JPH08117607A - Platelike catalyst for denitrifying exhaust gas and its production - Google Patents

Platelike catalyst for denitrifying exhaust gas and its production

Info

Publication number
JPH08117607A
JPH08117607A JP6262804A JP26280494A JPH08117607A JP H08117607 A JPH08117607 A JP H08117607A JP 6262804 A JP6262804 A JP 6262804A JP 26280494 A JP26280494 A JP 26280494A JP H08117607 A JPH08117607 A JP H08117607A
Authority
JP
Japan
Prior art keywords
catalyst
plate
paste
exhaust gas
catalyst composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6262804A
Other languages
Japanese (ja)
Inventor
Katsuhiro Yashiro
克洋 矢代
Yasuyoshi Kato
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP6262804A priority Critical patent/JPH08117607A/en
Publication of JPH08117607A publication Critical patent/JPH08117607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To provide the catalyst which has improved wear-resistant strength with respect to dust and shows a controlled degree of deterioration in catalytic performance below a low level and a low degree of SO2 oxidation. CONSTITUTION: In this production, an inorganic fiber 2 such as glass fiber contg. a calcium component, etc., and water are added to a catalyst composition 1 consisting of titanium and at least another catalyst component such as molybdenum, vanadium, tungsten, etc., and the resulting mixture is kneaded by a kneader 3 to produce a catalyst composition paste 4. Then, the surface of a lath sheet 5 fabricated from a thin metal sheet is coated with this paste 4 by using coating rolls 6 and the coated lath sheet 5 is formed into a platelike catalyst 8 having a prescribed shape by using a molding machine 9 and thereafter, the platelike catalyst 8 is dried and then calcined at 450 to 550 deg.C and subsequently, impregnated with a liquid 11 contg. a sulfuric acid component. Thereafter, the resulting impregnated platelike catalyst 8 is dried and then calcined at 350 deg.C to produce the objective platelike catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガス脱硝用板状触媒
およびその製造方法に係り、金属基板、特にメタルラス
(金属薄板に千鳥配列状に所定ピッチ所定長さ(例えば
3〜10mm)で切れ目を入れ、切れ目と直角方向に薄板
に引張力を加えて形成した網目状金属薄板)に触媒組成
物を担持した板形状の触媒で、耐摩耗性を増強した脱硝
用板状触媒およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas denitration plate catalyst and a method for producing the same, and more particularly to a metal substrate, particularly a metal lath (a thin metal plate in a zigzag arrangement with a predetermined pitch and a predetermined length (for example, 3 to 10 mm)). And a plate-shaped catalyst in which a catalyst composition is supported on a mesh-shaped metal thin plate formed by applying tensile force to the thin plate in a direction perpendicular to the cut, and a plate catalyst for denitration with enhanced wear resistance and a method for producing the same. Regarding

【0002】[0002]

【従来の技術】排ガス中の窒素酸化物を除去する方法と
しては、触媒を用いてアンモニアで選択的に還元する方
法が主流になっており、これらの脱硝触媒は一般に酸化
チタン(TiO2 )とモリブデン(Mo)、バナジウム
(V)、タングステン(W)等の酸化物からなる触媒組
成物を粒状、板状、ハニカム状等に成形したものが用い
られている。中でも重油や石炭などを燃料にするボイラ
排ガスの場合には、煤塵や灰を多量に含むガスを低圧力
損失で処理する必要があり、板状触媒を組合わせたもの
(例えば、特公昭61−28377号公報)や、開口率
の大きなハニカム状触媒などのガス流れ方向に平行な通
路を有するもの(特公昭60−3856号公報など)が
用いられている。
2. Description of the Related Art As a method for removing nitrogen oxides in exhaust gas, a method in which a catalyst is selectively reduced with ammonia is the mainstream, and these denitration catalysts are generally titanium oxide (TiO 2 ). A catalyst composition made of an oxide such as molybdenum (Mo), vanadium (V), or tungsten (W) is formed into a granular shape, a plate shape, a honeycomb shape, or the like. Above all, in the case of boiler exhaust gas that uses heavy oil or coal as a fuel, it is necessary to treat a gas containing a large amount of soot dust and ash with a low pressure loss, and a combination of plate catalysts (for example, Japanese Patent Publication No. 61- No. 28377) and a honeycomb catalyst having a large opening ratio, etc., having a passage parallel to the gas flow direction (Japanese Patent Publication No. 60-3856).

