JPH08117557A - Decomposition of organochlorine compound - Google Patents

Decomposition of organochlorine compound

Info

Publication number
JPH08117557A
JPH08117557A JP7200785A JP20078595A JPH08117557A JP H08117557 A JPH08117557 A JP H08117557A JP 7200785 A JP7200785 A JP 7200785A JP 20078595 A JP20078595 A JP 20078595A JP H08117557 A JPH08117557 A JP H08117557A
Authority
JP
Japan
Prior art keywords
catalyst
titania
molybdenum
vanadium
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7200785A
Other languages
Japanese (ja)
Other versions
JP3538984B2 (en
Inventor
Tetsuo Masuyama
鉄男 増山
Kenichi Kiyono
健一 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP20078595A priority Critical patent/JP3538984B2/en
Publication of JPH08117557A publication Critical patent/JPH08117557A/en
Application granted granted Critical
Publication of JP3538984B2 publication Critical patent/JP3538984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To decompose an organochlorine compd. in an economically advantageous manner by using a relatively inexpensive catalyst having durability against impurities and low temp. activity. CONSTITUTION: Gas containing an organochlorine compd. is brought into contact with a mixed oxide catalyst containing vanadium and molybdenum at 100-500 deg.C in the presence of 0.5-25vol.% of oxygen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、塩素化有機化合物
の分解方法に関するものであり、詳しくは、都市ごみや
産業廃棄物などの燃焼に伴って発生するダイオキシン等
の塩素化有機化合物を、バナジウム及びモリブデンを含
む酸化物触媒に接触させて分解する方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing chlorinated organic compounds, and more specifically to vanadium-containing chlorinated organic compounds such as dioxins generated by combustion of municipal solid waste or industrial waste. And a method of decomposing by contacting with an oxide catalyst containing molybdenum.

【0002】[0002]

【従来の技術】都市ごみや産業廃棄物などの燃焼排ガス
中には、通常ダイオキシンやその前駆体と考えられる芳
香族塩素化合物などの塩素化有機化合物が含有されてい
る。一般に塩素化有機化合物は程度の差はあるが、毒性
が強く、特にダイオキシンは動植物に対して催奇性など
の著しい悪影響を与える程の猛毒であり、燃焼排ガス中
のその含有量を極力減少させることが必要である。その
ため、このダイオキシン等の塩素化有機化合物の除去法
が、例えば活性炭吸着法、熱分解法、或いは接触分解法
等種々提案されている。その中で、接触分解法は500
℃以下の条件で処理を行うことが出来る優れた方法であ
る。
2. Description of the Related Art Combustion exhaust gas such as municipal waste and industrial waste contains chlorinated organic compounds such as dioxins and aromatic chlorine compounds which are considered to be precursors thereof. In general, chlorinated organic compounds are more or less toxic, but dioxin is a very toxic substance that has a significant adverse effect on animals and plants, such as teratogenicity, and its content in flue gas should be reduced as much as possible. is required. Therefore, various methods for removing chlorinated organic compounds such as dioxin have been proposed, for example, an activated carbon adsorption method, a thermal decomposition method, or a catalytic decomposition method. Among them, the catalytic cracking method is 500
This is an excellent method that can perform the treatment under the condition of not more than ℃.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来提
案された接触分解法における触媒は、燃焼排ガス中に含
まれている窒素酸化物、硫黄酸化物、重金属ヒューム等
の不純物に対し、耐久性が欠けると言う問題がある。ま
た、従来の白金やパラジウムを用いる触媒は高価であ
る。
However, the catalyst in the catalytic cracking method proposed hitherto lacks durability against impurities such as nitrogen oxides, sulfur oxides, and heavy metal fumes contained in combustion exhaust gas. There is a problem to say. Further, conventional catalysts using platinum or palladium are expensive.

【0004】本発明は、上記のような実情に鑑みなされ
たものであり、その目的は、不純物に対して耐久性があ
り、かつ比較的安価な触媒を使用した経済的に有利な塩
素化有機化合物の分解方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is an economically advantageous chlorinated organic substance using a catalyst which is resistant to impurities and is relatively inexpensive. It is to provide a method for decomposing a compound.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明の要旨
は、塩素化有機化合物を含有するガスを100〜500
℃の温度において、0.5〜25vol%の酸素の存在
下、バナジウム及びモリブデンを含む酸化物触媒と接触
させることを特徴とする塩素化有機化合物の分解方法に
存する。
That is, the gist of the present invention is to use a gas containing a chlorinated organic compound in an amount of 100 to 500.
A method for decomposing a chlorinated organic compound is characterized in that it is brought into contact with an oxide catalyst containing vanadium and molybdenum in the presence of 0.5 to 25 vol% oxygen at a temperature of ° C.

