JPH1085559A - Decomposing method for chlorinated organic compound - Google Patents

Decomposing method for chlorinated organic compound

Info

Publication number
JPH1085559A
JPH1085559A JP8242030A JP24203096A JPH1085559A JP H1085559 A JPH1085559 A JP H1085559A JP 8242030 A JP8242030 A JP 8242030A JP 24203096 A JP24203096 A JP 24203096A JP H1085559 A JPH1085559 A JP H1085559A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
chlorinated organic
organic compound
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8242030A
Other languages
Japanese (ja)
Inventor
Ken Shiragami
研 白神
Kenichi Kiyono
健一 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP8242030A priority Critical patent/JPH1085559A/en
Publication of JPH1085559A publication Critical patent/JPH1085559A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To decompose a harmful chlorinated organic compound such as dioxin by bringing gas containing the chlorinated organic compound into contact with a catalyst containing specified three components at the specified temperature and under the presence of oxygen of specified vol.%. SOLUTION: Gas containing a chlorinated organic compound is brought into contact with a catalyst at the temperature of 100-350 deg.C and under the presence of oxygen of 0.5-25vol.%. The catalyst is composed of three components of an oxide of at least an element selected out of a vanadium oxide, a tungsten oxide, an erbium, a neodymium and the like. The shape of the oxide catalyst is the columnar shape, spherical shape, honeycomb shape or the like. The catalyst is particularly of superior resistance to toxicity against sulflur oxide. A chlorinated organic compound such as dioxin contained in exhaust combustion gas in municipal waste or the like, an aromatic chlorinated compound as a precursor of dioxin or the like is decomposed and removed by the catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、塩素化有機化合物
の分解方法に関するものであり、詳しくは、都市ごみや
産業廃棄物などの燃焼に伴って発生する排ガス中のダイ
オキシン等の塩素化有機化合物を、触媒に接触させて分
解する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing chlorinated organic compounds, and more particularly, to chlorinated organic compounds such as dioxins in exhaust gas generated by combustion of municipal waste and industrial waste. Is brought into contact with a catalyst to decompose it.

【0002】[0002]

【従来の技術】都市ごみや産業廃棄物などの燃焼排ガス
中には、通常ダイオキシンやその前駆体と考えられる芳
香族塩素化合物などの塩素化有機化合物が含有されてい
る。一般に塩素化有機化合物は程度の差はあるが、毒性
が強く、特にダイオキシンは動植物に対して催奇性など
の著しい悪影響を与える程の猛毒であり、燃焼排ガス中
のその含有量を極力減少させることが必要である。その
ため、このダイオキシン等の塩素化有機化合物の除去法
が、例えば活性炭吸着法、熱分解法、或いは接触分解法
等種々提案されている。その中で、接触分解法は500
℃以下の条件で処理を行うことが出来る優れた方法であ
る。
2. Description of the Related Art Combustion exhaust gas such as municipal waste and industrial waste contains chlorinated organic compounds such as dioxins and aromatic chlorine compounds which are considered to be precursors thereof. In general, chlorinated organic compounds are more or less toxic, but dioxin is a very toxic substance that has a significant adverse effect on animals and plants, such as teratogenicity, and its content in flue gas should be reduced as much as possible. is required. Therefore, various methods for removing chlorinated organic compounds such as dioxin have been proposed, for example, an activated carbon adsorption method, a thermal decomposition method, or a catalytic decomposition method. Among them, the catalytic cracking method is 500
This is an excellent method that can perform the treatment under the condition of not more than ℃.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来提
案されていた接触分解法における触媒は、燃焼排ガス中
に含まれている窒素酸化物、硫黄酸化物、重金属ヒュー
ム等の不純物に対し、耐久性が欠けると言う問題があ
る。また、従来の白金やパラジウムを用いる触媒は高価
である。本発明は上記のような実情に鑑みなされたもの
であり、その目的は不純物に対して耐久性があり、かつ
比較的安価な触媒を使用した経済的に有利な塩素化有機
化合物の分解方法を提供することにある。
However, the catalyst in the conventionally proposed catalytic cracking method has a durability against impurities such as nitrogen oxides, sulfur oxides and heavy metal fumes contained in flue gas. There is a problem of lacking. Further, conventional catalysts using platinum or palladium are expensive. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an economically advantageous method for decomposing chlorinated organic compounds using a relatively inexpensive catalyst that is resistant to impurities. To provide.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明の要旨
は、塩素化有機化合物を含有するガスを触媒と接触させ
て分解させる方法において、該ガスを100〜350℃
の温度で、0.5〜25体積%の酸素の存在下、下記の
(A)、(B)及び(C)の三成分を含む触媒と接触させること
を特徴とする塩素化有機化合物の分解方法、に存してい
る。
That is, the gist of the present invention is to provide a method for decomposing a gas containing a chlorinated organic compound by bringing the gas into contact with a catalyst at a temperature of 100 to 350 ° C.
At a temperature of 0.5 to 25% by volume of oxygen,
A method for decomposing a chlorinated organic compound, comprising contacting with a catalyst containing the three components (A), (B) and (C).