【0003】これら触媒は、その構造強度を確保するた
めに触媒組成物中に無機繊維を添加して強化している
が、特に排ガス中のダストが多いボイラに対しては、触
媒の耐摩耗性を向上させる必要があることから、シリカ
ゾルのような無機バインダを添加して強度を高める方法
(例えば、特開昭55−155740号公報)が提案さ
れている。
In order to secure the structural strength of these catalysts, inorganic fibers are added to the catalyst composition for strengthening, but the wear resistance of the catalyst is particularly high in the case of a boiler containing a large amount of dust in the exhaust gas. Therefore, there has been proposed a method of adding an inorganic binder such as silica sol to increase the strength (for example, JP-A-55-155740).

【0004】[0004]

【発明が解決しようとする課題】上記のような無機バイ
ンダによる触媒強化の場合、バインダが触媒の細孔を閉
塞して高密度化し高摩耗性が向上するが、これにより触
媒における反応ガスの拡散を妨げるために脱硝性能が損
なわれたり、無機バインダの種類によってはその成分が
触媒毒となって脱硝率が低下するといった問題がある。
In the case of strengthening the catalyst with the above-mentioned inorganic binder, the binder closes the pores of the catalyst to increase the density and improve the wear resistance, which causes the diffusion of the reaction gas in the catalyst. Therefore, there is a problem that the denitration performance is impaired due to the inhibition of the denitrification, or the component becomes a catalyst poison depending on the type of the inorganic binder, and the denitration rate decreases.

【0005】これらのことを考慮すると、一定の脱硝性
能を満たすためには、上記のような耐摩耗性向上によっ
て引き起こされる脱硝率の低下を見込んで、あらかじめ
触媒組成物中の金属活性成分の量を多くすることが容易
な手段として考えられるが、SOxを含む排ガスの処理
の場合には、SO2 のSO3 への酸化率(以下、SO 2
酸化率と称する)が高くなり、還元剤であるアンモニア
と反応して硫安を生成し易くなり、触媒活性の低下と後
流側の装置に支障が出る恐れがある。
Taking these things into consideration, a certain degree of denitrification
In order to satisfy the
In anticipation of a decrease in the denitrification rate caused by
Easy to increase the amount of metal active component in the catalyst composition
It can be considered as a means to treat exhaust gas containing SOx
In the case of, SO2SO3Oxidation rate (hereinafter, SO 2
Ammonia, which is a reducing agent,
Reacts with ammonium sulfate to produce ammonium sulphate easily
There is a risk of damage to the equipment on the flow side.

【0006】本発明の目的は、上記従来技術のかかる問
題点をなくし、排ガス中のダストに対する耐摩耗強度の
向上を図り、しかもそれによる脱硝性能の低下を小さく
抑え、結果的にSO2 酸化率の低い排ガス脱硝用板状触
媒およびその製造方法を提供することにある。
The object of the present invention is to eliminate the above-mentioned problems of the prior art, to improve the wear resistance strength against dust in exhaust gas, and to suppress the deterioration of the denitration performance due to it, resulting in the SO 2 oxidation rate. The object is to provide a plate catalyst for exhaust gas denitration with low exhaust gas and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本願で特許請求される発明は以下のとおりである。 (1)金属薄板をラス加工した基材表面に触媒組成物か
らなるペースト状物を塗布し、所定の板形状に成形加工
した排ガス脱硝用板状触媒において、触媒組成物中にカ
ルシウム(Ca)成分を含有する無機繊維が介在され、
かつ所定の板形状に加工された後に硫酸を含浸されるこ
とにより前記繊維と触媒組成物との界面が反応生成物の
CaSO4 で充填されていることを特徴とする排ガス脱
硝用板状触媒に。
In order to achieve the above object, the invention claimed in the present application is as follows. (1) In a plate catalyst for exhaust gas denitration, which is formed by coating a paste-like material made of a catalyst composition on the surface of a substrate obtained by lathing a thin metal plate, and processing the paste into a predetermined plate shape, calcium (Ca) is contained in the catalyst composition. Inorganic fibers containing components are interposed,
A plate catalyst for exhaust gas denitration, wherein the interface between the fiber and the catalyst composition is filled with CaSO 4 as a reaction product by being impregnated with sulfuric acid after being processed into a predetermined plate shape. .