【0006】[0006]

【発明の実施の形態】以下、本発明の構成について詳細
に説明する。本発明で処理の対象とする排ガスとして
は、例えば都市ごみや産業廃棄物などの燃焼排ガス等が
挙げられる。このような燃焼排ガスには、通常、2,
3,7,8−テトラクロロジベンゾダイオキシン、2,
3,4,7,8−ペンタクロロジベンゾフランで代表さ
れるダイオキシン類が10〜40ng/Nm3 含まれて
いる。更に、これらダイオキシン類の前駆体であるモノ
クロロベンゼン、ジクロロベンゼン又はo−クロロフェ
ノール、クロロベンゾフラン等の塩素化有機化合物も含
まれている。
BEST MODE FOR CARRYING OUT THE INVENTION The structure of the present invention will be described in detail below. Examples of the exhaust gas to be treated in the present invention include combustion exhaust gas such as municipal waste and industrial waste. Such flue gas usually contains 2,
3,7,8-tetrachlorodibenzodioxin, 2,
Dioxins represented by 3,4,7,8-pentachlorodibenzofuran are contained in an amount of 10 to 40 ng / Nm 3 . Further, chlorinated organic compounds such as monochlorobenzene, dichlorobenzene or o-chlorophenol, chlorobenzofuran which are precursors of these dioxins are also included.

【0007】本発明においては、塩素化有機化合物の分
解触媒として、バナジウム及びモリブデンを含む酸化物
触媒を使用する。このような酸化物触媒は、特に硫黄酸
化物に対する耐被毒性に優れている。酸化物触媒は、通
常、担体に担持して使用されるが、その担体としては、
シリカ、アルミナ、珪藻土等を使用することも出来る
が、チタニア(TiO2 )を使用するのが好ましい。特
に、燃焼排ガス中に硫黄酸化物が含まれている場合に
は、チタニアを用いるのが好ましい。
In the present invention, an oxide catalyst containing vanadium and molybdenum is used as a decomposition catalyst for chlorinated organic compounds. Such an oxide catalyst is particularly excellent in poisoning resistance to sulfur oxides. The oxide catalyst is usually used by being supported on a carrier.
Silica, alumina, diatomaceous earth and the like can be used, but titania (TiO 2 ) is preferably used. In particular, it is preferable to use titania when the combustion exhaust gas contains sulfur oxides.

【0008】バナジウム酸化物の担持量は担体に対し、
通常0.5〜50wt%、好ましくは2〜40wt%で
ある。また、モリブデン酸化物の担持量は担体に対し、
通常0.1〜50wt%、好ましくは0.3〜40wt
%である。更に、バナジウム酸化物に対するモリブデン
酸化物の含有量は、通常0.1〜1重量倍、好ましくは
0.1〜0.7重量倍である。
The amount of vanadium oxide supported on the carrier is
It is usually 0.5 to 50 wt%, preferably 2 to 40 wt%. The amount of molybdenum oxide supported on the carrier is
Usually 0.1 to 50 wt%, preferably 0.3 to 40 wt
%. Further, the content of molybdenum oxide relative to vanadium oxide is usually 0.1 to 1 times by weight, preferably 0.1 to 0.7 times by weight.

