JPH08115855A - Lamination-type solid electrolytic capacitor - Google Patents

Lamination-type solid electrolytic capacitor

Info

Publication number
JPH08115855A
JPH08115855A JP6246526A JP24652694A JPH08115855A JP H08115855 A JPH08115855 A JP H08115855A JP 6246526 A JP6246526 A JP 6246526A JP 24652694 A JP24652694 A JP 24652694A JP H08115855 A JPH08115855 A JP H08115855A
Authority
JP
Japan
Prior art keywords
anode
contact
solid electrolytic
electrolytic capacitor
capacitor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6246526A
Other languages
Japanese (ja)
Other versions
JP3557564B2 (en
Inventor
Kazumi Naito
一美 内藤
Takuo Hirai
拓雄 平居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP24652694A priority Critical patent/JP3557564B2/en
Publication of JPH08115855A publication Critical patent/JPH08115855A/en
Application granted granted Critical
Publication of JP3557564B2 publication Critical patent/JP3557564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • H01G2/065Mountings specially adapted for mounting on a printed-circuit support for surface mounting, e.g. chip capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material

Abstract

PURPOSE: To suppress the occurrence of leakage current by providing a connection point etc., consisting of a valve operation metal surface at the anode part of a solid electrolytic capacitor element and joining each contact, anode parts, and anode lead terminals with a conductive material. CONSTITUTION: A contact 7 consisting of a valve operation metal surface is provided at an anode part 3 of each capacitor element 2. Each capacitor element 2 is placed on a lead terminal 1 by aligning the direction. Then, the anode parts 3 and the anode parts 3 and an anode lead leading part 1a are connected to the contact 7. Then, the area between the anode parts is filled with a conductive material 6 for connecting in one piece. On the other hand, the bottom part of the cathode part 4 of the laminated capacitor element 2 and the anode lead leading part 1b are electrically and mechanically connected by conductor paste, solder etc. The solid electrolytic capacitor element is put into practical applications after performing sealing formation by a transfer molding machine etc., by an encapsulating resin 5 such as epoxy resin, thus improving the leakage current value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は積層型固体電解コンデン
サに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated solid electrolytic capacitor.

【0002】[0002]

【従来の技術】電子機器の軽薄短小化に伴い、それに使
用する電子部品の1種である固体電解コンデンサにおい
ても小型化が要求されているが、一般には図2で示した
ような積層型の形状によって小型化の要求に対応してい
る。同図は、従来のチップ形状の固体電解コンデンサを
示す斜視図であるが、外装樹脂5の内部にある固体電解
コンデンサ素子2が複数枚方向を揃えて配置されてお
り、コンデンサ素子2の陽極部3と素子の表面に形成さ
れた陰極部4の底面とをそれぞれ一対の対向して配置さ
れたリード端子の陽極リード引出し部である凸部1aと
陰極リード引出し部である凸部1bに載置して接合され
た状態を示しており、別に用意したエポキシ樹脂等の外
装樹脂5によって封口されている。
2. Description of the Related Art As electronic devices have become lighter, thinner, shorter, and smaller, miniaturization has also been required for solid electrolytic capacitors, which is one type of electronic component used therein, but in general, a laminated type capacitor as shown in FIG. 2 is used. Depending on the shape, it can meet the demand for miniaturization. This figure is a perspective view showing a conventional chip-shaped solid electrolytic capacitor, but a plurality of solid electrolytic capacitor elements 2 inside the exterior resin 5 are arranged in the same direction, and the anode part of the capacitor element 2 is arranged. 3 and the bottom surface of the cathode portion 4 formed on the surface of the element are placed on the convex portion 1a which is the anode lead lead-out portion and the convex portion 1b which is the cathode lead lead-out portion of the pair of lead terminals arranged so as to face each other. In this case, they are joined together and are sealed with a separately prepared exterior resin 5 such as an epoxy resin.