【0005】(A)バナジウム酸化物 (B)タングステン酸化物 (C)エルビウム、ネオジム、イッテルビウム及びホルミ
ウムからなる群から選ばれた少なくとも一種の元素の酸
化物 また、本発明の要旨は、触媒がチタニアに担持され、チ
タニアに対する(A)バナジウム酸化物、(B)タングステン
酸化物、及び(C)エルビウム、ネオジム、イッテルビウ
ム及びホルミウムからなる群から選ばれた少なくとも一
種の元素の酸化物、の担持量がそれぞれ(A)0.5〜5
0重量%、(B)0.5〜50重量%及び(C)0.1〜50
重量%である上記の分解方法、にも存している。更に、
本発明の要旨は、触媒中のバナジウム酸化物の含有量に
対しタングステン酸化物の含有量が0.1〜30重量倍
である上述の分解方法にも存している。
(A) Vanadium oxide (B) Tungsten oxide (C) Oxide of at least one element selected from the group consisting of erbium, neodymium, ytterbium and holmium Supported on the titania (A) vanadium oxide, (B) tungsten oxide, and (C) erbium, neodymium, oxide of at least one element selected from the group consisting of ytterbium and holmium, the loading amount of Each (A) 0.5-5
0% by weight, (B) 0.5-50% by weight and (C) 0.1-50%
The above-mentioned decomposition method, which is weight%, also exists. Furthermore,
The gist of the present invention also resides in the above-described decomposition method in which the content of tungsten oxide is 0.1 to 30 times by weight the content of vanadium oxide in the catalyst.

【0006】[0006]

【発明の実施の形態】以下、本発明の構成について詳細
に説明する。本発明で処理の対象とする排ガスとして
は、例えば都市ごみや産業廃棄物などの燃焼排ガス等が
挙げられる。このような燃焼排ガスには、通常、2,
3,7,8−テトラクロロジベンゾダイオキシン、2,
3,4,7,8−ペンタクロロジベンゾフランで代表さ
れるダイオキシン類が10〜40ng/Nm3含まれて
いる。更に、これらダイオキシン類の前駆体であるモノ
クロロベンゼン、ジクロロベンゼン又はo−クロロフェ
ノール、クロロベンゾフラン等の塩素化有機化合物も含
まれている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of the present invention will be described below in detail. Examples of the exhaust gas to be treated in the present invention include combustion exhaust gas such as municipal waste and industrial waste. Such flue gases usually include 2,
3,7,8-tetrachlorodibenzodioxin, 2,
Dioxins represented by 3,4,7,8-pentachlorodibenzofuran are contained in an amount of 10 to 40 ng / Nm 3 . Further, chlorinated organic compounds such as monochlorobenzene, dichlorobenzene, o-chlorophenol, and chlorobenzofuran, which are precursors of these dioxins, are also included.

【0007】本発明においては、塩素化有機化合物の分
解触媒として、以下の(A)、(B)及び(C)の三成分、即ち
(A)バナジウム酸化物、(B)タングステン酸化物、及び
(C)エルビウム、ネオジム、イッテルビウム及びホルミ
ウムからなる群から選ばれた少なくとも一種の元素の酸
化物、を含む触媒を使用する。このような酸化物触媒
は、特に硫黄酸化物に対する耐被毒性に優れている。酸
化物触媒は、通常、担体に担持して使用されるが、その
担体としては、シリカ、アルミナ、珪藻土等を使用する
ことも出来るが、チタニア(TiO2)を使用するのが好
ましい。特に、燃焼排ガス中に硫黄酸化物が含まれてい
る場合には、チタニアを用いるのが好適である。
In the present invention, the following three components (A), (B) and (C) are used as catalysts for decomposing chlorinated organic compounds:
(A) vanadium oxide, (B) tungsten oxide, and
(C) A catalyst containing an oxide of at least one element selected from the group consisting of erbium, neodymium, ytterbium and holmium is used. Such an oxide catalyst is particularly excellent in poisoning resistance to sulfur oxides. The oxide catalyst is usually used by being supported on a carrier. As the carrier, silica, alumina, diatomaceous earth and the like can be used, but titania (TiO 2 ) is preferably used. In particular, when sulfur oxides are contained in the combustion exhaust gas, it is preferable to use titania.

