, it was fired and sintered at 1350 ° C. for 3 hours in an air atmosphere in an electric furnace. After cooling to room temperature, apparent specific gravity, porosity, shrinkage and bending strength were measured. The results were as follows. Apparent specific gravity 2.27 Porosity (%) 30.8 Shrinkage (%) 9.7 Bending strength (kgf / cm 2 ) 189 No cracking or deformation was observed in the manufactured porous ceramic sinter. It was

【0028】実施例4 実施例1で使用したシリカ−アルミナ廃触媒を骨材とし
た。まず最初に所定量の廃触媒を磁製ルツボに取り、1
20℃で2時間乾燥後電気炉により200℃/1時間の
速度で昇温し、大気雰囲気下で1200℃、4時間焼成
した。常温に冷却後、それと分級し、60μ以下のもの
を骨材とした。このように前処理された廃触媒と75μ
以下の木節粉末土および75μ以下の石灰石とをそれぞ
れ重量比で60%、35%、5%の割合に秤量し、ドラ
イボックス中で混合撹拌機により20分間混合し、次い
で、純水47wt%を加え、混練機により30分間混練
した。それを縦100mm,横50mm,深さ50mm
のステンレス製型枠に入れ、油圧プレスにより50kg
/cm2で厚さ10mmに成型した。型枠から取り出され
た成形品は常温で、一昼夜乾燥し、更に120℃で3時
間乾燥した。次いで電気炉により大気雰囲気下で145
0℃で3時間焼成、焼結した。常温に、冷却後、見掛け
比重、気孔率、収縮率および曲げ強度を測定した。その
結果は以下のとおりであった。 見掛け比重 2.34 気孔率(%) 27.3 収縮率(%) 5.6 曲げ強度(kgf/cm2) 189 尚、亀裂、変形は認められなかった。
Example 4 The silica-alumina waste catalyst used in Example 1 was used as an aggregate. First, put a certain amount of waste catalyst in a porcelain crucible, and
After drying at 20 ° C. for 2 hours, the temperature was raised in an electric furnace at a rate of 200 ° C./1 hour, and firing was performed at 1200 ° C. for 4 hours in the air atmosphere. After cooling to room temperature, it was classified and the aggregate having a size of 60 μm or less was used. The waste catalyst pretreated in this way and 75μ
The following Kibushi powder soil and limestone of 75μ or less were weighed in a weight ratio of 60%, 35% and 5%, and mixed in a dry box for 20 minutes by a mixing stirrer, and then pure water 47 wt% Was added and kneaded for 30 minutes with a kneader. Length 100mm, width 50mm, depth 50mm
50kg by hydraulic press
It was molded to a thickness of 10 mm at / cm 2 . The molded product taken out of the mold was dried at room temperature for a whole day and night, and further at 120 ° C. for 3 hours. Then, using an electric furnace, 145
It was baked and sintered at 0 ° C. for 3 hours. After cooling to room temperature, apparent specific gravity, porosity, shrinkage and bending strength were measured. The results were as follows. Apparent specific gravity 2.34 Porosity (%) 27.3 Shrinkage (%) 5.6 Bending strength (kgf / cm 2 ) 189 No cracking or deformation was observed.