【0009】触媒の大きさ及び形状は、一般に、原料性
状、ダストの有無、ガス量、反応器の大きさ等により決
定される。そして、触媒の形状としては、円柱状、球
状、ハニカム状、板状などが挙げられる。円柱状または
球状の担持触媒を調製する場合、例えば、I)蓚酸水溶
液に五酸化バナジウム(V2 5 )及びパラモリブデン
酸アンモニウム((NH4 6 〔Mo7 24〕・22H
2 O)を溶解し、II)この混合水溶液中に例えば円柱状
または球状の成形担体を3〜10時間含浸し、III)液切
りし、IV)40〜150℃で3〜50時間乾燥後、V)
空気気流中、空間速度(以下SVと略称する)100〜
2000h-1、温度450〜650℃の条件下にて焼成
する方法を用いることができる。
The size and shape of the catalyst are generally determined by the properties of the raw materials, the presence or absence of dust, the amount of gas, the size of the reactor and the like. Examples of the shape of the catalyst include a columnar shape, a spherical shape, a honeycomb shape, and a plate shape. When preparing a columnar or spherical supported catalyst, for example, I) vanadium pentoxide (V 2 O 5 ) and ammonium paramolybdate ((NH 4 ) 6 [Mo 7 O 24 ] .22H are added to an oxalic acid aqueous solution.
2 O) is dissolved, II) this mixed aqueous solution is impregnated with, for example, a cylindrical or spherical shaped carrier for 3 to 10 hours, III) drained, and IV) after drying at 40 to 150 ° C. for 3 to 50 hours, V)
Space velocity (hereinafter abbreviated as SV) 100-in air flow
It is possible to use a method of firing under the conditions of 2000 h −1 and a temperature of 450 to 650 ° C.

【0010】また、ハニカム状又は板状の担持触媒を調
製する場合は、所望形状の基材上にまず担体成分をコー
ティングし、その上で、この担体成分に上記と同様の方
法で触媒成分を担持する方法を用いることができる。図
1に担体としてチタニアを用いたハニカム状の触媒の調
製方法を例示する。基材の材質は特に限定されるもので
はないが、格子状などの押出成形品にはコージェライト
等が使用され、コルゲート品にはアルミナ、シリカ等の
無機繊維などが使用される。コーティングすべきチタニ
アをスラリーとして使用する場合は、通常粘結性のある
チタニアゾルをチタニア粉末とともに分散させたスラリ
ーを用いるのが好ましい。しかしながら、担持量が少量
の場合は、チタニア粉末を水溶液に分散させたスラリー
のみでもよい。
When preparing a honeycomb-shaped or plate-shaped supported catalyst, a carrier having a desired shape is first coated with a carrier component, and then the carrier component is coated with the catalyst component in the same manner as described above. A supporting method can be used. FIG. 1 illustrates a method for preparing a honeycomb catalyst using titania as a carrier. The material of the base material is not particularly limited, but cordierite or the like is used for an extrusion molded product such as a lattice, and inorganic fibers such as alumina and silica are used for a corrugated product. When the titania to be coated is used as a slurry, it is preferable to use a slurry in which a titania sol having a caking property is dispersed together with a titania powder. However, when the supported amount is small, only a slurry in which titania powder is dispersed in an aqueous solution may be used.

【0011】バナジウム酸化物の原料としては、特に限
定されないが、五酸化バナジウム(V2 5 )粉末を使
用することが好ましい。これを蓚酸水溶液に溶解してバ
ナジウム担持用液とする。モリブデン酸化物の原料につ
いても特に限定されないが、パラモリブデン酸アンモニ
ウムが好ましく、これを熱水または蓚酸水溶液等に溶解
してモリブデンの担持用液とする。担持用液は、沈殿生
成や反応等の不都合がない限り、原料を混合して調製し
ても、また調製後の担持用液を混合して使用してもよ
い。
The raw material of vanadium oxide is not particularly limited, but vanadium pentoxide (V 2 O 5 ) powder is preferably used. This is dissolved in an aqueous solution of oxalic acid to obtain a vanadium-supporting liquid. Although the raw material of molybdenum oxide is not particularly limited, ammonium paramolybdate is preferable, and this is dissolved in hot water or an oxalic acid aqueous solution to prepare a molybdenum-supporting liquid. The supporting liquid may be prepared by mixing the raw materials, or may be used by mixing the prepared supporting liquid, as long as there is no inconvenience such as precipitation formation or reaction.

【0012】バナジウム担持用液とモリブデン担持用液
とを別々に使用する場合の担持方法としては、先ず、例
えばバナジウム担持用液に担体を含浸後、乾燥し、焼成
してV2 5 担持触媒を調製し、次にモリブデン担持用
液に前記のV2 5 担持触媒を含浸後、乾燥し、焼成す
る方法を採用することが出来る。ハニカム触媒のような
形状の触媒を製造する場合は、上記のようにハニカムを
構成する基材上にチタニア等の担体成分及び触媒成分を
担持する方法の他に、担体成分と触媒成分もしくはその
原料とを成形助剤とともに混練した後に、押出成形法等
の成形法によりハニカム状等の所望の形状に賦形しても
よい。
When the vanadium-carrying liquid and the molybdenum-carrying liquid are used separately, the supporting method is as follows. First, for example, the vanadium-carrying liquid is impregnated with the carrier, dried and calcined to carry the V 2 O 5 -supported catalyst It is possible to employ a method in which the above-mentioned V 2 O 5 -supported catalyst is impregnated in a molybdenum-supporting liquid, dried and calcined. In the case of producing a catalyst having a shape such as a honeycomb catalyst, in addition to the method of supporting the carrier component such as titania and the catalyst component on the substrate constituting the honeycomb as described above, the carrier component and the catalyst component or the raw material thereof. After kneading and with a molding aid, they may be shaped into a desired shape such as a honeycomb shape by a molding method such as an extrusion molding method.