【0008】バナジウム酸化物及びタングステン酸化物
の担持量は担体に対し、通常、それぞれ0.5〜50重
量%、好ましくは2〜40重量%である。また、エルビ
ウム、ネオジム、イッテルビウム及びホルミウムからな
る群から選ばれた少なくとも一種の元素の酸化物の担持
量は担体に対し、通常0.1〜50重量%、好ましくは
0.3〜40重量%である。
[0008] The loading amount of vanadium oxide and tungsten oxide is usually 0.5 to 50% by weight, preferably 2 to 40% by weight, based on the carrier. The amount of the oxide of the oxide of at least one element selected from the group consisting of erbium, neodymium, ytterbium and holmium is usually 0.1 to 50% by weight, preferably 0.3 to 40% by weight based on the carrier. is there.

【0009】更に、バナジウム酸化物の含有量に対する
タングステン酸化物の含有量は、通常0.1〜30重量
倍、好ましくは1〜10重量倍である。また、バナジウ
ム酸化物の含有量に対するエルビウム、ネオジム、イッ
テルビウム及びホルミウムからなる群から選ばれた少な
くとも一種の元素の酸化物の含有量は、通常0.01〜
3重量倍、好ましくは0.1〜1重量倍である。
Further, the content of the tungsten oxide to the content of the vanadium oxide is usually 0.1 to 30 times by weight, preferably 1 to 10 times by weight. The content of the oxide of at least one element selected from the group consisting of erbium, neodymium, ytterbium and holmium with respect to the content of the vanadium oxide is usually 0.01 to
It is 3 times by weight, preferably 0.1 to 1 time by weight.

【0010】触媒の大きさ及び形状は、一般に、原料性
状、ダストの有無、ガス量、反応器の大きさ等により決
定される。そして、触媒の形状としては、円柱状、球
状、ハニカム状、板状などが挙げられる。ハニカム触媒
のような形状の触媒を製造する場合は、担体成分と触媒
成分もしくはその原料とを成形助剤とともに混練した後
に、押出成形法等の成形法によりハニカム状等の所望の
形状に賦形する方法や、ハニカムを構成する基材上にチ
タニア等の担体成分及び触媒成分を含浸・担持する方法
を用いることができる。
The size and shape of the catalyst are generally determined by the properties of the raw material, the presence or absence of dust, the amount of gas, the size of the reactor, and the like. Examples of the shape of the catalyst include a columnar shape, a spherical shape, a honeycomb shape, and a plate shape. When manufacturing a catalyst having a shape such as a honeycomb catalyst, the support component and the catalyst component or the raw material thereof are kneaded together with a forming aid, and then formed into a desired shape such as a honeycomb shape by a forming method such as an extrusion forming method. And a method in which a carrier component such as titania and a catalyst component are impregnated and supported on a substrate constituting a honeycomb.

【0011】具体的には、次のような方法が例示され
る。 (1)メタバナジン酸アンモニウムとパラタングステン
酸アンモニウムを10%モノエタノールアミン水溶液に
溶解する。 (2)硝酸エルビウム六水和物、硝酸ネオジム六水和
物、硝酸イッテルビウム四水和物、硝酸ホルミウム四水
和物の一種又は二種以上を水に溶解する。 (3)粉末状のチタニアと(1)及び(2)で調製した
水溶液とをニーダーで混練する。 (4)混練物を、(a)押出成形し、50〜150℃で3
〜50時間乾燥後、空気気流中、空間速度(以下、「S
V」と略記する)100〜2000(h-1)、温度45
0〜650℃の条件下で焼成する、もしくは(b)50〜
150℃で3〜50時間乾燥後、空気雰囲気下で450
〜650℃の条件下で焼成したのち、成形する。
Specifically, the following method is exemplified. (1) Dissolve ammonium metavanadate and ammonium paratungstate in a 10% aqueous monoethanolamine solution. (2) One or more of erbium nitrate hexahydrate, neodymium nitrate hexahydrate, ytterbium nitrate tetrahydrate, and holmium nitrate tetrahydrate are dissolved in water. (3) Kneading the powdery titania and the aqueous solution prepared in (1) and (2) with a kneader. (4) The kneaded material is (a) extruded and formed at 50 to 150 ° C.
After drying for ~ 50 hours, the space velocity (hereinafter referred to as "S
V "), 100-2000 (h -1 ), temperature 45
Baking under the condition of 0 to 650 ° C, or (b) 50 to
After drying at 150 ° C. for 3 to 50 hours, 450 under an air atmosphere.
After firing under the condition of 条件 下 650 ° C., it is molded.