【0008】(2)金属薄板をラス加工した基材に触媒
活性成分原料からなるペーストを塗布し、所定の板形状
に成形したのち、乾燥、焼成する排ガス脱硝用板状触媒
の製造方法において、触媒活性成分原料にCa含有無機
繊維と水を添加混合してペーストとし、これを基材に塗
布した後所定形状に成形し、これを乾燥、焼成したのち
硫酸成分含有液を含浸し、これを乾燥、焼成して触媒組
成物中のSO4 2-の含有量を6〜10wt%とすること
を特徴とする排ガス脱硝用板状触媒の製造方法。
(2) In a method for producing a plate catalyst for exhaust gas denitration, which comprises coating a paste made of a catalytically active component material on a lath-processed base material of a thin metal plate, molding the paste into a predetermined plate shape, and then drying and firing the catalyst. Ca-containing inorganic fibers and water are added to and mixed with the catalytically active component raw material to form a paste, which is applied to a base material, formed into a predetermined shape, dried and fired, and then impregnated with a sulfuric acid component-containing liquid. A method for producing a plate catalyst for exhaust gas denitration, which comprises drying and calcining so that the content of SO 4 2- in the catalyst composition is 6 to 10 wt%.

【0009】(3)(2)において、前記触媒原料ペー
スト中のSO4 2-の含有量が3wt%以下であることを
特徴とする排ガス脱硝用板状触媒の製造方法。
(3) In the method for producing a plate catalyst for exhaust gas denitration, as described in (2), the content of SO 4 2- in the catalyst raw material paste is 3 wt% or less.

【0010】[0010]

【作用】本発明者は、Ca成分が存在する触媒に硫酸を
含浸させると、CaSO4 が生成し、触媒組成物中に存
在しているCa反応物が触媒組成物同士またはCaとの
密着を機械的に強めることで、耐摩耗強度が向上するこ
とに着目し、鋭意研究した結果Ca成分が繊維状物とし
て触媒中に介在している場合に、その耐摩耗強度が著し
く向上することを見出した。
When the catalyst containing a Ca component is impregnated with sulfuric acid, the present inventor produces CaSO 4 , and the Ca reactant present in the catalyst composition adheres to the catalyst compositions or to Ca. Focusing on the fact that the mechanical strength enhances the wear resistance strength, as a result of intensive research, it was found that the wear resistance strength is significantly improved when the Ca component is present in the catalyst as a fibrous material. It was

【0011】一方、本発明では、反応生成物であるCa
SO4 は水溶性ではないので、細孔を閉塞するような悪
影響も小さく、脱硝性能の低下が小さい。すなわち、C
a成分と硫酸との反応により脱硝率を損なうことなく耐
摩耗性を向上できることとなる。本発明でCaを繊維状
物中に含まれる成分として供給するとよい理由は、強度
向上策の1つの方法としてセラミックス材料等で行われ
る繊維複合が、本発明で対象としている触媒についても
有効であること、さらに繊維と触媒組成物との界面に生
じる隙間を反応生成物のCaSO4 が埋めることで、機
械的接触部分が増し、ダストの衝撃に対する抵抗とな
る。
On the other hand, in the present invention, the reaction product Ca
Since SO 4 is not water-soluble, the adverse effect such as clogging of pores is small and the denitration performance is not significantly deteriorated. That is, C
By the reaction between the component a and sulfuric acid, the abrasion resistance can be improved without impairing the denitration rate. The reason why it is preferable to supply Ca as a component contained in the fibrous material in the present invention is that a fiber composite made of a ceramic material or the like as one method for improving strength is also effective for the catalyst targeted in the present invention. In addition, by filling the gap formed at the interface between the fiber and the catalyst composition with CaSO 4 which is the reaction product, the mechanical contact portion increases and the resistance to dust impact is provided.