【0003】[0003]

【発明が解決しようとする課題】前述したコンデンサ素
子の陰極部は、アルミニウム箔等の陽極基体の表面に半
導体層および導電体層が積層されているため、陽極部よ
り厚みが厚くなっている。従ってこの厚みの差はコンデ
ンサ素子の積層枚数が増加した場合より顕著となる。そ
して積層コンデンサ素子の陽極部は、陽極リード端子に
通常スポット溶接にて溶接される。しかしながら前記の
ように複数枚積層されたコンデンサ素子の場合は、陰極
部と陽極部との厚みの差が大きくなり、厚みの差の分を
変形させる加圧力を加えて陽極部をスポット溶接行うこ
とが必要となる。そのため陽極部、もしくは陰極部に応
力、歪等を発生させ、漏れ電流による不良率を増加させ
る問題があった。
The cathode portion of the capacitor element described above is thicker than the anode portion because the semiconductor layer and the conductor layer are laminated on the surface of the anode substrate such as aluminum foil. Therefore, this difference in thickness becomes more remarkable than when the number of laminated capacitor elements is increased. The anode part of the multilayer capacitor element is usually welded to the anode lead terminal by spot welding. However, in the case of a capacitor element in which a plurality of capacitors are laminated as described above, the difference in thickness between the cathode part and the anode part becomes large, and the anode part is spot-welded by applying a pressing force that deforms the difference in thickness. Is required. Therefore, there is a problem that stress, strain, etc. are generated in the anode part or the cathode part, and the defect rate due to leakage current increases.

【0004】又一方この厚みの差による隙間を解消すべ
く、スペーサーを入れスポット溶接を行うことも考えら
れるが、煩雑でありスペーサーと陽極部の未溶接部分に
外装樹脂が入り込む。その結果外装樹脂の熱膨張等によ
り、陽極部に欠陥を発生させ漏れ電流を上昇させるとい
う問題があった。本発明は、上記のような問題を解決す
るためになされたものであり、漏れ電流の発生を抑え、
歩留りの良好な積層型固体電解コンデンサを提供するこ
とを目的とする。
On the other hand, it is conceivable to insert a spacer and perform spot welding in order to eliminate the gap due to this difference in thickness, but this is complicated and the exterior resin enters the unwelded portion between the spacer and the anode. As a result, there has been a problem that thermal expansion or the like of the exterior resin causes defects in the anode portion and increases leakage current. The present invention has been made to solve the above problems, suppresses the generation of leakage current,
It is an object of the present invention to provide a laminated solid electrolytic capacitor having a good yield.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は、表面に
誘電体酸化被膜層を有する平板状の弁作用金属からなる
陽極基体の端部を陽極部とし、この陽極基体の残部の前
記誘電体酸化被膜層上に半導体層、その上に導電体層が
形成された陰極部を有する複数枚の固体電解コンデンサ
素子の前記陽極部と陰極部とが、それぞれ積層されてリ
ード端子に接続され、外層樹脂で封止成形されている積
層型固体電解コンデンサにおいて、前記それぞれの固体
電解コンデンサ素子の陽極部に、弁作用金属面からなる
接点、もしくは弁作用金属に接する接点を有し、前記各
接点と陽極部同士および陽極リード端子が導電材で接合
されていることを特徴とする積層型固体電解コンデンサ
にある。
SUMMARY OF THE INVENTION The gist of the present invention is to use, as an anode part, an end of an anode base made of a flat plate valve metal having a dielectric oxide film layer on the surface thereof, and the remaining part of the anode base is used as the dielectric material. A semiconductor layer on the body oxide film layer, the anode part and the cathode part of a plurality of solid electrolytic capacitor elements having a cathode part on which a conductor layer is formed, are respectively laminated and connected to a lead terminal, In a laminated solid electrolytic capacitor which is molded by molding with an outer layer resin, each solid electrolytic capacitor element has an anode part having a contact made of a valve action metal surface or a contact in contact with the valve action metal. And an anode lead terminal and an anode lead terminal are joined with a conductive material.

【0006】以下、本発明について詳細に説明する。本
発明において固体電解コンデンサの陽極として用いられ
る弁作用を有する陽極基体としては、例えばアルミニウ
ム、タンタルおよびこれらを基質とする合金等、弁作用
を有する金属がいずれも使用できる。そして陽極基体の
形状としては平板状のアルミニウム箔や板が挙げられ
る。
Hereinafter, the present invention will be described in detail. As the anode substrate having a valve action which is used as the anode of the solid electrolytic capacitor in the present invention, any metal having a valve action such as aluminum, tantalum and alloys having these as substrates can be used. The shape of the anode substrate may be a flat aluminum foil or plate.