【0012】また、含浸法により触媒を調製する場合
は、円柱状、球状、ハニカム状、板状等、所望の形状の
基材上にまず担体成分をコーティングし、その後上記の
(1)、(2)のようにして調製した水溶液を用いて触
媒成分を含浸した上で、焼成する方法を用いることがで
きる。バナジウム酸化物の原料としては、特に限定され
ないが、五酸化バナジウム(V25)もしくはメタバナ
ジン酸アンモニウムを使用することが好ましい。これら
を蓚酸水溶液もしくはモノエタノールアミン水溶液に溶
解してバナジウム原料液とする。タングステン酸化物の
原料についても特に限定されないが、パラタングステン
酸アンモニウムもしくはメタタングステン酸アンモニウ
ムが好ましく、これを熱水等に溶解してタングステンの
原料液とする。
When the catalyst is prepared by the impregnation method, a carrier component is first coated on a substrate having a desired shape such as a columnar shape, a spherical shape, a honeycomb shape, and a plate shape, and then the above-mentioned (1), ( A method in which the catalyst component is impregnated with the aqueous solution prepared as in 2) and then calcined can be used. The raw material of the vanadium oxide is not particularly limited, but it is preferable to use vanadium pentoxide (V 2 O 5 ) or ammonium metavanadate. These are dissolved in an aqueous oxalic acid solution or an aqueous monoethanolamine solution to prepare a vanadium raw material liquid. Although there is no particular limitation on the raw material of the tungsten oxide, ammonium paratungstate or ammonium metatungstate is preferable, and this is dissolved in hot water or the like to form a tungsten raw material liquid.

【0013】エルビウム、ネオジム、イッテルビウム及
びホルミウムの酸化物の原料も特に限定されるものでは
ないが、酸化エルビウムの原料としては硝酸エルビウム
六水和物が、酸化ネオジムの原料としては硝酸ネオジム
六水和物が、酸化イッテルビウムの原料としては硝酸イ
ッテルビウム四水和物が、また酸化ホルミウムの原料と
しては硝酸ホルミウム四水和物が、水溶性や入手のし易
さ等の点で好適であり、熱水等に溶解してそれぞれの原
料液とする。
The raw materials of the oxides of erbium, neodymium, ytterbium and holmium are not particularly limited, but erbium oxide raw material is erbium nitrate hexahydrate, and neodymium oxide raw material is neodymium nitrate hexahydrate. As a raw material of ytterbium oxide, ytterbium nitrate tetrahydrate is preferable, and as a raw material of holmium oxide, holmium nitrate tetrahydrate is preferable in terms of water solubility and availability. Etc. to make each raw material liquid.

【0014】これらの原料液は、沈殿生成や反応等の不
都合がない限り、原料を混合して調製しても、また調製
後の溶液を混合して使用してもよい。基材を用いた触媒
において、担体成分としてはチタニアの他に、例えばシ
リカ(SiO2)やアルミナ(Al23)等を併用しても
よいが、その際のチタニアの量は、製造後の触媒重量中
の30重量%以上とするのがよい。また、担体成分及び
触媒成分の合計量は、製造後の触媒重量の5〜70重量
%、好ましくは10〜50重量%とするのがよい。
These raw material liquids may be prepared by mixing the raw materials, or may be used by mixing the prepared solutions, as long as there is no inconvenience such as precipitation or reaction. In the catalyst using the base material, as a carrier component, for example, silica (SiO 2 ) or alumina (Al 2 O 3 ) may be used in addition to titania. Is preferably 30% by weight or more based on the weight of the catalyst. The total amount of the carrier component and the catalyst component is 5 to 70% by weight, preferably 10 to 50% by weight based on the weight of the catalyst after production.