【0012】本発明では、強度向上効果を充分に引出す
ために、Ca成分とSO4 2-とを充分に反応させる方法
として、触媒を製作した後に硫酸水溶液を含浸すること
を見出した。すなわち、CaとSO4 2-とを充分反応さ
せるためには、触媒組成物中のSO4 2-量を多くすれば
よいが、ペースト混練時に反応させてしまうと、触媒製
作時に生じる乾燥収縮等による繊維と触媒組成物との隙
間を埋めることが不充分となる。そのため、繊維を添加
して触媒を製作した後に、繊維と触媒組成物間との隙間
を埋めるように、Ca成分を反応させることが望まし
い。すなわち、繊維添加時点での触媒組成物中の硫酸根
SO4 2-量は低くしてCaの反応を抑え、触媒製作後に
硫酸含浸によってCaが充分反応するようにSO4 2-
を多くすることが必要となる。本発明では、具体的にペ
ースト混練時のSO4 2-量を3wt%以下、触媒化後の
硫酸含浸によって6〜10wt%とすることが有効であ
り、このような条件で製作することが望ましい。SO4
2-含有量を6〜10wt%とする根拠は、6wt%未満
の場合、添加したCa成分との反応が不充分となり、結
果として耐摩耗性向上の度合が小さくなる。一方、SO
4 2-含有量が10wt%を超えると、ガラス繊維の薄い
表面層の反応を通り越して繊維自体の強度低下を引き起
こす恐れがあるということに基づく。
In the present invention, it has been found that, as a method of sufficiently reacting the Ca component and SO 4 2− in order to sufficiently bring out the strength improving effect, the catalyst is manufactured and then impregnated with an aqueous sulfuric acid solution. That is, in order to sufficiently react Ca with SO 4 2−, it is sufficient to increase the amount of SO 4 2− in the catalyst composition, but if the reaction is performed during paste kneading, drying shrinkage or the like that occurs during catalyst production, etc. It becomes insufficient to fill the gap between the fiber and the catalyst composition. Therefore, it is desirable to react the Ca component so as to fill the gap between the fiber and the catalyst composition after the fiber is added to produce the catalyst. That is, the sulfate SO 4 2-amount of catalyst composition at fiber addition point is lowered to suppress the reaction of Ca, Ca is much SO 4 2-amount to sufficiently react by impregnation sulfate after catalyst production Will be required. In the present invention, it is effective to specifically set the amount of SO 4 2− at the time of paste kneading to 3 wt% or less, and to make it 6 to 10 wt% by impregnating sulfuric acid after catalysis, and it is desirable to manufacture under such conditions. . SO 4
The reason why the 2- content is 6 to 10 wt% is that when the content is less than 6 wt%, the reaction with the added Ca component becomes insufficient, and as a result, the degree of improvement in wear resistance becomes small. On the other hand, SO
This is based on the fact that if the 42 - content exceeds 10 wt%, the strength of the fiber itself may be reduced by passing through the reaction of the thin surface layer of the glass fiber.

【0013】[0013]

【実施例】以下、具体的な実施例について図1を用いて
説明する。 実施例1 金属基材5として、材質SUS430、板厚0.2mmの
薄板をラス加工したものを用いた。
EXAMPLES Specific examples will be described below with reference to FIG. Example 1 As the metal base material 5, a material obtained by lathing a thin plate having a material of SUS430 and a thickness of 0.2 mm was used.

【0014】触媒組成物1として、酸化チタンに三酸化
モリブデンと硫酸バナジルを、Ti/Mo/V=94/
5/1の原子比となるように配合し、これらに対し繊維
径10μmのEガラス繊維を10部と平均径2.5μm
のアルミナシリカ繊維(カオウール)10部よりなる無
機繊維2、および水を加えて混練機3にてペースト状に
混練調製した。このときのSO4 2-含有量は1.1wt
%であり、ペースト4の水分量は28.9wt%であ
る。これらの基材5と触媒ペースト4を、同時に圧延ロ
ール6に供給して基材両面に触媒ペーストを担持(塗布
と称する)し、これをプレス成形機9にて所定形状に成
形し、乾燥後、550℃で焼成し、板形状の脱硝触媒を
得た。
As the catalyst composition 1, titanium oxide, molybdenum trioxide and vanadyl sulfate were added, and Ti / Mo / V = 94 /
Blended so as to have an atomic ratio of 5/1, to which 10 parts of E glass fiber having a fiber diameter of 10 μm and an average diameter of 2.5 μm
Inorganic fiber 2 consisting of 10 parts of alumina-silica fiber (kao wool) and water were added and kneaded into a paste by a kneading machine 3. SO 4 2− content at this time is 1.1 wt.
%, And the water content of the paste 4 is 28.9 wt%. The base material 5 and the catalyst paste 4 are simultaneously supplied to a rolling roll 6 to carry (referred to as coating) the catalyst paste on both surfaces of the base material, which is molded into a predetermined shape by a press molding machine 9 and dried. Calcination was performed at 550 ° C. to obtain a plate-shaped denitration catalyst.