【0013】ハニカム触媒等の基材を用いた触媒におい
て、担体成分としてチタニアの他に、例えばシリカ(S
iO2 )やアルミナ(Al2 3 )等を併用してもよい
が、その際のチタニアの量は、製造後の触媒重量中の3
0wt%以上とするのがよい。また、担体成分及び触媒
成分の合計量は、製造後の触媒重量の5〜70wt%、
好ましくは10〜50wt%とするのがよい。
In a catalyst using a base material such as a honeycomb catalyst, in addition to titania as a carrier component, silica (S
iO 2 ) or alumina (Al 2 O 3 ) may be used in combination, but the amount of titania at that time is 3 in the catalyst weight after production.
It is preferable to set it to 0 wt% or more. Further, the total amount of the carrier component and the catalyst component is 5 to 70 wt% of the weight of the catalyst after production,
It is preferably 10 to 50 wt%.

【0014】本発明においては、上記の様に調製して得
られた触媒を使用し、100〜500℃、好ましくは1
50〜400℃の温度において、0.5〜25vol
%、好ましくは1〜15vol%の酸素の存在下、塩素
化有機化合物を分解する。温度が100℃未満では分解
反応が起きにくく、500℃を超えると分解は進行する
が、熱消費量が多く、触媒の耐久性にも支障を来す恐れ
が大きい。
In the present invention, the catalyst prepared as described above is used at 100 to 500 ° C., preferably 1
0.5 to 25 vol at a temperature of 50 to 400 ° C
%, Preferably 1 to 15 vol% oxygen in the presence of decomposing chlorinated organic compounds. If the temperature is lower than 100 ° C, the decomposition reaction is hard to occur, and if it exceeds 500 ° C, the decomposition proceeds, but the heat consumption is large and the durability of the catalyst is likely to be hindered.

【0015】分解時の圧力は、ゲージ圧で通常0〜9k
g/cm2 、好ましくは0.01〜5kg/cm2 であ
る。また、SVは、通常100〜50000h-1、好ま
しくは1000〜20000h-1である。上記の接触分
解前のガス中にアンモニアガスを導入すると塩素化物の
除去と同時に窒素化合物の分解も可能である。更に、処
理対象のガス中に多少の水分が含まれていても塩素化物
の分解には影響がなく、従ってこのような点からも、本
発明における触媒は実用上好ましい。
The pressure at the time of decomposition is usually 0 to 9 k in gauge pressure.
It is g / cm 2 , preferably 0.01 to 5 kg / cm 2 . Moreover, SV is normally 100~50000H -1, preferably 1000~20000h -1. When ammonia gas is introduced into the gas before the above catalytic decomposition, it is possible to remove the chlorinated compound and simultaneously decompose the nitrogen compound. Furthermore, even if a small amount of water is contained in the gas to be treated, it does not affect the decomposition of the chlorinated product. Therefore, from such a point, the catalyst of the present invention is practically preferable.

【0016】塩素化有機化合物の処理は、通常、燃焼排
ガスをバグフィルターに通して粉塵などを除去した後に
行われ、分解処理後の排出ガスはアルカリ洗浄塔により
酸性ガスを除去した後、大気に放出する。ただし、粉
塵、重金属が少ない燃焼排ガスの場合は、バグフィルタ
ーによる前処理を省略することも出来る。
The treatment of the chlorinated organic compound is usually carried out after the combustion exhaust gas is passed through a bag filter to remove dust and the like, and the exhaust gas after the decomposition treatment is subjected to an alkali washing tower to remove acid gas and then to the atmosphere. discharge. However, in the case of a combustion exhaust gas containing little dust and heavy metals, the pretreatment by the bag filter can be omitted.