【0015】得られた触媒組成は、混練・成形法のよう
に添加した原料が全て触媒成分となると考えてよい時に
は、それぞれの金属等の塩などの原料成分が対応する金
属等の酸化物に変化したものとして、添加量から推算す
ることができる。また、含浸による方法で製造されたも
のや製造方法が不明の場合は、触媒をフッ化水素酸処理
後、硫酸アンモニウムで融解した上でプラズマ発光分析
(ICP−AES分析)する方法により測定できる。
[0015] When it can be considered that all the raw materials added as in the kneading and molding method can be considered as the catalyst components, the raw material components such as salts of each metal and the like are converted to the corresponding oxides of the metal and the like. As a change, it can be estimated from the added amount. In the case where the catalyst is manufactured by the impregnation method or the manufacturing method is unknown, the catalyst can be measured by a method of treating the catalyst with hydrofluoric acid, melting it with ammonium sulfate, and then performing a plasma emission analysis (ICP-AES analysis).

【0016】本発明においては、上記のように調製して
得られた触媒を使用し、100〜350℃、0.5〜2
5体積%、好ましくは1〜15体積%の酸素の存在下、
塩素化有機化合物を分解する。温度が100℃未満では
分解反応が起きにくく、350℃を超えると分解は進行
するが、熱消費量が多く、触媒の耐久性にも支障を来し
やすく、また分解生成物からのダイオキシン再生成の可
能性も高くなる。
In the present invention, the catalyst prepared as described above is used at 100 to 350 ° C. and 0.5 to 2 ° C.
In the presence of 5% by volume, preferably 1 to 15% by volume of oxygen,
Decomposes chlorinated organic compounds. When the temperature is lower than 100 ° C., the decomposition reaction hardly occurs. When the temperature is higher than 350 ° C., the decomposition proceeds, but the heat consumption is large, the durability of the catalyst is easily affected, and dioxin is regenerated from the decomposition products. The likelihood is high.

【0017】より好ましい分解温度は、150〜350
℃であり、中でも200〜300℃が特に好ましい。分
解時の圧力は、ゲージ圧で通常0〜9kg/cm2、好
ましくは0.01〜5kg/cm2である。また、SV
は、通常100〜50000h-1、好ましくは1000
〜20000h-1である。
A more preferred decomposition temperature is 150 to 350.
° C, and particularly preferably 200 to 300 ° C. The pressure at the time of decomposition is usually 0 to 9 kg / cm 2 , preferably 0.01 to 5 kg / cm 2 as a gauge pressure. Also, SV
Is usually 100 to 50,000 h -1 , preferably 1000
2020,000 h −1 .

【0018】本発明方法は、ダイオキシン(2,3,
7,8−テトラクロロジベンゾダイオキシン)換算で
0.05〜500ng/Nm3程度の濃度の塩素化有機
化合物を含有するガスを処理するのに好適であり、前述
の都市ごみや産業廃棄物の燃焼排ガスの処理に適用する
と効果が大きい。また、上記の接触分解前のガス中にア
ンモニアガスを導入すると塩素化物の除去と同時に窒素
化合物の分解も可能である。更に、処理対象のガス中に
多少の水分が含まれていても塩素化物の分解には影響が
なく、従ってこのような点からも、本発明における触媒
は実用上好ましい。
The method of the present invention comprises the steps of:
It is suitable for treating a gas containing a chlorinated organic compound at a concentration of about 0.05 to 500 ng / Nm 3 in terms of (7,8-tetrachlorodibenzodioxin), and burns the aforementioned municipal solid waste and industrial waste. The effect is great when applied to the treatment of exhaust gas. In addition, when ammonia gas is introduced into the gas before the above-mentioned catalytic decomposition, it is possible to simultaneously decompose nitrogen compounds and remove chlorinated substances. Furthermore, even if a small amount of water is contained in the gas to be treated, it does not affect the decomposition of the chlorinated product. Therefore, from such a point, the catalyst of the present invention is practically preferable.

【0019】なお、上述の塩素化有機化合物の処理は、
通常、燃焼排ガスをバグフィルターに通して粉塵などを
除去した後に行われ、分解処理後の排出ガスはアルカリ
洗浄塔などにより酸性ガスを除去した後、大気に放出す
る。ただし、粉塵、重金属が少ない燃焼排ガスの場合
は、バグフィルターによる前処理を省略することも出来
る。
The above-mentioned treatment of the chlorinated organic compound comprises
Usually, it is performed after the combustion exhaust gas is passed through a bag filter to remove dust and the like, and the exhaust gas after the decomposition treatment is released to the atmosphere after removing the acidic gas by an alkali washing tower or the like. However, in the case of a combustion exhaust gas containing little dust and heavy metals, the pretreatment by the bag filter can be omitted.

【0020】[0020]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はその要旨を超えない限り、以下の実施
例により限定されるものではない。 [実施例1] <触媒の調製>メタバナジン酸アンモニウム19.3g
とパラタングステン酸アンモニウム54.6gとを80
℃に加温した10重量%モノエタノールアミン水溶液3
00gに溶解し原料液(1)とした。次いで別の容器に
硝酸エルビウム六水和物7.2gを水60gに溶解し原
料液(2)とした。これらの原料液(1)及び原料液
(2)とチタニア粉末435gとを双腕型ニーダーを用
いて2時間混練し、得られた混練物を押出機により直径
3mmの円柱状に成形した。この成形物を130℃で一
夜乾燥し、更に600℃で3時間焼成し、触媒を得た。
触媒の組成は表に示す通りである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist. [Example 1] <Preparation of catalyst> 19.3 g of ammonium metavanadate
And 54.6 g of ammonium paratungstate in 80
10% by weight aqueous monoethanolamine solution heated to 3 ° C
The solution was dissolved in 00 g to obtain a raw material liquid (1). Next, in another container, 7.2 g of erbium nitrate hexahydrate was dissolved in 60 g of water to obtain a raw material liquid (2). The raw material liquid (1) and the raw material liquid (2) and 435 g of titania powder were kneaded for 2 hours using a double-arm kneader, and the obtained kneaded product was formed into a cylindrical shape having a diameter of 3 mm by an extruder. The molded product was dried at 130 ° C. overnight and calcined at 600 ° C. for 3 hours to obtain a catalyst.
The composition of the catalyst is as shown in the table.

【0021】<活性試験>内径43mmのガラス製反応
器に上記の触媒30ccを充填し、常圧固定床流通反応
装置で活性試験を行った。原料ガス組成は、モノクロロ
ベンゼン(MCB)100ppm、一酸化窒素(NO)
100ppm、アンモニア100ppm、酸素10体積
%、残りは窒素であった。この原料ガスをSV5000
-1で上記反応器に通しながら昇温し、温度200℃で
1時間保持した後、反応装置通過ガスをマイクロシリン
ジでサンプリングし、ガスクロマトグラフィー法で分析
した。分析は絶対検量線法で行った。結果を表に示す。
<Activity Test> A glass reactor having an inner diameter of 43 mm was charged with 30 cc of the above-mentioned catalyst, and an activity test was carried out in a fixed-bed flow reactor under normal pressure. The source gas composition is monochlorobenzene (MCB) 100 ppm, nitric oxide (NO)
100 ppm, ammonia 100 ppm, oxygen 10% by volume, and the balance was nitrogen. This source gas is SV5000
At h- 1 , the temperature was raised while passing through the reactor, and the temperature was maintained at 200 ° C. for 1 hour. Then, the gas passing through the reactor was sampled with a microsyringe and analyzed by gas chromatography. The analysis was performed by the absolute calibration method. The results are shown in the table.

【0022】[実施例2]実施例1において、硝酸エル
ビウム六水和物7.2gに代えて硝酸ネオジム六水和物
7.8gを用いたこと以外は、実施例1と同様にして触
媒を調製した。この触媒を用いて、実施例1と同様に触
媒の活性試験を行った。触媒の組成及び評価結果を表に
示す。
Example 2 A catalyst was prepared in the same manner as in Example 1 except that 7.8 g of neodymium nitrate hexahydrate was used instead of 7.2 g of erbium nitrate hexahydrate. Prepared. Using this catalyst, a catalyst activity test was conducted in the same manner as in Example 1. The composition of the catalyst and the evaluation results are shown in the table.

【0023】[実施例3]実施例1において、硝酸エル
ビウム六水和物7.2gに代えて硝酸イッテルビウム四
水和物10.9gを用いたこと以外は、実施例1と同様
にして触媒を調製した。この触媒を用いて、実施例1と
同様に触媒の活性試験を行った。触媒の組成及び評価結
果を表に示す。
Example 3 A catalyst was prepared in the same manner as in Example 1 except that 10.9 g of ytterbium nitrate tetrahydrate was used instead of 7.2 g of erbium nitrate hexahydrate. Prepared. Using this catalyst, a catalyst activity test was conducted in the same manner as in Example 1. The composition of the catalyst and the evaluation results are shown in the table.

【0024】[実施例4]実施例1において、硝酸エル
ビウム六水和物7.2gに代えて硝酸ホルミウム四水和
物6.7gを用いたこと以外は、実施例1と同様にして
触媒を調製した。この触媒を用いて、実施例1と同様に
触媒の活性試験を行った。触媒の組成及び評価結果を表
に示す。
Example 4 A catalyst was prepared in the same manner as in Example 1 except that 6.7 g of holmium nitrate tetrahydrate was used instead of 7.2 g of erbium nitrate hexahydrate. Prepared. Using this catalyst, a catalyst activity test was conducted in the same manner as in Example 1. The composition of the catalyst and the evaluation results are shown in the table.

【0025】[比較例1]実施例1において、硝酸エル
ビウム六水和物を加えなかったこと(即ち、原料液
(2)を添加しなかったこと)以外は実施例1と同様な
方法で触媒を調製した。この触媒について実施例1と同
様な方法で触媒の活性試験を行った。触媒の組成及び評
価結果を表に示す。
Comparative Example 1 A catalyst was prepared in the same manner as in Example 1 except that erbium nitrate hexahydrate was not added (that is, raw material liquid (2) was not added). Was prepared. This catalyst was tested for activity in the same manner as in Example 1. The composition of the catalyst and the evaluation results are shown in the table.

【0026】[0026]

【表1】 *1 比:比較例 *2 MCB:モノクロルベンゼン NO :一酸化窒素[Table 1] * 1 Ratio: Comparative example * 2 MCB: Monochlorobenzene NO: Nitric oxide

【0027】上記の各実施例のデータと比較例のデータ
とを対比すれば、(A)バナジウム酸化物、(B)タングステ
ン酸化物、及び(C)エルビウム、ネオジム、イッテルビ
ウム及びホルミウムからなる群から選ばれた少なくとも
一種の元素の酸化物、の三成分を含む触媒により塩素化
有機化合物を含むガスを処理するという本発明の方法に
より、モノクロルベンゼンの分解反応が効率的に起こっ
ていることが判る。従って、この混合酸化物触媒によ
り、ダイオキシン等の塩素化有機化合物の分解も可能で
あるものと考えられる。また、アンモニアを導入する
と、窒素酸化物も同時に除去可能である。
Comparing the data of each of the above examples with the data of the comparative example, it is clear that (A) vanadium oxide, (B) tungsten oxide, and (C) erbium, neodymium, ytterbium and holmium. It can be seen that the decomposition reaction of monochlorobenzene is efficiently performed by the method of the present invention in which the gas containing the chlorinated organic compound is treated with the catalyst containing the three components of the oxide of at least one selected element. . Therefore, it is considered that chlorinated organic compounds such as dioxin can be decomposed by the mixed oxide catalyst. When ammonia is introduced, nitrogen oxides can be removed at the same time.

【0028】[0028]

【発明の効果】以上説明した通り、本発明方法によれ
ば、低コストでしかも不純物に耐久性のある、(A)バナ
ジウム酸化物、(B)タングステン酸化物、及び(C)エルビ
ウム、ネオジム、イッテルビウム及びホルミウムからな
る群から選ばれた少なくとも一種の元素の酸化物、の三
成分を含む混合酸化物触媒を使用することにより、社会
的にも問題になっている都市ごみや産業廃棄物などの燃
焼排ガス中のダイオキシン等の有害な塩素化有機化合物
の除去に有効な方法が提供される。
As described above, according to the method of the present invention, (A) vanadium oxide, (B) tungsten oxide, and (C) erbium, neodymium, which are inexpensive and resistant to impurities. By using a mixed oxide catalyst containing three components of oxides of at least one element selected from the group consisting of ytterbium and holmium, municipal solid waste and industrial waste, which are socially problematic An effective method for removing harmful chlorinated organic compounds such as dioxin in combustion exhaust gas is provided.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 塩素化有機化合物を含有するガスを触媒
と接触させて分解させる方法において、該ガスを100
〜350℃の温度で、0.5〜25体積%の酸素の存在
下、下記の(A)、(B)及び(C)の三成分を含む触媒と接触
させることを特徴とする塩素化有機化合物の分解方法。 (A)バナジウム酸化物 (B)タングステン酸化物 (C)エルビウム、ネオジム、イッテルビウム及びホルミ
ウムからなる群から選ばれた少なくとも一種の元素の酸
化物
1. A method for decomposing a gas containing a chlorinated organic compound by contacting the gas with a catalyst,
A chlorinated organic compound, which is brought into contact with a catalyst containing the following three components (A), (B) and (C) at a temperature of ~ 350 ° C and in the presence of 0.5 to 25% by volume of oxygen: How to decompose the compound. (A) Vanadium oxide (B) Tungsten oxide (C) Oxide of at least one element selected from the group consisting of erbium, neodymium, ytterbium and holmium
【請求項2】 触媒がチタニアに担持され、チタニアに
対する(A)バナジウム酸化物、(B)タングステン酸化物、
及び(C)エルビウム、ネオジム、イッテルビウム及びホ
ルミウムからなる群から選ばれた少なくとも一種の元素
の酸化物、の担持量がそれぞれ(A)0.5〜50重量
%、(B)0.5〜50重量%及び(C)0.1〜50重量%
である請求項1記載の分解方法。
2. The catalyst is supported on titania, and (A) vanadium oxide, (B) tungsten oxide for titania,
And (C) an oxide of at least one element selected from the group consisting of erbium, neodymium, ytterbium and holmium, in which (A) 0.5 to 50% by weight and (B) 0.5 to 50% by weight, respectively. % By weight and (C) 0.1 to 50% by weight
The decomposition method according to claim 1, wherein
【請求項3】 触媒中のバナジウム酸化物の含有量に対
しタングステン酸化物の含有量が0.1〜30重量倍で
ある請求項1又は請求項2に記載の分解方法。
3. The decomposition method according to claim 1, wherein the content of the tungsten oxide is 0.1 to 30 times by weight the content of the vanadium oxide in the catalyst.
JP8242030A 1996-09-12 1996-09-12 Decomposing method for chlorinated organic compound Pending JPH1085559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8242030A JPH1085559A (en) 1996-09-12 1996-09-12 Decomposing method for chlorinated organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8242030A JPH1085559A (en) 1996-09-12 1996-09-12 Decomposing method for chlorinated organic compound

Publications (1)

Publication Number Publication Date
JPH1085559A true JPH1085559A (en) 1998-04-07

Family

ID=17083233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8242030A Pending JPH1085559A (en) 1996-09-12 1996-09-12 Decomposing method for chlorinated organic compound

Country Status (1)

Country Link
JP (1) JPH1085559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008082841A1 (en) * 2006-12-29 2008-07-10 Uop Llc Process for removing compounds from a vent stream

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008082841A1 (en) * 2006-12-29 2008-07-10 Uop Llc Process for removing compounds from a vent stream
US8071497B2 (en) 2006-12-29 2011-12-06 Uop Llc Process and facility for removing one or more compounds

Similar Documents

Publication Publication Date Title
JPH10314592A (en) Decomposition by catalyst of organic halogenated compound
JPH1057760A (en) Method for decomposing chlorinated organic compound
JP2005342711A (en) Denitration method of diesel engine exhaust gas
KR100533877B1 (en) Catalyst for Removing Aromatic Halogenated Compounds Comprising Dioxin, Carbon Monoxide, and Nitrogen Oxide and Use Thereof
JP3021420B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JPH1099646A (en) Decomposition of chlorinated organic compound
JP3860707B2 (en) Combustion exhaust gas treatment method
JP3457917B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JP3212577B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JPH1085559A (en) Decomposing method for chlorinated organic compound
JP2005313161A (en) Method for manufacturing denitration catalyst
KR100402430B1 (en) Catalyst for decomposition of toxic pollutants and producing process thereof
JP3474514B2 (en) Low temperature denitration catalyst and low temperature denitration method
JPH1066829A (en) Decomposition of chlorinated organic compound
JP3868705B2 (en) Combustion exhaust gas treatment method
JP3510541B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and treatment apparatus
JP3538984B2 (en) Decomposition method of chlorinated organic compounds
JP2000042409A (en) Catalyst for decomposing organochlorine compound and treatment of combustion exhaust gas
JP3509286B2 (en) Decomposition method of chlorinated organic compounds
JPH09192455A (en) Decomposing method of chlorinated organic compound
JP2000189756A (en) Treatment of combustion waste gas
JP3860708B2 (en) Combustion exhaust gas treatment method
JP3744587B2 (en) Method for decomposing chlorinated organic compounds
JPH08196871A (en) Decomposition of ammonia
KR100502853B1 (en) Cr·W·TiO2 CATALYST AND METHOD FOR THE REMOVAL OF DIOXINS

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050315