【0029】実施例5 実施例2で使用したゼオライト廃触媒を骨材とした。ま
ず所定量の廃触媒を磁製ルツボに取り、120℃で2時
間乾燥後電気炉により200℃/1時間の速度で昇温
し、大気雰囲気下で1250℃、4時間焼成した。常温
に冷却後、それを分級することなしに、75μ以下の粒
度に分級された黄の瀬白土および75μ以下に分級され
た石灰石を重量比でそれぞれ、65%、30%、5%の
割合に秤量し、ドライボックス中で混合撹拌機により2
0分間混合し、次いで、純水45wt%を加え、混練機
により30分間混練した。それを縦100mm,横50
mm,深さ50mmのステンレス製型枠に入れ、油圧プ
レスにより50kg/cm2で厚さ10mmに成形した。
型枠から取り出された成形品は常温で、一昼夜、乾燥
し、更に120℃で3時間乾燥した。次いで電気炉によ
り大気雰囲気下で1450℃、4時間焼成、焼結した。
常温に冷却後、見掛け比重、気孔率、収縮率および曲げ
強度を測定した。その結果は以下のとおりであった。 見掛け比重 2.36 気孔率(%) 25.4 収縮率(%) 4.8 曲げ強度(kgf/cm2) 236 尚、焼結体において亀裂および変形は見られなかった。
Example 5 The zeolite waste catalyst used in Example 2 was used as an aggregate. First, a predetermined amount of waste catalyst was placed in a porcelain crucible, dried at 120 ° C. for 2 hours, heated in an electric furnace at a rate of 200 ° C./1 hour, and calcined at 1250 ° C. for 4 hours in an air atmosphere. After cooling to room temperature, without classifying it, yellow sand clay classified to a particle size of 75μ or less and limestone classified to a particle size of 75μ or less are reduced to 65%, 30%, or 5% by weight, respectively. Weigh and mix 2 in a dry box with a mixer.
After mixing for 0 minutes, 45 wt% of pure water was added, and the mixture was kneaded for 30 minutes by a kneader. Length 100mm, width 50
mm and a depth of 50 mm, and placed in a stainless steel mold, and formed into a thickness of 10 mm with a hydraulic press at 50 kg / cm 2 .
The molded product taken out of the mold was dried at room temperature for a whole day and night, and further at 120 ° C. for 3 hours. Then, it was fired and sintered at 1450 ° C. for 4 hours in an electric atmosphere in an electric furnace.
After cooling to room temperature, apparent specific gravity, porosity, shrinkage and bending strength were measured. The results were as follows. Apparent specific gravity 2.36 Porosity (%) 25.4 Shrinkage rate (%) 4.8 Bending strength (kgf / cm 2 ) 236 No cracking or deformation was observed in the sintered body.

【0030】本実施例のそれぞれの焼結体の細孔分布は
マーキュリーポロンメーター(島津製作所製)により測
定した結果、いずれも細孔直径1μから10μの間に正
規分布するシャープな山型を示し、またその50%点の
細孔径は2.1〜3.5μの範囲にあった。
The pore distribution of each sintered body of this example was measured by a Mercury Polonometer (manufactured by Shimadzu Corporation), and as a result, all of them showed a sharp mountain shape which was normally distributed between the pore diameters of 1 μ to 10 μ. The pore size at the 50% point was in the range of 2.1 to 3.5μ.

【0031】以下に本発明の実施態様を列挙する。 1. (a)流動接触分解廃触媒20〜90重量%と (b)結合剤10〜80重量%とを含有する組成物の焼
結体であることを特徴とする多孔質陶磁器焼結体。 2. (a)流動接触分解廃触媒20〜90重量% (b)結合剤10〜80重量% (c)焼結促進剤5〜25重量%とを含有する組成物の
焼結体であることを特徴とする多孔質陶磁器。 3. 見掛け比重1.5〜2.5g/cm3、マーキュ
リーポロンメータにより測定された気孔率10〜40
%、力学的万能試験機(島津製作所製オートグラフ)に
よる曲げ強度130〜300kgf/cm2である前項
1または2記載の多孔質陶磁器焼結体。 4. Ni−Mo系廃触媒を含有させた前項1,2また
は3記載の多孔質陶磁器焼結体。 5. Co−Mo系廃触媒を含有させた前項1,2また
は3記載の多孔質陶磁器焼結体。 6. 流動接触分解廃触媒、結合剤および水とを含有す
る混合物を成形、乾燥後、1000〜1500℃で焼成
することを特徴とする多孔質陶磁器焼結体の製法。 7. 流動接触分解廃触媒を900〜1450℃であら
かじめ仮焼しておき、これを結合剤および水を混合して
得られた混合物を成形、乾燥後、1000〜1500℃
で焼成することを特徴とする多孔質陶磁器焼結体の製
法。
The embodiments of the present invention will be listed below. 1. A porous ceramic sinter which is a composition containing (a) 20 to 90% by weight of a fluid catalytic cracking waste catalyst and (b) 10 to 80% by weight of a binder. 2. It is a sintered body of a composition containing (a) fluid catalytic cracking waste catalyst 20 to 90% by weight (b) binder 10 to 80% by weight (c) sintering accelerator 5 to 25% by weight. And porous ceramics. 3. Apparent specific gravity 1.5 to 2.5 g / cm 3 , porosity 10 to 40 measured by Mercury polon meter
%, The porous ceramic sinter according to item 1 or 2, which has a bending strength of 130 to 300 kgf / cm 2 measured by a mechanical universal testing machine (Autograph manufactured by Shimadzu Corporation). 4. The porous ceramic sinter according to the above 1, 2, or 3, containing a Ni—Mo waste catalyst. 5. The porous ceramic sinter according to the above 1, 2, or 3, containing a Co—Mo based waste catalyst. 6. A method for producing a porous ceramic sinter, which comprises molding a mixture containing a fluidized catalytic cracking waste catalyst, a binder and water, drying and firing at 1000 to 1500 ° C. 7. The fluid catalytic cracking waste catalyst is preliminarily calcined at 900 to 1450 ° C, and a mixture obtained by mixing the binder and water is molded and dried, and then 1000 to 1500 ° C.
A method for producing a porous ceramic sinter, which is characterized by firing at.