【0017】[0017]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はその要旨を超えない限り、以下の実施
例により限定されるものではない。 実施例1 <触媒調製>チタニア粉20.7重量部、チタニアゾル
32.7重量部および1.0wt%硝酸水溶液150重
量部をボールミルに入れ、回転数100rpmで24時
間処理し、固体分濃度16.2wt%のチタニアスラリ
ーを調製した。このチタニアスラリーに、基材として、
有効表面積20.5cm2 /cm3 、開孔率73%、セ
ル数205セル/inch2 、容積30mlのセラミッ
ク繊維状ハニカム(ニチアス社製)を浸漬した後、空気
ブローを行った。そして、この浸漬および空気ブローを
3回繰り返し、前記のハニカム基材にチタニアをコーテ
ィングしてチタニア担体を製造した。次いで、150℃
で一夜乾燥後、700℃で3時間焼成した。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded. Example 1 <Catalyst preparation> 20.7 parts by weight of titania powder, 32.7 parts by weight of titania sol and 150 parts by weight of 1.0 wt% nitric acid aqueous solution were placed in a ball mill and treated at 100 rpm for 24 hours to obtain a solid content concentration of 16. A 2 wt% titania slurry was prepared. In this titania slurry, as a base material,
A ceramic fibrous honeycomb (manufactured by Nichias) having an effective surface area of 20.5 cm 2 / cm 3 , a porosity of 73%, a cell number of 205 cells / inch 2 , and a volume of 30 ml was immersed, and then air blowing was performed. Then, this dipping and air blowing were repeated 3 times to coat the above honeycomb substrate with titania to manufacture a titania carrier. Then 150 ° C
After drying overnight at 70 ° C., it was baked at 700 ° C. for 3 hours.

【0018】水100mlに五酸化バナジウム20g、
パラモリブデン酸アンモニウム4.9g及び蓚酸46g
を溶解した水溶液(担持用液)に上記のコーティングで
得たチタニア担体を室温で3時間浸漬し、液切り後、6
0℃で5時間、120℃で一夜それぞれ乾燥し、更に5
00℃で3時間焼成した。この様にして調製した触媒
(触媒A)の組成は、V2 5 6.9wt%、MoO3
1.4wt%、TiO234.0wt%、残部はハニカ
ム基材であった。
20 g of vanadium pentoxide in 100 ml of water,
Ammonium paramolybdate 4.9g and oxalic acid 46g
The titania carrier obtained by the above coating was immersed in an aqueous solution (solution for supporting) in which the above was dissolved at room temperature for 3 hours, and after draining, 6
Dry at 0 ° C for 5 hours and 120 ° C overnight, then
It was baked at 00 ° C. for 3 hours. The composition of the catalyst thus prepared (catalyst A) was V 2 O 5 6.9 wt%, MoO 3
1.4 wt%, TiO 2 34.0 wt%, and the balance was a honeycomb substrate.

【0019】<活性試験>ガラス製反応器に上記の触媒
30ccを充填し、常圧固定床流通反応装置で活性試験
を行った。触媒固定床の寸法は、縦26mm、横26m
m、高さ44mmであった。原料ガス組成は、モノクロ
ロベンゼン(MCB)100ppm、一酸化窒素(N
O)100ppm、O2 10vol%、残りはN2 であ
った。この原料ガスをSV5000h-1で通しながら昇
温し、200℃、250℃、300℃、350℃、40
0℃の各温度で1時間保持した後、反応装置通過ガスを
マイクロシリンジでサンプリングし、ガスクロマトグラ
フィー法で分析した。分析法は絶対検量線法で行った。
結果を表−1に示す。なお、表−1中の各記号の意義は
表−3に示す通りである。
<Activity test> A glass reactor was filled with 30 cc of the above catalyst, and an activity test was carried out in an atmospheric fixed bed flow reactor. The size of the fixed catalyst bed is 26 mm in height and 26 m in width.
The height was 44 mm. The composition of the source gas is monochlorobenzene (MCB) 100 ppm, nitric oxide (N
O) was 100 ppm, O 2 was 10 vol%, and the balance was N 2 . The temperature is raised while passing this raw material gas at SV5000h -1 to 200 ° C, 250 ° C, 300 ° C, 350 ° C, 40 ° C.
After holding each temperature of 0 ° C. for 1 hour, the gas passed through the reactor was sampled with a microsyringe and analyzed by a gas chromatography method. The analytical method was an absolute calibration curve method.
The results are shown in Table 1. The meaning of each symbol in Table-1 is as shown in Table-3.