【0015】この板状触媒を、硫酸処理として17wt
%の硫酸水溶液11に含浸したところ、SO4 2-含浸量
は7.0wt%となり、乾燥後350℃で焼成したもの
では、触媒組成物中(無機繊維は含まず、以下同じ)の
SO4 2-は8.1wt%であった。 実施例2 実施例1で添加したカオウールを添加せず、無機繊維と
してはEガラスのみを20部添加し、それ以外は同様な
方法で板状触媒を調製し、17wt%の硫酸水溶液を含
浸した。本例の触媒組成物中のSO4 2-量は8.7wt
%であった。
17 wt% of this plate catalyst was treated with sulfuric acid
% Of was impregnated with an aqueous sulfuric acid solution 11, SO 4 2-impregnation weight becomes 7.0 wt%, which was calcined at 350 ° C. After drying, SO 4 in the catalyst composition (inorganic fiber is free, the same applies hereinafter) 2- was 8.1 wt%. Example 2 Without adding the kaool of Example 1, 20 parts of E glass alone was added as the inorganic fiber, a plate-like catalyst was prepared in the same manner except that it was impregnated with a 17 wt% sulfuric acid aqueous solution. . The amount of SO 4 2− in the catalyst composition of this example was 8.7 wt.
%Met.

【0016】比較例1 実施例1で添加したEガラスを添加せず、無機繊維とし
てはカオウールのみを20部添加し、それ以外は同様な
方法で板状触媒を調製し、17wt%の硫酸水溶液を含
浸した。本例の触媒組成物中のSO4 2-量は7.5wt
%であった。 比較例2 比較例1の硫酸含浸を行わず、かつペースト混練調製時
に無機バインダとしてシリカゾルを5部添加したこと以
外は比較例1と同様にして触媒を調製した。 比較例3 実施例1のEガラス繊維に代えて、Caを含まないSガ
ラス繊維(Mg成分を含む)を10部添加し、それ以外
は同様な方法で板状触媒を調製し、17wt%の硫酸水
溶液を含浸した。本例の触媒組成物中のSO4 2-量は
8.2wt%であった。
Comparative Example 1 The E-glass added in Example 1 was not added, only 20 parts of kaool was added as the inorganic fiber, and a plate-like catalyst was prepared in the same manner except that the 17 wt% sulfuric acid aqueous solution was used. Was impregnated. The amount of SO 4 2− in the catalyst composition of this example was 7.5 wt.
%Met. Comparative Example 2 A catalyst was prepared in the same manner as in Comparative Example 1 except that the sulfuric acid impregnation of Comparative Example 1 was not performed and 5 parts of silica sol was added as an inorganic binder during the paste kneading preparation. Comparative Example 3 In place of the E glass fiber of Example 1, 10 parts of Ca-free S glass fiber (including Mg component) was added, and a plate-like catalyst was prepared in the same manner except for the above, and the amount of 17 wt% Impregnated with aqueous sulfuric acid solution. The amount of SO 4 2− in the catalyst composition of this example was 8.2 wt%.

【0017】比較例4 実施例1の繊維を添加する前の触媒組成物中のSO4 2-
が8wt%であること以外は同様な方法で板状触媒を調
製し、17wt%の硫酸水溶液を含浸した。本例の触媒
組成物中のSO4 2-量は11wt%であった。 比較例5 実施例1のEガラス繊維を添加せずに、その代わりとし
てCa(OH)2 を2部添加した以外は同様な方法で板
状触媒を調製し、17wt%の硫酸水溶液を含浸した。
本例の触媒組成物中のSO4 2-量は7.1%であった。
Comparative Example 4 SO 4 2− in the catalyst composition before adding the fiber of Example 1
Was prepared in the same manner as above, except that it was 8 wt%, and was impregnated with a 17 wt% sulfuric acid aqueous solution. The amount of SO 4 2− in the catalyst composition of this example was 11 wt%. Comparative Example 5 A plate-like catalyst was prepared in the same manner except that the E glass fiber of Example 1 was not added, and instead 2 parts of Ca (OH) 2 was added, and impregnated with a 17 wt% sulfuric acid aqueous solution. .
The amount of SO 4 2− in the catalyst composition of this example was 7.1%.