【0032】[0032]

【効果】本発明により得られた焼結体は化学的耐久性、
耐熱性、剛性等に優れた性質を有するため、化学工業を
始め食品、医薬などの産業分野においても気体、液体等
のフィルター、触媒担体、吸着剤、吸音材、断熱剤、建
材等としての用途を有する。これにより、産業廃棄物が
有用な資源として再利用できる。さらに、本発明により
従来の骨材を使用する方法に較べて骨材の粒状に関する
選定作業、分級作業あるいは造粒工程などを大幅に短縮
できる。
[Effect] The sintered body obtained by the present invention has chemical durability,
Because it has excellent properties such as heat resistance and rigidity, it is used as a filter for gas, liquid, etc., catalyst carrier, adsorbent, sound absorbing material, heat insulating agent, building material, etc. in the industrial fields such as chemical industry as well as food and medicine. Have. This allows industrial waste to be reused as a useful resource. Further, according to the present invention, the selection work, the classification work, the granulation process and the like regarding the granularity of the aggregate can be significantly shortened as compared with the conventional method using the aggregate.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年2月14日[Submission date] February 14, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Name of item to be corrected] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】ところで本発明者は、これらの廃触媒の性
質が、不思議なことに前述の多孔質陶磁器焼結体の骨材
として要求されている厳しい(1)〜(3)の条件を良
く満していることに気が付いた。すなわち、多孔質陶磁
器焼結体の骨材に適したアルミナ−シリカあるいはアル
ミナをマトリックスとするゼオライトなどはいずれの廃
触媒においても耐熱性を示すシリカが含有されているこ
と、又耐食性に関しては、アルミナが含有されているこ
と、およびその廃触媒の形状は、球形を有し、その粒度
は平均粒子径が40〜70μの範囲にあり粒子径が10
〜110μの間に分布し、更に触媒の再生処理により廃
触媒は680〜770℃の熱を受けてシンタリングさ
れ、その密度が増加している(このことはまた焼結時に
寸法安定性が良好であることを意味している)。したが
って、これら廃触媒は、多孔質陶磁器焼結体を製造する
うえで、何ら手を加えるまでもなく、好ましい要件を具
備している。
The inventor of the present invention, mysteriously, satisfies the strict conditions (1) to (3) required for the aggregate of the above-mentioned porous ceramic porcelain strangely. I realized that I was doing it. That is, alumina-silica suitable for the aggregate of the porous ceramics sintered body or zeolite having alumina as a matrix contains silica showing heat resistance in any of the waste catalysts, and the corrosion resistance is Is contained, and the shape of the spent catalyst has a spherical shape, and the particle size thereof is in the range of 40 to 70 μm as the average particle size and 10 as the particle size.
˜110 μm, and the catalyst is regenerated and the waste catalyst is sintered by receiving heat of 680 to 770 ° C. and its density is increased. (This also shows good dimensional stability during sintering. Is meant). Therefore, these waste catalysts have preferable requirements without any modification in producing the porous ceramic sinter.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0031】以下に本発明の実施態様を列挙する。 1. (a)流動接触分解廃触媒20〜90重量%と (b)結合剤10〜80重量%とを含有する組成物の焼
結体であることを特徴とする多孔質陶磁器焼結体。 2. (a)流動接触分解廃触媒20〜90重量% (b)結合剤10〜80重量% (c)焼結促進剤5〜25重量%とを含有する組成物の
焼結体であることを特徴とする多孔質陶磁器焼結体。 3. 見掛け比重1.5〜2.5g/cm3、マーキュ
リーポロンメータにより測定された気孔率10〜40
%、力学的万能試験機(島津製作所製オートグラフ)に
よる曲げ強度130〜300kgf/cm2である前項
1または2記載の多孔質陶磁器焼結体。 4. Ni−Mo系廃触媒を含有させた前項1,2また
は3記載の多孔質陶磁器焼結体。 5. Co−Mo系廃触媒を含有させた前項1,2また
は3記載の多孔質陶磁器焼結体。 6. 流動接触分解廃触媒、結合剤および水とを含有す
る混合物を成形、乾燥後、1000〜1500℃で焼成
することを特徴とする多孔質陶磁器焼結体の製法。 7. 流動接触分解廃触媒を900〜1450℃であら
かじめ仮焼しておき、これを結合剤および水を混合して
得られた混合物を成形、乾燥後、1000〜1500℃
で焼成することを特徴とする多孔質陶磁器焼結体の製
法。
The embodiments of the present invention will be listed below. 1. A porous ceramic sinter which is a composition containing (a) 20 to 90% by weight of a fluid catalytic cracking waste catalyst and (b) 10 to 80% by weight of a binder. 2. It is a sintered body of a composition containing (a) fluid catalytic cracking waste catalyst 20 to 90% by weight (b) binder 10 to 80% by weight (c) sintering accelerator 5 to 25% by weight. Porous ceramic sinter. 3. Apparent specific gravity 1.5 to 2.5 g / cm 3 , porosity 10 to 40 measured by Mercury polon meter
%, The porous ceramic sinter according to item 1 or 2, which has a bending strength of 130 to 300 kgf / cm 2 measured by a mechanical universal testing machine (Autograph manufactured by Shimadzu Corporation). 4. The porous ceramic sinter according to the above 1, 2, or 3, containing a Ni—Mo waste catalyst. 5. The porous ceramic sinter according to the above 1, 2, or 3, containing a Co—Mo based waste catalyst. 6. A method for producing a porous ceramic sinter, which comprises molding a mixture containing a fluidized catalytic cracking waste catalyst, a binder and water, drying and firing at 1000 to 1500 ° C. 7. The fluid catalytic cracking waste catalyst is preliminarily calcined at 900 to 1450 ° C, and a mixture obtained by mixing the binder and water is molded and dried, and then 1000 to 1500 ° C.
A method for producing a porous ceramic sinter, which is characterized by firing at.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B09B 3/00 C04B 35/00 35/63 C04B 35/00 V 107 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B09B 3/00 C04B 35/00 35/63 C04B 35/00 V 107