【0020】実施例2 実施例1において、原料ガスにアンモニアを100pp
m加えたこと以外は、実施例1と同様な方法で触媒の活
性試験を行った。結果を表−1に示す。 実施例3 実施例1において、N2 ガスの一部を水分に代えること
により水分含有量を12vol%とした原料ガスを使用
し、温度200℃における試験の前に150℃の試験を
行ったこと以外は実施例1と同様にして触媒の活性試験
を行った。結果を表−1に示す。
Example 2 In Example 1, 100 pp of ammonia was used as a source gas.
A catalyst activity test was conducted in the same manner as in Example 1 except that m was added. The results are shown in Table 1. Example 3 In Example 1, a raw material gas having a water content of 12 vol% by replacing a part of N 2 gas with water was used, and a test at 150 ° C. was performed before a test at a temperature of 200 ° C. A catalyst activity test was conducted in the same manner as in Example 1 except for the above. The results are shown in Table 1.

【0021】実施例4 実施例1において、バナジウム及びモリブデン担持用液
中のバナジウム及びモリブデンの濃度を変えたこと以外
は実施例1と同様な方法によって触媒(触媒B)を調製
した。得られた触媒の組成は、V2 5 6.6wt%、
MoO3 5.2wt%、TiO2 32.9wt%であっ
た。この触媒を用いて、温度200℃における試験の前
に150℃の試験を行ったこと以外は実施例1と同様に
して触媒の活性試験を行った。結果を表−1に示す。
Example 4 A catalyst (catalyst B) was prepared in the same manner as in Example 1 except that the concentrations of vanadium and molybdenum in the liquid for supporting vanadium and molybdenum were changed. The composition of the obtained catalyst was V 2 O 5 6.6 wt%,
MoO 3 was 5.2 wt% and TiO 2 was 32.9 wt%. Using this catalyst, an activity test of the catalyst was performed in the same manner as in Example 1 except that the test at 150 ° C. was performed before the test at the temperature of 200 ° C. The results are shown in Table 1.

【0022】比較例1 実施例1において、パラモリブデン酸アンモニウムを使
用せず、五酸化バナジウムを単独で使用して実施例1と
同様な方法でモリブデンを含まない触媒(触媒C)を調
製した。得られた触媒の組成は、V2 5 8.8wt
%、TiO2 37.1wt%であった。この触媒につい
て実施例1と同様な方法で触媒の活性試験を行った。結
果を表−1に示す。
Comparative Example 1 A catalyst containing no molybdenum (Catalyst C) was prepared in the same manner as in Example 1 except that ammonium paramolybdate was not used and vanadium pentoxide was used alone. The composition of the obtained catalyst was V 2 O 5 8.8 wt.
%, And TiO 2 was 37.1 wt%. This catalyst was tested for activity in the same manner as in Example 1. The results are shown in Table 1.

【0023】比較例2 比較例1の触媒(触媒C)を使用し、原料ガスにアンモ
ニアを100ppm加えたこと以外は実施例1と同様な
方法で触媒の活性試験を行った。結果を表−1に示す。 比較例3 比較例1の触媒(触媒C)を使用し、実施例1において
2 ガスの一部を水分に代えることによって水分含有量
が12vol%の原料ガスを用いたこと以外は実施例1
と同様な方法で触媒の活性試験を行った。結果を表−1
に示す。
Comparative Example 2 A catalyst activity test was conducted in the same manner as in Example 1 except that the catalyst of Comparative Example 1 (Catalyst C) was used and 100 ppm of ammonia was added to the raw material gas. The results are shown in Table 1. Comparative Example 3 Example 1 was repeated except that the catalyst of Comparative Example 1 (Catalyst C) was used and a raw material gas having a water content of 12 vol% was used by replacing a part of N 2 gas with water.
A catalyst activity test was conducted in the same manner as in. The results are shown in Table-1
Shown in