【0018】実施例および比較例における繊維の添加お
よび硫酸処理の状況を表1にまとめて示す。また実施例
および比較例で使用した無機繊維の組成を表2に示す。
Table 1 shows the status of the addition of fibers and the treatment with sulfuric acid in Examples and Comparative Examples. Table 2 shows the compositions of the inorganic fibers used in Examples and Comparative Examples.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 上記実施例1〜2と比較例1〜5で得られた触媒につい
て、耐摩耗性、SO2酸化率および脱硝率の測定結果を
実施例1を基準として表3にまとめた。ここで耐摩耗性
は、鋼鉄製グリット8kgを高さ1mから自然落下させ、
触媒平面に対し角度45°で衝突させ、そのときの摩耗
減量で評価した。またSO2 酸化率は反応温度380℃
での値を、脱硝率は350℃での値をそれぞれ比で表わ
した。
[Table 2] With respect to the catalysts obtained in Examples 1 and 2 and Comparative Examples 1 to 5, the measurement results of wear resistance, SO 2 oxidation rate and denitration rate are summarized in Table 3 with Example 1 as a reference. Wear resistance here is that 8 kg of steel grit is naturally dropped from a height of 1 m,
It was made to collide with the catalyst plane at an angle of 45 °, and the abrasion loss at that time was evaluated. The SO 2 oxidation rate is 380 ° C at the reaction temperature.
And the denitration rate at 350 ° C. was expressed as a ratio.

【0021】[0021]

【表3】 表1によると、Ca成分かつ繊維状物であるEガラスを
添加した実施例1、2は、Ca成分を添加しない比較例
1に較べ、耐摩耗性は同等であるが、脱硝率の低下が小
さい。これはアルミナシリカ繊維のみを添加した比較例
1では、硫酸処理により水溶性の硫酸アルミニウムが生
成して細孔を閉塞するためである。また比較例3はCa
成分を含まないSガラスを添加した場合であるが、Mg
成分の存在により、水溶性の反応物が生じて脱硝率の低
下を引き起こしている。
[Table 3] According to Table 1, Examples 1 and 2 to which E glass, which is a Ca component and a fibrous substance, was added, had wear resistance equivalent to that of Comparative Example 1 in which no Ca component was added, but the denitrification rate decreased. small. This is because in Comparative Example 1 in which only the alumina-silica fiber was added, water-soluble aluminum sulfate was generated by the sulfuric acid treatment and the pores were blocked. Comparative Example 3 is Ca
This is the case when S glass containing no components is added.
Due to the presence of the components, a water-soluble reaction product is generated, which causes a reduction in the denitration rate.

【0022】比較例2は無機バインダの細孔への充填で
あり脱硝率が低下するが、繊維と触媒組成物との隙間を
充分に埋めることがないため耐摩耗性がやや悪い。比較
例4については、ペースト調製段階でガラス繊維表面で
Caの反応を引き起こしてしまい、触媒焼成後のCaS
4 で表面を覆われたEガラス繊維は硫酸含浸しても、
界面の隙間を埋めるほどの反応を促進することができな
いといえる。
In Comparative Example 2, the inorganic binder is filled in the pores to lower the denitration rate, but the abrasion resistance is rather poor because the gap between the fiber and the catalyst composition is not filled sufficiently. In Comparative Example 4, Ca reaction was caused on the glass fiber surface at the paste preparation stage, and CaS after the catalyst was calcined.
Even if the E glass fiber whose surface is covered with O 4 is impregnated with sulfuric acid,
It can be said that the reaction cannot be promoted enough to fill the interface gap.

【0023】比較例5は、粒状のCa成分であるため、
繊維複合効果がEガラス繊維を添加した実施例1よりも
小さく、耐摩耗性が低い。実施例1〜2において、所定
形状に成形後の1次焼成温度を550℃としたが、45
0〜550℃の範囲で適宜選定できる。焼成温度が高い
ほど耐摩耗性強度は増すが、550℃を超えると触媒組
成物中のMo成分が飛散する。Moに変えてタングステ
ン(W)を使用すればこの心配はなく、600℃程度ま
で許容できるが、焼成温度を上げ過ぎると触媒活性が低
下する。また硫酸成分含浸後の2次焼成温度を350℃
としているが、これは生成した硫酸カルシウム中の結晶
水を飛ばし、かつ硫酸根は残すためであり、350℃の
上下に多少ずれても差し支えない。
Comparative Example 5 is a granular Ca component,
The fiber composite effect is smaller than that of Example 1 in which E glass fiber is added, and the abrasion resistance is low. In Examples 1 and 2, the primary firing temperature after forming into a predetermined shape was 550 ° C.
It can be appropriately selected in the range of 0 to 550 ° C. The higher the calcination temperature, the higher the abrasion resistance strength, but if it exceeds 550 ° C., the Mo component in the catalyst composition scatters. If tungsten (W) is used instead of Mo, this is not a concern and it can be allowed up to about 600 ° C. However, if the firing temperature is raised too much, the catalytic activity will decrease. Also, the secondary firing temperature after impregnation with the sulfuric acid component is 350 ° C.
However, this is because the water of crystallization in the generated calcium sulfate is skipped and the sulfate radicals are left, and there is no problem even if it is slightly shifted up and down at 350 ° C.

【0024】また、触媒活性成分としてチタン、モリブ
デン、バナジウムよりなるものを挙げたが、このほかタ
ングステン、鉄、Cu、Ni、Crなどの酸化物も触媒
成分として用いられる。最も好ましいのはチタンにモリ
ブデン、バナジウム、タングステンのうちの1種以上を
加えたものである。また、無機繊維の添加量は5〜25
%の範囲で選ぶことができる。5%未満では強度不足で
あり、25%を超えると耐摩耗強度が低下する。
As the catalytically active component, those composed of titanium, molybdenum and vanadium have been mentioned, but oxides of tungsten, iron, Cu, Ni, Cr and the like can also be used as the catalytic component. Most preferably, titanium is added with one or more of molybdenum, vanadium and tungsten. Moreover, the addition amount of the inorganic fiber is 5 to 25.
It can be selected in the range of%. If it is less than 5%, the strength is insufficient, and if it exceeds 25%, the abrasion resistance strength decreases.

【0025】[0025]

【発明の効果】本発明によれば、無機バインダに匹敵す
る耐摩耗強度の向上効果が得られ、しかも脱硝率の低下
が小さいため、SO2 酸化率の高くない排ガス脱硝用板
状触媒が得られ、しかも汎用なEガラス繊維を使用する
ことでコスト面でも有利である。
EFFECTS OF THE INVENTION According to the present invention, a plate-like catalyst for exhaust gas denitration which does not have a high SO 2 oxidation rate can be obtained because the effect of improving wear resistance strength comparable to that of an inorganic binder can be obtained and the denitration rate is small. In addition, the use of general-purpose E glass fiber is advantageous in terms of cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における板状触媒の製造工程を示す図。FIG. 1 is a diagram showing a manufacturing process of a plate-shaped catalyst according to the present invention.

【符号の説明】[Explanation of symbols]

1…触媒組成物、2…無機繊維、3…混練機、4…ペー
スト、5…金属ラス基板、6…塗布ロール、7…塗布シ
ート、8…板状触媒、9…プレス成形機、10…触媒収
納ユニット枠、11…硫酸水溶液。
1 ... Catalyst composition, 2 ... Inorganic fiber, 3 ... Kneader, 4 ... Paste, 5 ... Metal lath substrate, 6 ... Coating roll, 7 ... Coating sheet, 8 ... Plate catalyst, 9 ... Press molding machine, 10 ... Catalyst storage unit frame, 11 ... Sulfuric acid aqueous solution.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 27/053 ZAB A 37/02 101 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B01J 27/053 ZAB A 37/02 101 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属薄板をラス加工した基材表面に触媒
組成物からなるペースト状物を塗布し、所定の板形状に
成形加工した排ガス脱硝用板状触媒において、触媒組成
物中にカルシウム(Ca)成分を含有する無機繊維が介
在され、かつ所定の板形状に加工された後に硫酸を含浸
されることにより前記繊維と触媒組成物との界面が反応
生成物のCaSO4 で充填されていることを特徴とする
排ガス脱硝用板状触媒。
1. A plate catalyst for exhaust gas denitration, wherein a paste-like material made of a catalyst composition is applied to the surface of a base material obtained by lathing a thin metal plate and formed into a predetermined plate shape, and calcium ( The interface between the fiber and the catalyst composition is filled with CaSO 4 as a reaction product by interposing an inorganic fiber containing a component (Ca), and after being processed into a predetermined plate shape and impregnated with sulfuric acid. A plate catalyst for exhaust gas denitration, which is characterized in that
【請求項2】 金属薄板をラス加工した基材に触媒活性
成分原料からなるペーストを塗布し、所定の板形状に成
形したのち、乾燥、焼成する排ガス脱硝用板状触媒の製
造方法において、触媒活性成分原料にCa含有無機繊維
と水を添加混合してペーストとし、これを基材に塗布し
た後所定形状に成形し、これを乾燥、焼成したのち硫酸
成分含有液を含浸し、これを乾燥、焼成して触媒組成物
中のSO4 2-の含有量を6〜10wt%とすることを特
徴とする排ガス脱硝用板状触媒の製造方法。
2. A method for producing a plate catalyst for exhaust gas denitration, which comprises applying a paste made of a raw material for catalytically active components to a substrate obtained by lathing a thin metal plate, shaping the paste into a predetermined plate shape, and then drying and firing the catalyst. The active ingredient raw material is added with Ca-containing inorganic fibers and water to form a paste, which is applied to a base material, formed into a predetermined shape, dried and baked, then impregnated with a sulfuric acid component-containing liquid, and dried. A method for producing a plate catalyst for exhaust gas denitration, comprising calcination so that the content of SO 4 2− in the catalyst composition is 6 to 10 wt%.
【請求項3】 請求項2において、前記触媒原料ペース
ト中のSO4 2-の含有量が3wt%以下であることを特
徴とする排ガス脱硝用板状触媒の製造方法。
3. The method for producing a plate catalyst for exhaust gas denitration according to claim 2, wherein the content of SO 4 2− in the catalyst raw material paste is 3 wt% or less.
JP6262804A 1994-10-26 1994-10-26 Platelike catalyst for denitrifying exhaust gas and its production Pending JPH08117607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6262804A JPH08117607A (en) 1994-10-26 1994-10-26 Platelike catalyst for denitrifying exhaust gas and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6262804A JPH08117607A (en) 1994-10-26 1994-10-26 Platelike catalyst for denitrifying exhaust gas and its production

Publications (1)

Publication Number Publication Date
JPH08117607A true JPH08117607A (en) 1996-05-14

Family

ID=17380847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6262804A Pending JPH08117607A (en) 1994-10-26 1994-10-26 Platelike catalyst for denitrifying exhaust gas and its production

Country Status (1)

Country Link
JP (1) JPH08117607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069296A (en) * 2009-09-25 2011-04-07 National Maritime Research Institute Deterioration predicting method of denitration catalyst, deterioration countermeasures method, deterioration countermeasures system, and design method of exhaust gas treatment system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069296A (en) * 2009-09-25 2011-04-07 National Maritime Research Institute Deterioration predicting method of denitration catalyst, deterioration countermeasures method, deterioration countermeasures system, and design method of exhaust gas treatment system

Similar Documents

Publication Publication Date Title
EP0398752B2 (en) Catalyst for reducing nitrogen oxides
JP5140243B2 (en) Catalyst base material, catalyst, and production method thereof
JP4225735B2 (en) Nitrogen oxide removing catalyst, method for producing the same, and method for removing nitrogen oxide
JPH05192583A (en) Denitrification catalyst containing inorganic fiber and production thereof
KR102168261B1 (en) Catalyst for oxidation reaction of metallic mercury and reduction reaction of nitrogen oxides, and exhaust gas purification method
JPH08117607A (en) Platelike catalyst for denitrifying exhaust gas and its production
JP5156173B2 (en) Method for producing catalyst for removing nitrogen oxides
JP3495591B2 (en) Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas
JP3660381B2 (en) Method for producing plate catalyst for exhaust gas denitration
JP7451195B2 (en) Manufacturing method of regenerated denitrification catalyst
JP3432540B2 (en) Method for producing plate-shaped catalyst and treatment liquid for forming acid-resistant and anti-corrosion film used therein
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JP4020354B2 (en) Manufacturing method of plate-like catalyst structure
JP2010207706A (en) Catalyst for removing nitrogen oxide and method for manufacturing the same
JP3354745B2 (en) DeNOx catalyst
JP2002119868A (en) Catalytic structural body for purifying waste gas
JPH0420663B2 (en)
JP2021121423A5 (en)
JP3234239B2 (en) Method for removing nitrogen oxides from high-temperature exhaust gas and catalyst for removal
JP4959218B2 (en) Method for producing plate-shaped denitration catalyst
JP2854321B2 (en) Method for producing plate catalyst for removing nitrogen oxides
JP3076353B2 (en) Plate catalyst for removing nitrogen oxides and method for producing the same
JP4511920B2 (en) Method for producing denitration catalyst
JP2001252574A (en) Catalyst structure for cleaning exhaust gas and reticulated material used for this
JP2000126615A (en) Production of wear-resistant catalyst