【0007】陽極基体の表面に設ける誘電体酸化被膜層
は、弁作用金属の表面部分に設けられた弁作用金属自体
の酸化物層であってもよく、或は弁作用金属箔の表面上
に設けられた他の誘電体酸化物の層であってもよいが、
特に弁作用金属自体の酸化物からなる層であることが望
ましい。
The dielectric oxide film layer provided on the surface of the anode substrate may be an oxide layer of the valve action metal itself provided on the surface portion of the valve action metal, or on the surface of the valve action metal foil. It may be another dielectric oxide layer provided,
In particular, a layer made of an oxide of the valve metal itself is desirable.

【0008】本発明では、表面に誘電体酸化被膜層が形
成された平板状の陽極基体の端部の一区画に陽極部を設
けており、さらにこの陽極部の所定位置、すなわち陽極
部の平面部分に弁作用金属面からなる接点、もしくは弁
作用金属に接する接点を有することが肝要である。
According to the present invention, the anode portion is provided in one section of the end portion of the flat plate-shaped anode substrate having the dielectric oxide film layer formed on the surface thereof, and the anode portion is provided at a predetermined position, that is, the flat surface of the anode portion. It is essential that the part has a contact made of a valve metal or a contact in contact with the valve metal.

【0009】弁作用金属面からなる接点とは、弁作用金
属面の誘電体酸化被膜層を物理的・化学的に除去し、弁
作用金属部を露出させたものである。例えば誘電体酸化
被膜層をヤスリ等で削り取る方法、又はリン酸、クロム
酸溶液に浸漬し除去する方法である。
The contact made of a valve action metal surface is one in which the dielectric oxide film layer on the valve action metal surface is physically and chemically removed to expose the valve action metal portion. For example, a method of scraping off the dielectric oxide film layer with a file or a method of immersing it in a phosphoric acid or chromic acid solution to remove it.

【0010】弁作用金属に接する接点とは、弁作用金属
に導電性を有する金属を溶接、溶着し、もしくは金属
線、針をつき差すことによって設けられた接点である。
例えば、平板状の陽極基体の上下又は一方向から溶接棒
でもって溶着することにより、陽極部に付着した溶接棒
の金属の残渣を接点とする方法、先端を鋭角に尖らせた
半田鏝を陽極部に接することによって陽極部に設けられ
た微小な半田残渣を接点とする方法、微細な針を陽極部
につき差すことによって針自身を接点とする方法等が挙
げられる。針自身を接点とした場合、針が陽極部から脱
落しないように針先端を曲げるか、つぶしたりしておい
てもよい。例えば微細なホチキスの針状に針先端を曲げ
ると共に折り返しておいてもよい。
The contact point in contact with the valve action metal is a contact point provided by welding or welding a conductive metal to the valve action metal, or by sticking a metal wire or a needle.
For example, a method of using a metal residue of the welding rod adhered to the anode part as a contact point by welding with a welding rod from above or below or in one direction of a flat plate-shaped anode substrate, and using a soldering iron with an acutely pointed tip Examples include a method in which a minute solder residue provided on the anode portion is used as a contact by contacting the portion, and a method in which a needle itself is used as a contact by inserting a fine needle into the anode portion. When the needle itself is used as a contact point, the tip of the needle may be bent or crushed so that the needle does not drop from the anode part. For example, the needle tip may be bent and folded back in the shape of a fine staple.

【0011】かかる弁作用金属に接する接点の材質とし
ては、導電性を有する金属であればよく、例えば鉄、
銅、クロム、タングステン、コバルト、ニッケル、錫、
亜鉛、鉛、モリブデン等の金属およびこれらの合金であ
る。
The material of the contact which contacts the valve action metal may be any metal having conductivity, such as iron,
Copper, chromium, tungsten, cobalt, nickel, tin,
Metals such as zinc, lead, molybdenum and alloys thereof.

【0012】接点の大きさは、陽極部の大きさによって
異なるため、予備実験によって決められるが、好ましく
は0.01mm2 〜数mm2 の大きさである。又この接
点の個数は複数個であってもよい。接点の大きさが小さ
過ぎると十分な導電性を確保できず、又大き過ぎると接
点を設けるための工程が煩雑となりコストの上昇を招
く。又、接点は誘電体酸化被膜層の形成後、もしくは導
電体層や導電体層を形成する前後等、いずれの工程で設
けてもよい。
Since the size of the contact depends on the size of the anode part, it is determined by preliminary experiments, but it is preferably 0.01 mm 2 to several mm 2 . Further, the number of the contacts may be plural. If the size of the contact is too small, sufficient conductivity cannot be secured, and if it is too large, the process for providing the contact becomes complicated and the cost increases. Further, the contact may be provided in any step such as after the formation of the dielectric oxide film layer or before or after the formation of the conductor layer or the conductor layer.

【0013】次に、陽極部とした以外の残りの誘電体酸
化被膜層上に半導体層を形成させているが、半導体層の
種類には特に制限はなく、従来公知の半導体層が使用で
きるが、とりわけ本願出願人の出願による二酸化鉛また
は二酸化鉛と硫酸鉛からなる半導体層(特開昭62−2
56423号公報、特開昭63−51621号公報)
が、作製した固体電解コンデンサの高周波性能が良好な
ために好ましい。
Next, a semiconductor layer is formed on the remaining dielectric oxide film layer other than the anode portion, but the kind of semiconductor layer is not particularly limited, and conventionally known semiconductor layers can be used. In particular, a semiconductor layer composed of lead dioxide or lead dioxide and lead sulfate according to the applicant's application (Japanese Patent Laid-Open No. 62-2
56423, JP-A-63-51621)
However, the high frequency performance of the produced solid electrolytic capacitor is favorable, which is preferable.

【0014】又、テトラチオテトラセンとクロラニルの
錯体を半導体層として形成させる方法(特開昭62−2
9123号公報)や複素5員環化合物の重合体にドーパ
ントをドープした電導性高分子化合物を半導体層として
利用する方法(特開昭60−37114号公報)もその
一例である。
Further, a method of forming a complex of tetrathiotetracene and chloranil as a semiconductor layer (JP-A-62-2).
No. 9123) and a method of using a conductive polymer compound obtained by doping a polymer of a 5-membered heterocyclic compound with a dopant as a semiconductor layer (JP-A-60-37114).

【0015】そしてこのような半導体層上には、例えば
カーボンペーストおよび/または銀ペースト等の従来公
知の導電ペースト或いは半田等を積層して導電体層を形
成して陰極部を構成している。
On such a semiconductor layer, a conventionally known conductive paste such as carbon paste and / or silver paste, solder or the like is laminated to form a conductor layer to form a cathode portion.

【0016】また、本発明においては前述した陽極部と
陰極部の界面には絶縁性樹脂によってはち巻き状に樹脂
層部をあらかじめ形成しておくと、半導体層を形成する
ときに半導体層の形成面積が一定しバラツキの少ない容
量のものが得られる。
Further, in the present invention, when the resin layer portion is formed in advance in a spiral shape with an insulating resin at the interface between the anode portion and the cathode portion, the semiconductor layer is formed when the semiconductor layer is formed. It is possible to obtain a capacitor having a constant area and a small variation.

【0017】次に、このように導電体層まで形成された
コンデンサ素子を複数枚方向を揃えて積層する方法を説
明する。図1は積層したコンデンサ素子を導電材6で接
合した状態を示す断面図である。
Next, a method of laminating a plurality of capacitor elements thus formed up to the conductor layer with their directions aligned will be described. FIG. 1 is a cross-sectional view showing a state in which laminated capacitor elements are joined by a conductive material 6.

【0018】同図において、各コンデンサ素子2は方向
を揃えてリード端子1上に載置した後、陽極部3同士お
よび陽極部3と陽極リード引出し部1aが接点7に接し
て、導電材6によって陽極部間を充満するようにして接
続一体化され、積層したコンデンサ素子としている。
尚、図1において接点は、陽極部を貫通するように設け
られているが必ずしも貫通して設ける必要はなく、弁作
用金属に接合されていればよい。
In the figure, each capacitor element 2 is mounted on the lead terminal 1 in the same direction, and then the anode parts 3 and the anode part 3 and the anode lead lead-out part 1a are in contact with the contact 7 to form the conductive material 6. In order to fill the space between the anode parts, the connection and integration are performed to form a laminated capacitor element.
In FIG. 1, the contact is provided so as to pass through the anode portion, but it is not necessarily required to be provided so as to pass through and may be joined to the valve action metal.

【0019】前述した導電材6としては、銀ペースト等
の公知の導電ペースト、クリーム半田等の溶融可能金属
が挙げられる。一方、積層したコンデンサ素子2の陰極
部4の底部と、陰極リード引出し部1bとは、導電ペー
スト、半田等により電気的かつ機械的に接続されてい
る。このようにしてリード端子に接続された固体電解コ
ンデンサ素子は、エポキシ樹脂等の外装樹脂5により、
トランスファー成形機などで封止成形を行った後、実用
に供される。
Examples of the above-mentioned conductive material 6 include known conductive paste such as silver paste, and meltable metal such as cream solder. On the other hand, the bottom of the cathode portion 4 of the laminated capacitor element 2 and the cathode lead lead-out portion 1b are electrically and mechanically connected by a conductive paste, solder or the like. The solid electrolytic capacitor element connected to the lead terminal in this way is covered by the exterior resin 5 such as epoxy resin.
It is put to practical use after sealing and molding with a transfer molding machine or the like.

【0020】[0020]

【作用】積層されたコンデンサ素子の陽極部に対しスポ
ット溶接を行わないため、変形が発生せず、その結果陽
極部あるいは陰極部に応力や歪による欠陥を生じない。
又、陽極部間が弁作用金属面からなる接点もしくは弁作
用金属に接する接点と、導電材によって満たされるよう
に接合しているため、陽極部間の隙間が少なくなり外装
樹脂が入り込みにくい。
Since the anode part of the laminated capacitor element is not spot-welded, deformation does not occur, and as a result, defects due to stress or strain do not occur in the anode part or the cathode part.
Further, since the contact between the anode portions is made of a valve metal surface or is in contact with the valve metal so as to be filled with the conductive material, the gap between the anode portions is reduced and the exterior resin is less likely to enter.

【0021】[0021]

【実施例】以下、実施例および比較例を示して本発明を
さらに詳しく説明する。 実施例1〜2 りん酸とりん酸アンモニウム水溶液中で化成処理して表
面に誘電体酸化被膜層を形成した45μF/cm2 のア
ルミニウムエッチング箔(以下、化成箔と称する。)の
小片5×3mmを用意した。この化成箔の端から2×3
mmの部分を陽極部とし、陽極部の中心に表1に示した
それぞれの接点を設けた。つづいてこのような化成箔の
陽極部を除いた残り3×3mmの部分を酢酸鉛三水和物
2.4モル/l水溶液と過硫酸アンモニウム4.0モル
/lの水溶液の混合液に浸漬し、60℃で20分放置
し、二酸化鉛と硫酸鉛からなる半導体層を形成した。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. Examples 1 to 2 Small pieces of 45 μF / cm 2 aluminum etching foil (hereinafter referred to as chemical conversion foil) having chemical conversion treatment in phosphoric acid and ammonium phosphate aqueous solution to form a dielectric oxide film layer on the surface 5 × 3 mm. Prepared. 2 × 3 from the edge of this formed foil
The portion of mm was used as the anode part, and the respective contacts shown in Table 1 were provided at the center of the anode part. Subsequently, the remaining 3 × 3 mm portion excluding the anode portion of such a formed foil was immersed in a mixed solution of a lead acetate trihydrate aqueous solution of 2.4 mol / l and an ammonium persulfate aqueous solution of 4.0 mol / l. After standing at 60 ° C. for 20 minutes, a semiconductor layer made of lead dioxide and lead sulfate was formed.

【0022】このような操作を3回行った後、半導体層
上にカーボンペースト及び銀ペーストを順に積層して導
電体層とし、陰極部を形成してコンデンサ素子を作製し
た。このようなコンデンサ素子を4枚方向を揃えて重
ね、陽極部を銀ペースト浴に浸漬し陽極部間と接点が銀
ペーストで満たされるように接続し、さらに陰極部も銀
ペースト浴に浸漬し乾燥硬化することによって、陰極部
も一体化した。
After performing such an operation three times, a carbon paste and a silver paste were sequentially laminated on the semiconductor layer to form a conductor layer, and a cathode portion was formed to manufacture a capacitor element. Four such capacitor elements are piled up in the same direction, the anode part is immersed in a silver paste bath and connected so that the space between the anode parts and the contacts are filled with silver paste, and the cathode part is also immersed in the silver paste bath and dried. The curing also integrated the cathode part.

【0023】引き続き、積層したコンデンサ素子の陰極
部の底部と陽極部の最下部を、別に用意した一対の幅3
mmの凸部を有するリード端子の各凸部に載置し、銀ペ
ーストで電気的かつ機械的に接続した。この時、陽極部
の最下部に存在する接点とリード端子は銀ペーストで接
続されていた。さらにリード端子の一部を除いてエポキ
シ樹脂を用いてトランスファー成形して積層型固体電解
コンデンサを作製した。
Subsequently, a bottom portion of the cathode portion and a bottom portion of the anode portion of the laminated capacitor element are separately prepared as a pair of widths 3.
It was placed on each protrusion of a lead terminal having a protrusion of mm and electrically and mechanically connected with a silver paste. At this time, the contact located at the bottom of the anode part and the lead terminal were connected by silver paste. Further, transfer molding was carried out using an epoxy resin except for a part of the lead terminals to produce a laminated solid electrolytic capacitor.

【0024】比較例1 実施例1で、コンデンサ素子を積層する時に、陽極部間
を導電材としての銀ペーストで接続せず、4枚のコンデ
ンサ素子の陽極部をリード端子の凸部にスポット溶接し
た以外は実施例1と同様にして積層型固体電解コンデン
サを作製した。
Comparative Example 1 In Example 1, when the capacitor elements were laminated, the anode parts were not connected with a silver paste as a conductive material, but the anode parts of the four capacitor elements were spot-welded to the convex parts of the lead terminals. A laminated solid electrolytic capacitor was produced in the same manner as in Example 1 except for the above.

【0025】比較例2 実施例1で接点を設けなかった以外は実施例1と同様に
して積層型固体電解コンデンサを作製した。以上のよう
に作製した直後の積層型固体電解コンデンサの性能を表
2に示した。なお、各実施例または比較例は全数値n=
50点の平均値である。
Comparative Example 2 A laminated solid electrolytic capacitor was produced in the same manner as in Example 1 except that no contact was provided in Example 1. Table 2 shows the performance of the laminated solid electrolytic capacitor immediately after being manufactured as described above. In each example or comparative example, all numerical values n =
It is an average value of 50 points.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】本発明の積層型固体電解コンデンサは、
陽極部に接点を設け陽極部間同士および陽極部とリード
端子とが前記接点と導電材によって満たされるように接
合されているので、作製した固体電解コンデンサは漏れ
電流値が良好である。
The laminated solid electrolytic capacitor of the present invention is
Since the contacts are provided in the anode part and the anode parts and the anode part and the lead terminal are joined so as to be filled with the contacts and the conductive material, the produced solid electrolytic capacitor has a good leakage current value.

【図面の簡単な説明】[Brief description of drawings]

【図1】積層したコンデンサ素子を導電材で接合した状
態を示す断面図である。
FIG. 1 is a cross-sectional view showing a state in which laminated capacitor elements are joined with a conductive material.

【図2】従来の積層型チップ状固体電解コンデンサを示
す斜視図である。
FIG. 2 is a perspective view showing a conventional multilayer chip solid electrolytic capacitor.