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (a)流動接触分解廃触媒20〜90重
量%と (b)結合剤10〜80重量%とを含有する組成物の焼
結体であることを特徴とする多孔質陶磁器焼結体。
1. A porous ceramic ware which is a sintered body of a composition containing (a) 20 to 90% by weight of a fluid catalytic cracking waste catalyst and (b) 10 to 80% by weight of a binder. Union.
【請求項2】 (a)流動接触分解廃触媒20〜90重
量% (b)結合剤10〜80重量% (c)焼結促進剤5〜25重量%とを含有する組成物の
焼結体であることを特徴とする多孔質陶磁器。
2. A sintered body of a composition containing (a) 20 to 90% by weight of a fluid catalytic cracking waste catalyst, (b) 10 to 80% by weight of a binder, and (c) 5 to 25% by weight of a sintering accelerator. Porous ceramics characterized by being.
【請求項3】 流動接触分解廃触媒、結合剤および水と
を含有する混合物を成形、乾燥後、1000〜1500
℃で焼成することを特徴とする多孔質陶磁器焼結体の製
法。
3. A mixture containing a fluid catalytic cracking waste catalyst, a binder and water is molded and dried, and then 1000 to 1500.
A method for producing a porous ceramics sintered body, which comprises firing at ℃.
【請求項4】 流動接触分解廃触媒を900〜1450
℃であらかじめ仮焼しておき、これと結合剤および水を
混合して得られた混合物を成形、乾燥後、1000〜1
500℃で焼成することを特徴とする多孔質陶磁器焼結
体の製法。
4. A fluidized catalytic cracking waste catalyst containing 900 to 1450
Preliminarily calcined at ℃, mix this with a binder and water to form a mixture, and after drying, 1000 to 1
A method for producing a porous ceramics sintered body, which comprises firing at 500 ° C.
JP6287400A 1994-10-27 1994-10-27 Porous ceramic sintered compact and its production Pending JPH08119766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6287400A JPH08119766A (en) 1994-10-27 1994-10-27 Porous ceramic sintered compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6287400A JPH08119766A (en) 1994-10-27 1994-10-27 Porous ceramic sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH08119766A true JPH08119766A (en) 1996-05-14

Family

ID=17716855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6287400A Pending JPH08119766A (en) 1994-10-27 1994-10-27 Porous ceramic sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH08119766A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688839B1 (en) * 2002-08-19 2007-02-28 에스케이 주식회사 Cordierite ceramic article using waste catalyst and preparing method for the same
CN109305800A (en) * 2017-11-16 2019-02-05 中国石油化工股份有限公司 A method of haydite is prepared using catalytic cracking spent catalyst
CN109305799A (en) * 2017-11-16 2019-02-05 中国石油化工股份有限公司 The expanded ceramsite and preparation method thereof that spent bleaching clay collaboration FCC dead catalyst is prepared
CN109305801A (en) * 2017-11-16 2019-02-05 中国石油化工股份有限公司 Excess sludge cooperates with the expanded ceramsite and preparation method thereof of FCC dead catalyst preparation
CN109305823A (en) * 2017-11-16 2019-02-05 中国石油化工股份有限公司 A kind of high-strength ceramic granule prepared by catalytic cracking spent catalyst
CN109735961A (en) * 2018-12-07 2019-05-10 北京三聚环保新材料股份有限公司 A kind of alumina silicate fibre, alumina silicate fiber needling blanket and preparation method thereof