【0024】実施例5 実施例1の触媒(触媒A)を使用し、都市ゴミ焼却炉の
排ガスの処理試験を行った。試験装置としては、実施例
1と同様の活性試験装置を使用し、ポリ塩化ジベンゾダ
イオキシン類(PCDDs)118.4ng/Nm3
ポリ塩化ジベンゾフラン類(PCDFs)902ng/
Nm3 及び窒素酸化物(いわゆるNOX)75ppmを
含有する排ガスを、温度200℃で触媒Aの充填層をS
V3000h -1で通過させることにより、ガス中の塩素
化有機化合物及びNOXの分解を連続的に行った。処理
後の排ガスの分析は実施例1と同様にして行った。
Example 5 The catalyst of Example 1 (Catalyst A) was used in a municipal waste incinerator.
An exhaust gas treatment test was conducted. As a test device,
Using the same activity test equipment as in No. 1, polychlorinated dibenzoda
Ioxins (PCDDs) 118.4 ng / Nm3,
Polychlorinated dibenzofurans (PCDFs) 902ng /
Nm3And nitrogen oxides (so-called NOX) 75ppm
The exhaust gas contained in a packed bed of catalyst A at a temperature of 200 ° C.
V3000h -1Chlorine in the gas is passed by
The organic compounds and NOX were decomposed continuously. processing
The subsequent analysis of exhaust gas was performed in the same manner as in Example 1.

【0025】処理後の排ガス中の塩素化有機化合物とN
OXとの含有量及び分解率を表−2に示す。
Chlorinated organic compounds and N in exhaust gas after treatment
Table 2 shows the content with OX and the decomposition rate.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 (表−3) A :V2 5 6.9wt%、MoO3 1.4wt% TiO2 34.0wt% B :V2 5 6.6wt%、MoO3 5.2wt% TiO2 32.9wt% C :V2 5 8.8wt%、TiO2 37.1wt% MCB:モノクロロベンゼン(Table 3) (Table 3) A: V 2 O 5 6.9 wt%, MoO 3 1.4 wt% TiO 2 34.0 wt% B: V 2 O 5 6.6 wt%, MoO 3 5.2 wt% TiO 2 32.9 wt% C: V 2 O 5 8.8 wt%, TiO 2 37.1 wt% MCB: monochlorobenzene

【0029】上記の実施例1〜4から明らかな様に、バ
ナジウム及びモリブデンを含む混合酸化物触媒により、
モノクロルベンゼンの分解反応(脱塩素化反応)が起こ
ることが判る。また、実施例5より、燃焼排ガス中で特
に問題となるダイオキシン等の塩素化有機化合物の分解
も効率的に行われることが判る。また、アンモニアを導
入すると、窒素酸化物も同時に除去可能である。上記の
効果はバナジウム酸化物触媒単独よりも、本発明方法に
用いるバナジウム・モリブデン混合酸化物触媒のほうが
高い。
As is clear from Examples 1 to 4 above, the mixed oxide catalyst containing vanadium and molybdenum
It is understood that the decomposition reaction (dechlorination reaction) of monochlorobenzene occurs. Further, it can be seen from Example 5 that decomposition of chlorinated organic compounds such as dioxins, which is a particular problem in combustion exhaust gas, is efficiently performed. When ammonia is introduced, nitrogen oxides can be removed at the same time. The above effect is higher in the vanadium / molybdenum mixed oxide catalyst used in the method of the present invention than in the vanadium oxide catalyst alone.

【0030】[0030]

【発明の効果】以上説明した通り、本発明方法の、低コ
ストでしかも不純物に耐久性のある、バナジウムとモリ
ブデンとを含む混合酸化物触媒を使用することにより、
社会的に問題になっている都市ごみや産業廃棄物などの
燃焼排ガス中のダイオキシン等の有害な塩素化有機化合
物の除去に有効な方法が提供される。
As described above, by using the mixed oxide catalyst containing vanadium and molybdenum, which is low in cost and resistant to impurities, according to the method of the present invention,
An effective method is provided for removing harmful chlorinated organic compounds such as dioxins in combustion exhaust gas such as municipal waste and industrial waste, which are socially problematic.