【符号の説明】[Explanation of symbols]

1a リード端子の凸部 1b リード端子の凸部 2 コンデンサ素子 3 陽極部 4 陰極部 5 外装樹脂 6 導電材 7 接点 1a Projection of lead terminal 1b Projection of lead terminal 2 Capacitor element 3 Anode part 4 Cathode part 5 Exterior resin 6 Conductive material 7 Contact

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 表面に誘電体酸化被膜層を有する平板状
の弁作用金属からなる陽極基体の端部を陽極部とし、こ
の陽極基体の残部の前記誘電体酸化被膜層上に半導体
層、その上に導電体層が形成された陰極部を有する複数
枚の固体電解コンデンサ素子の前記陽極部と陰極部と
が、それぞれ積層されてリード端子に接続され、外層樹
脂で封止成形されている積層型固体電解コンデンサにお
いて、前記それぞれの固体電解コンデンサ素子の陽極部
に、弁作用金属面からなる接点、もしくは弁作用金属に
接する接点を有し、前記各接点と陽極部同士および陽極
リード端子が、導電材で接合されていることを特徴とす
る積層型固体電解コンデンサ。
1. An end portion of an anode base made of a flat valve metal having a dielectric oxide coating layer on its surface is used as an anode portion, and a semiconductor layer is formed on the remaining dielectric oxide coating layer of the anode base. A laminate in which the anode part and the cathode part of a plurality of solid electrolytic capacitor elements having a cathode part on which a conductor layer is formed are respectively laminated and connected to lead terminals, and are sealed and molded with an outer layer resin. Type solid electrolytic capacitor, in the anode portion of each of the solid electrolytic capacitor element, has a contact consisting of a valve metal surface, or a contact in contact with the valve metal, each contact and the anode portion and the anode lead terminal, A laminated solid electrolytic capacitor, which is joined by a conductive material.
JP24652694A 1994-10-12 1994-10-12 Multilayer solid electrolytic capacitors Expired - Lifetime JP3557564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24652694A JP3557564B2 (en) 1994-10-12 1994-10-12 Multilayer solid electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24652694A JP3557564B2 (en) 1994-10-12 1994-10-12 Multilayer solid electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPH08115855A true JPH08115855A (en) 1996-05-07
JP3557564B2 JP3557564B2 (en) 2004-08-25

Family

ID=17149720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24652694A Expired - Lifetime JP3557564B2 (en) 1994-10-12 1994-10-12 Multilayer solid electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP3557564B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG87822A1 (en) * 1998-08-26 2002-04-16 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and method of manufacturing the same
EP1434242A2 (en) * 2002-12-27 2004-06-30 Matsushita Electric Industrial Co., Ltd. Capacitor and method for producing the same, and circuit board with a built-in capacitor and method for producing the same
GB2399946A (en) * 2003-03-04 2004-09-29 Nec Tokin Corp Stacked solid electrolytic capacitor
US6977807B2 (en) 2003-09-02 2005-12-20 Nec Tokin Corporation Laminated solid electrolytic capacitor and laminated transmission line device increased in element laminating number without deterioration of elements
JP2007088341A (en) * 2005-09-26 2007-04-05 Nichicon Corp Stacked solid electrolytic capacitor
JP2007095933A (en) * 2005-09-28 2007-04-12 Showa Denko Kk Solid electrolytic capacitor and manufacturing method thereof
JP2007201065A (en) * 2006-01-25 2007-08-09 Hitachi Aic Inc Substrate with built-in capacitor
JP2008004744A (en) * 2006-06-22 2008-01-10 Nec Tokin Corp Solid-state electrolytic capacitor manufacturing method
JP2008091466A (en) * 2006-09-29 2008-04-17 Nippon Chemicon Corp Capacitor
JP2008193096A (en) * 2007-02-06 2008-08-21 Young Joo Oh Metal capacitor and manufacturing method therefor
DE10262263B4 (en) * 2002-05-21 2008-12-04 Epcos Ag Surface-mountable solid electrolytic capacitor, process for its production and system carrier

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG87822A1 (en) * 1998-08-26 2002-04-16 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and method of manufacturing the same
DE10262263B4 (en) * 2002-05-21 2008-12-04 Epcos Ag Surface-mountable solid electrolytic capacitor, process for its production and system carrier
EP1434242A3 (en) * 2002-12-27 2008-04-30 Matsushita Electric Industrial Co., Ltd. Capacitor and method for producing the same, and circuit board with a built-in capacitor and method for producing the same
EP1434242A2 (en) * 2002-12-27 2004-06-30 Matsushita Electric Industrial Co., Ltd. Capacitor and method for producing the same, and circuit board with a built-in capacitor and method for producing the same
GB2399946A (en) * 2003-03-04 2004-09-29 Nec Tokin Corp Stacked solid electrolytic capacitor
GB2399946B (en) * 2003-03-04 2005-09-07 Nec Tokin Corp Stacked solid electrolytic capacitor
US6970344B2 (en) 2003-03-04 2005-11-29 Nec Tokin Corporation Stacked solid electrolytic capacitor and stacked transmission line element
US6977807B2 (en) 2003-09-02 2005-12-20 Nec Tokin Corporation Laminated solid electrolytic capacitor and laminated transmission line device increased in element laminating number without deterioration of elements
JP2007088341A (en) * 2005-09-26 2007-04-05 Nichicon Corp Stacked solid electrolytic capacitor
JP2007095933A (en) * 2005-09-28 2007-04-12 Showa Denko Kk Solid electrolytic capacitor and manufacturing method thereof
JP4688028B2 (en) * 2005-09-28 2011-05-25 株式会社村田製作所 Solid electrolytic capacitor and manufacturing method thereof
JP2007201065A (en) * 2006-01-25 2007-08-09 Hitachi Aic Inc Substrate with built-in capacitor
JP4662368B2 (en) * 2006-06-22 2011-03-30 Necトーキン株式会社 Manufacturing method of solid electrolytic capacitor
JP2008004744A (en) * 2006-06-22 2008-01-10 Nec Tokin Corp Solid-state electrolytic capacitor manufacturing method
JP2008091466A (en) * 2006-09-29 2008-04-17 Nippon Chemicon Corp Capacitor
JP2008193096A (en) * 2007-02-06 2008-08-21 Young Joo Oh Metal capacitor and manufacturing method therefor

Also Published As

Publication number Publication date
JP3557564B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
JPH05205984A (en) Laminated solid electrolytic capacitor
JP3557564B2 (en) Multilayer solid electrolytic capacitors
JP2007184308A (en) Manufacturing method of chip-like solid electrolytic capacitor
JP3463692B2 (en) Manufacturing method of chip-shaped solid electrolytic capacitor
JP3441088B2 (en) Method for manufacturing solid electrolytic capacitor
JP2009260235A (en) Solid electrolytic capacitor device and method of manufacturing the same
JP2007043197A (en) Stacked capacitor
JPH05217811A (en) Chip-shaped solid electrolytic capacitor and its manufacture
JPH05175085A (en) Chip-shaped solid electrolytic capacitor
JP4285346B2 (en) Manufacturing method of solid electrolytic capacitor
JP3424269B2 (en) Chip-shaped solid electrolytic capacitors
JP3433478B2 (en) Solid electrolytic capacitors
JP3208875B2 (en) Chip-shaped solid electrolytic capacitor and its manufacturing method
JP3185405B2 (en) Solid electrolytic capacitors
JP3505763B2 (en) Chip-shaped solid electrolytic capacitor
JP3546451B2 (en) Method for manufacturing solid electrolytic capacitor
JP3433479B2 (en) Method for manufacturing solid electrolytic capacitor
JP3433490B2 (en) Chip-shaped solid electrolytic capacitors
JPH065477A (en) Multilayered solid electrolytic capacitor and its manufacture
JP2004349725A (en) Chip-like solid electrolytic capacitor
JP3894316B2 (en) Manufacturing method of chip-shaped solid electrolytic capacitor
JPH09102442A (en) Manufacture of nonpolar solid-state electrolytic capacitor
JPS6044821B2 (en) solid electrolytic capacitor
JP2003158045A (en) Stacked capacitor
JPH05343272A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040503

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

EXPY Cancellation because of completion of term