CN110002855A (en) * 2018-12-20 2019-07-12 江苏和腾热工装备科技有限公司 A kind of high temperature resistant foamed ceramics and preparation method thereof prepared by FCC dead catalyst
CN110156448A (en) * 2019-05-28 2019-08-23 姚华 The recycling and reusing method for the filter residue that dead catalyst containing nickel and production catalyst generate
CN110655383A (en) * 2018-06-29 2020-01-07 杨卉宇 Method for preparing ceramic material from waste catalytic cracking catalyst
CN110734269A (en) * 2018-07-19 2020-01-31 中国石油化工股份有限公司 Composition for foamed ceramic slurry, foamed ceramic and preparation method thereof
CN112125599A (en) * 2020-08-28 2020-12-25 同济大学 Preparation method of concrete decorative plate
CN116023119A (en) * 2021-10-26 2023-04-28 中国石油化工股份有限公司 Porous ceramic and preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688839B1 (en) * 2002-08-19 2007-02-28 에스케이 주식회사 Cordierite ceramic article using waste catalyst and preparing method for the same
CN109305800A (en) * 2017-11-16 2019-02-05 中国石油化工股份有限公司 A method of haydite is prepared using catalytic cracking spent catalyst
CN109305799A (en) * 2017-11-16 2019-02-05 中国石油化工股份有限公司 The expanded ceramsite and preparation method thereof that spent bleaching clay collaboration FCC dead catalyst is prepared
CN109305801A (en) * 2017-11-16 2019-02-05 中国石油化工股份有限公司 Excess sludge cooperates with the expanded ceramsite and preparation method thereof of FCC dead catalyst preparation
CN109305823A (en) * 2017-11-16 2019-02-05 中国石油化工股份有限公司 A kind of high-strength ceramic granule prepared by catalytic cracking spent catalyst
CN110655383A (en) * 2018-06-29 2020-01-07 杨卉宇 Method for preparing ceramic material from waste catalytic cracking catalyst
CN110734269A (en) * 2018-07-19 2020-01-31 中国石油化工股份有限公司 Composition for foamed ceramic slurry, foamed ceramic and preparation method thereof
CN109735961A (en) * 2018-12-07 2019-05-10 北京三聚环保新材料股份有限公司 A kind of alumina silicate fibre, alumina silicate fiber needling blanket and preparation method thereof
CN109735961B (en) * 2018-12-07 2021-09-17 北京三聚环保新材料股份有限公司 Aluminum silicate fiber, aluminum silicate fiber needled blanket and preparation method thereof
CN110002855A (en) * 2018-12-20 2019-07-12 江苏和腾热工装备科技有限公司 A kind of high temperature resistant foamed ceramics and preparation method thereof prepared by FCC dead catalyst
CN110156448A (en) * 2019-05-28 2019-08-23 姚华 The recycling and reusing method for the filter residue that dead catalyst containing nickel and production catalyst generate
CN110156448B (en) * 2019-05-28 2021-06-11 姚华 Method for recycling nickel-containing waste catalyst and filter residue generated in catalyst production
CN112125599A (en) * 2020-08-28 2020-12-25 同济大学 Preparation method of concrete decorative plate
CN112125599B (en) * 2020-08-28 2022-04-05 同济大学 Preparation method of concrete decorative plate
CN116023119A (en) * 2021-10-26 2023-04-28 中国石油化工股份有限公司 Porous ceramic and preparation method thereof

Similar Documents

Publication Publication Date Title
US4039480A (en) Hollow ceramic balls as automotive catalysts supports
EP0364640B1 (en) Hard setting refractory composition
CN101328073B (en) Self-reinforcing type ceramic fibre pouring material and preparation thereof
US4255197A (en) Process for obtaining refractory materials with controlled characteristics of porosity and density
JPH08119766A (en) Porous ceramic sintered compact and its production
JPH072536A (en) Fire brick as bed of tin bath
FI108790B (en) Titanium-containing additive and its use to increase the durability of refractory masonry furnaces
EP1345866B1 (en) Clay composition
US3008842A (en) Basic refractory insulating shapes
US5807798A (en) Refractory compositions for use in fluid bed chlorinators
WO1998028242A9 (en) Improved refractory compositions suitable for use in fluid bed chlorinators
EP0293600B1 (en) Process for preparing an oxide-carbon based refractory
EP3943464A1 (en) A novel lightweight ceramic sand formulation from lignite fly ash and method of preparation thereof
DD244547A1 (en) CERAMIC MATERIAL
JPH0948656A (en) Dense ceramic sintered compact and its production
US3765914A (en) Siliceous bonded refractory
SU1335552A1 (en) Method of producing periclase carbon refractory
US6042801A (en) Method for baking or calcination of shaped carbon bodies in a furnace
US3308070A (en) Refractory catalyst carrier and method of preparation thereof
JP2002308668A (en) Refractory and its production method
SU1682348A1 (en) Ceramic composition
RU2058187C1 (en) Catalyst carrier and its preparation method
SU1090678A1 (en) Batch for making ceramic products
RU2081079C1 (en) Raw materials mixture for production of phosphate binder
JPH0541590B2 (en)