【図面の簡単な説明】[Brief description of drawings]

【図1】チタニア担持触媒の調製工程の一例を示すフロ
ーチャート図である。
FIG. 1 is a flowchart showing an example of a process for preparing a titania-supported catalyst.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 塩素化有機化合物を含有するガスを10
0〜500℃の温度において、0.5〜25vol%の
酸素の存在下、バナジウム及びモリブデンを含む酸化物
触媒と接触させることを特徴とする塩素化有機化合物の
分解方法。
1. A gas containing a chlorinated organic compound is added to 10
A method for decomposing a chlorinated organic compound, which comprises contacting with an oxide catalyst containing vanadium and molybdenum in the presence of 0.5 to 25 vol% oxygen at a temperature of 0 to 500 ° C.
【請求項2】 酸化物触媒がチタニアに担持され、チタ
ニアに対するバナジウム酸化物およびモリブデン酸化物
の担持量がそれぞれ0.5〜50wt%及び0.1〜5
0wt%である請求項1記載の分解方法。
2. The oxide catalyst is supported on titania, and the supported amounts of vanadium oxide and molybdenum oxide on titania are 0.5 to 50 wt% and 0.1 to 5, respectively.
The decomposition method according to claim 1, which is 0 wt%.
JP20078595A 1994-09-01 1995-08-07 Decomposition method of chlorinated organic compounds Expired - Fee Related JP3538984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20078595A JP3538984B2 (en) 1994-09-01 1995-08-07 Decomposition method of chlorinated organic compounds

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20867394 1994-09-01
JP6-208673 1994-09-01
JP20078595A JP3538984B2 (en) 1994-09-01 1995-08-07 Decomposition method of chlorinated organic compounds

Publications (2)

Publication Number Publication Date
JPH08117557A true JPH08117557A (en) 1996-05-14
JP3538984B2 JP3538984B2 (en) 2004-06-14

Family

ID=26512389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20078595A Expired - Fee Related JP3538984B2 (en) 1994-09-01 1995-08-07 Decomposition method of chlorinated organic compounds

Country Status (1)

Country Link
JP (1) JP3538984B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027697A (en) * 1995-08-08 2000-02-22 Ebara Corporation Method and apparatus for treating combustion exhaust gases
JP2002370014A (en) * 2001-06-13 2002-12-24 Babcock Hitachi Kk Exhaust gas treatment system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027697A (en) * 1995-08-08 2000-02-22 Ebara Corporation Method and apparatus for treating combustion exhaust gases
JP2002370014A (en) * 2001-06-13 2002-12-24 Babcock Hitachi Kk Exhaust gas treatment system

Also Published As

Publication number Publication date
JP3538984B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
US5283041A (en) Catalytic incineration of organic compounds
KR100239294B1 (en) Catalytic method and device for controlling voc, co and halogenated organic emissions
US5292704A (en) Catalyst for destruction of organohalogen compounds
US5578283A (en) Catalytic oxidation catalyst and method for controlling VOC, CO and halogenated organic emissions
EP0471033B1 (en) Catalytic destruction of organohalogen compounds
KR100533877B1 (en) Catalyst for Removing Aromatic Halogenated Compounds Comprising Dioxin, Carbon Monoxide, and Nitrogen Oxide and Use Thereof
JPH1057760A (en) Method for decomposing chlorinated organic compound
JP3538984B2 (en) Decomposition method of chlorinated organic compounds
KR100402430B1 (en) Catalyst for decomposition of toxic pollutants and producing process thereof
JP3509286B2 (en) Decomposition method of chlorinated organic compounds
JP3744587B2 (en) Method for decomposing chlorinated organic compounds
JPH1099646A (en) Decomposition of chlorinated organic compound
KR100502853B1 (en) Cr·W·TiO2 CATALYST AND METHOD FOR THE REMOVAL OF DIOXINS
JPH08318135A (en) Method for decomposing chlorinated organic compound
JP2005125236A (en) Catalyst for removing aromatic halogen compound including dioxin, carbon monoxide, and nitrogen oxide and use thereof
JP2000042409A (en) Catalyst for decomposing organochlorine compound and treatment of combustion exhaust gas
JPH1085559A (en) Decomposing method for chlorinated organic compound
JPH1066829A (en) Decomposition of chlorinated organic compound
EP0698411A1 (en) Method for removing nitrous oxide
KR100502852B1 (en) Cr·W·Ba·TiO2 CATALYST AND METHOD FOR THE REMOVAL OF DIOXINS
KR100503227B1 (en) Oxidation catalyst for remonal of chlorinated volatile organic compounds and method for preparing thereof
JPH09192455A (en) Decomposing method of chlorinated organic compound
RU2488441C1 (en) Catalyst for oxidative decomposition of organochlorine compounds in gases and method for production thereof
JPH11156191A (en) Cleaning catalyst and cleaning method for waste gas
KR20010077083A (en) Oxidation Catalyst for Emission Control of Dioxin in Flue Gas, method of preparing and using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees