JPH08115705A - Mercury lamp and substance treatment method using the mercury lamp - Google Patents

Mercury lamp and substance treatment method using the mercury lamp

Info

Publication number
JPH08115705A
JPH08115705A JP27432194A JP27432194A JPH08115705A JP H08115705 A JPH08115705 A JP H08115705A JP 27432194 A JP27432194 A JP 27432194A JP 27432194 A JP27432194 A JP 27432194A JP H08115705 A JPH08115705 A JP H08115705A
Authority
JP
Japan
Prior art keywords
mercury lamp
lamp
mercury
fluid
arc tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27432194A
Other languages
Japanese (ja)
Inventor
Yasuhiko Wakahata
康彦 若畑
Tatsumi Hiramoto
立躬 平本
Yasuo Onishi
安夫 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP27432194A priority Critical patent/JPH08115705A/en
Publication of JPH08115705A publication Critical patent/JPH08115705A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide an economical substance treatment method and a mercury lamp for using in the treatment. CONSTITUTION: In a mercury lamp prepared by sealing mercury and a noble gas in a luminescent tube made of quartz glass and having electrodes sealed at both ends, the amount of mercury sealed is specified to 1.0-5.0mg per cm<3> of the inner volume of the luminescent tube, and the inner diameter of the luminescent tube is specified to 3.0-20.0mm. A fluid to which a material forming an oxidizing active material by receiving light having a wave length of 200-280nm is added is irradiated with the mercury lamp to treat the fluid itself or an another material by the fluid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えばオゾンなどの酸化
剤の添加と紫外線の照射を用いて、有機物を酸化除去す
る水処理方法など、波長200nm〜波長280nmの
波長領域の紫外線を使う光化学反応用の光源とそれを用
いた流体処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photochemical reaction using ultraviolet rays in the wavelength region of 200 nm to 280 nm, such as a water treatment method of oxidizing and removing organic substances by adding an oxidizing agent such as ozone and irradiating ultraviolet rays. And a fluid treatment method using the same.

【0002】[0002]

【従来の技術】従来、超純水の一次処理や工業排水処理
に、紫外線ランプの照射と過酸化水素またはオゾン等の
酸化剤の添加を組み合わせる水処理方法が用いられてき
た。これら酸化剤は波長200nm〜波長280nmの
波長範囲に吸収があり、水中で光分解してヒドロキシラ
ジカルを生成し、有機物を酸化して気化性の物質にして
除去する。またオゾン含有空気などに紫外線を照射し、
オゾンを分解活性化して、発生期の酸素を得、それで物
質を処理する方法が、例えば物体表面の精密洗浄や殺菌
などに応用されている。上記の処理には波長200nm
〜波長280nmの波長範囲の放射効率が良い紫外線ラ
ンプが必要である。それらのうち低圧水銀ランプの放射
効率は、波長200nm〜波長280nmの範囲で20
%〜30%と良いが、ランプ一本当たりの電力は通常1
kw以下であり、多量の流体を処理するためには、多数
本を使用する必要がある。他方、高圧水銀ランプは一本
で数10kwの電力のものが可能であり、多量の流体の
処理が可能であるが、従来用いられているものの放射効
率は波長200nm〜波長280nmの範囲で約10%
であり、低圧水銀ランプに比べ放射効率が劣る。
2. Description of the Related Art Conventionally, a water treatment method which combines irradiation of an ultraviolet lamp and addition of an oxidizing agent such as hydrogen peroxide or ozone has been used for the primary treatment of ultrapure water and industrial wastewater treatment. These oxidizers have absorption in the wavelength range of 200 nm to 280 nm, photolyze in water to generate hydroxy radicals, and oxidize organic substances to remove them as vaporizable substances. Also, irradiate ozone-containing air with ultraviolet rays,
A method of decomposing and activating ozone to obtain nascent oxygen and treating the substance with the oxygen is applied to, for example, precision cleaning or sterilization of the surface of an object. 200 nm wavelength for the above treatment
A UV lamp with good radiation efficiency in the wavelength range of 280 nm is required. Among them, the radiation efficiency of the low-pressure mercury lamp is 20 in the wavelength range of 200 nm to 280 nm.
% -30% is good, but the power per lamp is usually 1
Since it is less than kW, it is necessary to use a large number in order to process a large amount of fluid. On the other hand, a single high-pressure mercury lamp can be used with a power of several tens of kW and can process a large amount of fluid, but the radiation efficiency of the conventional one is about 10 in the wavelength range of 200 nm to 280 nm. %
Therefore, the radiation efficiency is inferior to that of the low-pressure mercury lamp.

【0003】[0003]

【発明が解決しようとする課題】低圧水銀ランプを用い
ると使用するランプの本数が多いので、明らかに装置は
大きなものになる。またランプ交換、ランプジャケット
清掃などのメンテナンス及びスペースなどのコストは高
圧水銀ランプより高くなる。他方、従来の高圧水銀ラン
プは、放射効率が悪いために低圧水銀ランプの2倍〜3
倍の電力を必要とするので、電気代は低圧水銀ランプの
場合より高くなる。しかし低圧水銀ランプを高出力化す
ることは、ランプの性質上限度がある。そこで高圧水銀
ランプを高効率化することにより、よりランプの使用本
数の少ない流体処理方法を提供する必要がある。本発明
は上記事情に鑑みなされたものであって、その目的とす
るところは、より経済的な物質処理方法とそのための水
銀ランプを提供することにある。
When the low pressure mercury lamp is used, since the number of lamps used is large, the device is obviously large. Moreover, the cost of maintenance such as lamp replacement and cleaning of the lamp jacket and space is higher than that of the high pressure mercury lamp. On the other hand, the conventional high-pressure mercury lamp has poor radiation efficiency, and therefore is twice to 3 times as high as the low-pressure mercury lamp.
Since it requires twice as much power, the electricity bill is higher than for low pressure mercury lamps. However, increasing the output of a low-pressure mercury lamp has an upper limit to the nature of the lamp. Therefore, it is necessary to provide a high-efficiency high-pressure mercury lamp to provide a fluid treatment method that uses fewer lamps. The present invention has been made in view of the above circumstances, and an object thereof is to provide a more economical method of treating a substance and a mercury lamp therefor.

【0004】[0004]

【課題を解決するための手段】本発明の目的は、水銀ラ
ンプを次のように設計することによって達成できる。 (1)両端に電極を封止した石英ガラス製の発光管内
に、水銀と希ガスを封入する水銀ランプにおいて、封入
水銀量をランプ発光管内容積1cm3 当たり1.0mg
から5.0mgの範囲に規定し、かつ発光管内径が3.
0mmから20.0mmとする。
The object of the present invention can be achieved by designing a mercury lamp as follows. (1) In a mercury lamp in which mercury and a noble gas are enclosed in a quartz glass arc tube with electrodes sealed at both ends, the amount of enclosed mercury is 1.0 mg per 1 cm 3 of the lamp arc tube inner volume.
To 5.0 mg, and the inner diameter of the arc tube is 3.
The length is 0 mm to 20.0 mm.

【0005】そして流体処理方法としては次のとおりと
する。 (2)波長200nmから波長280nmの波長範囲の
光を受けて酸化性活性物質を生成する物質を添加した流
体を、上記(1)に記載の水銀ランプで照射して該流体
自体を処理するかもしくは該流体で他の物質を処理す
る。
The fluid treatment method is as follows. (2) Is the fluid itself treated by irradiating with a mercury lamp as described in (1) above a fluid to which a substance that generates an oxidative active substance upon receiving light in the wavelength range of 200 nm to 280 nm is added? Alternatively, another substance is treated with the fluid.

【0006】[0006]

【作用】従来使われている高圧水銀ランプと本発明の水
銀ランプを同一電力で点灯した時の、それぞれの分光分
布を図1に示す。実線は従来のランプ、点線は本発明の
ランプの分光分布である。本発明のランプは、波長20
0nmから波長240nmの範囲に、従来のランプに比
べて強い分子発光による連続スペクトルを発し、さらに
水銀の波長254nmの共鳴線の長波長側に、分子間力
による拡がりをもったスペクトル帯(S)を発する。上
記理由によって、本発明の高圧水銀ランプの波長200
nmから波長280nmの範囲の放射効率は従来のラン
プの放射効率の約1.4倍になる。また合成石英ガラス
を発光管に使用することによって、さらに効率があがる
ことを発見した。
FIG. 1 shows the respective spectral distributions when the high pressure mercury lamp used conventionally and the mercury lamp of the present invention are lit with the same power. The solid line is the spectral distribution of the conventional lamp and the dotted line is the spectral distribution of the lamp of the present invention. The lamp of the present invention has a wavelength of 20.
In the wavelength range from 0 nm to 240 nm, a continuous spectrum is emitted by molecular emission that is stronger than that of conventional lamps, and a spectral band (S) that extends to the long wavelength side of the resonance line of 254 nm wavelength of mercury due to intermolecular force (S) Emit. For the above reason, the high pressure mercury lamp of the present invention has a wavelength of 200
The radiation efficiency in the range of nm to 280 nm is about 1.4 times that of the conventional lamp. We also found that the efficiency is further improved by using synthetic quartz glass for the arc tube.

【0007】合成石英ガラスと通常の石英ガラスの透過
率は、通常室温では波長200nm以下の短波長で差が
みられ、波長200nm以上では差はみられない。しか
し高圧水銀ランプの発光管の温度は点灯使用中700℃
以上になり、その温度では、両石英ガラスの吸収端は長
波長側に移動し、通常の石英ガラスの波長200nm以
上の範囲の透過率は大きく低下する。それに対して合成
石英ガラスは吸収端は長波長側に移動するが、波長20
0nm以上の範囲では大きな変化がみられない。このよ
うな理由によって波長200nm以上の範囲で合成石英
ガラスの方が大きくなり、上記作用が生じていると推定
される。
The transmittance between synthetic quartz glass and ordinary quartz glass is usually different at room temperature at short wavelengths of 200 nm or less, and not at wavelengths of 200 nm or more. However, the arc tube temperature of the high-pressure mercury lamp is 700 ° C during lighting and use.
As described above, at that temperature, the absorption edges of both quartz glasses move to the long wavelength side, and the transmittance of ordinary quartz glass in the wavelength range of 200 nm or more is greatly reduced. On the other hand, in synthetic quartz glass, the absorption edge moves to the long wavelength side,
No significant change is observed in the range of 0 nm or more. For these reasons, it is presumed that the synthetic quartz glass becomes larger in the wavelength range of 200 nm or more, and the above-mentioned action occurs.

【0008】従って処理すべき流体中に、波長200n
mから波長280nmの範囲の光を吸収して酸化性活性
物質を生成する物質、例えばオゾン、過酸化水素、次亜
塩素酸もしくは塩素などを添加したうえで、前記発明ラ
ンプで照射すると、生産性の高い流体処理ができる。ま
たこの流体でプラスチックスの表面改質ができる。
Therefore, in the fluid to be treated, a wavelength of 200n
When a substance that absorbs light in the wavelength range from m to 280 nm to generate an oxidatively active substance, such as ozone, hydrogen peroxide, hypochlorous acid or chlorine, is added and irradiated with the lamp of the invention, productivity is improved. High-performance fluid treatment is possible. The surface of plastics can be modified with this fluid.

【0009】[0009]

【実施例】本発明の実施例を図2を用いて説明する。図
2は本発明の水銀ランプの実施例の説明図である。図に
おいて、発光管1の両端に封止部2があり、そこに埋設
されたモリブデン箔3の両側に電極4と外部リード棒5
を溶接している。発光管1内に水銀6と始動ガスとして
アルゴンを封入する。電極間距離は100mm、電極の
材質はトリエイテッドタングステンとした。発光管内径
を12mm、18mm、24mmとし、封入水銀量を
0.2mg/cm3 〜6.0mg/cm3 として、各種
ランプを製作して放射効率を測定した。ランプの電気入
力をアーク長1cm当たり80W,120Wで点灯しそ
れぞれの放射効率を測定した。
EXAMPLE An example of the present invention will be described with reference to FIG. FIG. 2 is an explanatory view of an embodiment of the mercury lamp of the present invention. In the figure, there are sealing parts 2 at both ends of an arc tube 1, and an electrode 4 and an external lead bar 5 are provided on both sides of a molybdenum foil 3 embedded in the sealing part 2.
Are welding. The arc tube 1 is filled with mercury 6 and argon as a starting gas. The distance between the electrodes was 100 mm, and the material of the electrodes was thoriated tungsten. 12mm arc tube inner diameter, 18 mm, and 24 mm, the mercury filling amount as 0.2mg / cm 3 ~6.0mg / cm 3 , was measured radiation efficiency manufactured various lamps. The electric input of the lamp was turned on at 80 W and 120 W per 1 cm of arc length, and the radiation efficiency of each was measured.

【0010】上記の測定結果を図3の表に示す。数値
は、波長200nmから波長280nmの範囲の放射束
(W)を消費電力(W)で割って100倍した値(%)
である。この結果より、80W/cmの場合、発光管の
内径12mmで、封入水銀量1.0mg/cm3 から
5.0mg/cm3 の範囲のとき、放射効率が10%以
上になることがわかる。封入水銀量を5.0mg/cm
3 よりも多くすると、ランプ電圧が高く、ランプ内圧力
も高くなるので、実用上不適当と判断した。また電気入
力密度を大きくすると効率が良くなることを確認した。
The above measurement results are shown in the table of FIG. The value is the value (%) obtained by dividing the radiant flux (W) in the wavelength range of 200 nm to 280 nm by the power consumption (W) and multiplying by 100.
Is. From this result, it can be seen that at 80 W / cm, the radiation efficiency is 10% or more when the inner diameter of the arc tube is 12 mm and the amount of enclosed mercury is in the range of 1.0 mg / cm 3 to 5.0 mg / cm 3 . Enclosed mercury amount is 5.0 mg / cm
If it is more than 3 , the lamp voltage is high and the pressure in the lamp is high, so it was judged to be unsuitable for practical use. It was also confirmed that increasing the electrical input density improves the efficiency.

【0011】さらに条件をさぐるため以下の実験をおこ
なった。電気入力は80W/cmである。封入水銀量を
3.9mg/cm3 の値に一定にして、発光管の内径を
3.0mm〜20.0mmの範囲で変化させた各種の
ランプをつくり、上記と同様に放射効率を測定した。そ
の結果、発光管の内径3.0〜20.0mmのものが効
率10%以上となることを確認した。結果は図4の表に
示す。データの数値の意味は図3の表と同一である。こ
こでさらに発光管の内径が12mm、封入水銀量が3.
9mg/cm3 のランプの発光管を合成石英ガラスに変
え、電極間距離100mmに対して電気入力80W/c
mで点灯し、放射効率を測定したところ上記の値は1
5.8%であった。さらに電気入力が120W/cmで
は上記値が17.5%となった。
The following experiment was conducted to further investigate the conditions. The electrical input is 80 W / cm. With the amount of enclosed mercury kept constant at a value of 3.9 mg / cm 3 , various lamps were produced in which the inner diameter of the arc tube was changed in the range of 3.0 mm to 20.0 mm, and the radiation efficiency was measured in the same manner as above. . As a result, it was confirmed that an arc tube having an inner diameter of 3.0 to 20.0 mm had an efficiency of 10% or more. The results are shown in the table of FIG. The meaning of the numerical values of the data is the same as in the table of FIG. Here, the inner diameter of the arc tube is 12 mm and the amount of enclosed mercury is 3.
The arc tube of the 9 mg / cm 3 lamp was changed to synthetic quartz glass, and the electric input was 80 W / c for a distance between the electrodes of 100 mm.
When turned on at m and measured the radiation efficiency, the above value is 1
It was 5.8%. Further, when the electric input was 120 W / cm, the above value was 17.5%.

【0012】次に本発明の水銀ランプを用いた液相の光
化学反応の実施例を説明する。本発明の水銀ランプと従
来の高圧水銀ランプをそれぞれ用いて紫外線による有機
物の分解を行い、両者の処理効果を比較した。紫外線に
よる有機物の分解は、被処理水に過酸化水素の水溶液を
添加し、紫外線照射により過酸化水素からヒドロキシラ
ジカルを生成させ、被処理水中の有機化合物と反応さ
せ、それらを二酸化炭素と水に分解して除去するもので
ある。
Next, an example of a liquid-phase photochemical reaction using the mercury lamp of the present invention will be described. The mercury lamp of the present invention and the conventional high-pressure mercury lamp were used to decompose organic substances by ultraviolet rays, and the treatment effects of both were compared. For the decomposition of organic substances by ultraviolet rays, an aqueous solution of hydrogen peroxide is added to the water to be treated, and by irradiation of ultraviolet rays, hydroxyl radicals are generated from the hydrogen peroxide and reacted with the organic compounds in the water to be treated, and then they are converted into carbon dioxide and water. It is decomposed and removed.

【0013】実験は、反応槽にメタノール、2−プロパ
ノール、アセトンを混入した模擬廃水1m3 注ぎ、次に
過酸化水素水を過酸化水素に換算して70gになる量を
添加する。そして本発明の水銀ランプを組み込んだ石英
ガラス製のランプジャケットを反応槽に挿入し、前記ラ
ンプを点灯させた。このとき反応が充分に行われるよう
に反応槽は攪拌状態にしておく。上記のランプは発光管
の内径が12mm,水銀量が3.9mg/cm3 ,電極
間距離100mmである。それに対し従来のランプは、
発光管の内径が24mm、水銀量が0.98mg/cm
3 電極間距離100mmのものを使用して比較実験をし
た。それぞれランプは電力1kWで点灯し、一定時間ご
とに全有機炭素(Total Organic Carbon 以下TOCと略
す) 濃度を測定した。その結果、同一の照射時間に対
し、TOC濃度の減少量は本発明のランプを用いた場合
が、従来のランプを用いた場合の約1.3倍であること
を確認した。
In the experiment, 1 m 3 of simulated waste water containing methanol, 2-propanol and acetone was poured into a reaction tank, and then hydrogen peroxide was added in an amount of 70 g in terms of hydrogen peroxide. Then, a quartz glass lamp jacket incorporating the mercury lamp of the present invention was inserted into the reaction vessel, and the lamp was turned on. At this time, the reaction tank is kept in a stirring state so that the reaction is sufficiently carried out. In the above lamp, the inner diameter of the arc tube is 12 mm, the amount of mercury is 3.9 mg / cm 3 , and the distance between the electrodes is 100 mm. In contrast, conventional lamps
Inner diameter of arc tube is 24 mm, mercury content is 0.98 mg / cm
A comparative experiment was carried out using a three- electrode distance of 100 mm. Each of the lamps was turned on at a power of 1 kW, and the total organic carbon (TOC) concentration was measured at regular intervals. As a result, it was confirmed that the amount of decrease in TOC concentration with the lamp of the present invention was about 1.3 times that with the conventional lamp for the same irradiation time.

【0014】図5は、上記実験から得られたデータの説
明図である。縦軸はTOCの濃度、横軸はランプによる
照射時間である。実線で示す曲線が従来のランプの場合
であり、点線で示す曲線が本発明のランプの場合であっ
て、TOCの減少速度は、本発明の方が大きいことがわ
かる。したがって水質向上に役立つ。
FIG. 5 is an explanatory diagram of data obtained from the above experiment. The vertical axis represents the TOC concentration, and the horizontal axis represents the irradiation time of the lamp. The curve indicated by the solid line is for the conventional lamp, the curve indicated by the dotted line is for the lamp of the present invention, and it is understood that the reduction rate of TOC is higher in the present invention. Therefore, it helps improve water quality.

【0015】次に本発明の水銀ランプを用いた気相の化
学反応の実施例を説明する。本発明の水銀ランプと従来
の高圧水銀ランプをそれぞれ用いてポリエチレンテレフ
タレート樹脂の表面改質を行った。それぞれランプ点灯
後放電が安定状態になった後酸素のある大気中で、大き
さ3cm×3cm×厚さ1mmのポリエチレンテレフタ
レート樹脂を、ランプの発光管より100mm離間した
位置に配置して10秒間照射した。従来のランプの場合
では、純水の接触角が90°から60°まで変化した。
本発明のランプで発光管に合成石英ガラスを用いたもの
では、上記の値が90°から43°まで変化した。すな
わち従来のランプを使用する場合に比べて充分に親水性
が増大し、表面改質が行われたことが分かる。
Next, an example of a chemical reaction in a gas phase using the mercury lamp of the present invention will be described. The surface of polyethylene terephthalate resin was modified using the mercury lamp of the present invention and the conventional high pressure mercury lamp, respectively. After the lamp has been lit and the discharge has become stable, the polyethylene terephthalate resin measuring 3 cm x 3 cm x 1 mm in thickness is placed in a position 100 mm away from the arc tube of the lamp and irradiated for 10 seconds in an atmosphere of oxygen. did. In the case of the conventional lamp, the contact angle of pure water changed from 90 ° to 60 °.
In the lamp of the present invention in which the synthetic quartz glass was used for the arc tube, the above value changed from 90 ° to 43 °. That is, it can be seen that the hydrophilicity is sufficiently increased as compared with the case where the conventional lamp is used, and the surface is modified.

【0016】また、上記は気相反応を利用してプラスチ
ックスの表面処理をおこなったものであるが、大気自体
の殺菌処理方法にも利用できることは明らかである。
Further, although the above is the one in which the surface treatment of the plastics is carried out by utilizing the gas phase reaction, it is obvious that it can also be used in the sterilization treatment method of the atmosphere itself.

【0017】[0017]

【発明の効果】本発明によれば波長200nm〜波長2
80nmの範囲の紫外線の放射効率は従来のランプの値
に比べて1.4倍から1.7倍になる。そうすると同一
の紫外線エネルギーを得るための電力は71〜58%に
抑えられる。または従来と同一電力を使うと、光反応の
処理時間が71〜58%に抑えられる。低圧水銀ランプ
を用いる方式に対して、本発明の水銀ランプは放射効率
の向上によるコストダウンのため有利になる。したがっ
て本発明の水銀ランプを用いて、流体を処理したり、固
体表面処理する場合、従来のランプ類を使用するより
も、速い処理が出来たり、同じ処理時間であればより充
分な処理が出来たり、コストが安く達成されたり、全体
に経済的な処理方法が企画できる利益を有する。
According to the present invention, the wavelength is from 200 nm to 2
The radiation efficiency of ultraviolet rays in the range of 80 nm is 1.4 to 1.7 times that of the conventional lamp. Then, the electric power for obtaining the same ultraviolet energy can be suppressed to 71 to 58%. Alternatively, if the same electric power as in the conventional case is used, the photoreaction processing time can be suppressed to 71 to 58%. The mercury lamp of the present invention is advantageous over the method of using the low-pressure mercury lamp because the cost is reduced by improving the radiation efficiency. Therefore, when using the mercury lamp of the present invention to treat a fluid or to treat a solid surface, it is possible to perform a faster treatment than to use conventional lamps or to perform a sufficient treatment at the same treatment time. It has the advantage that the cost can be achieved cheaply, and the economical treatment method can be planned as a whole.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の高圧水銀ランプと本発明の水銀ランプの
分光分布の説明図である。
FIG. 1 is an explanatory diagram of a spectral distribution of a conventional high pressure mercury lamp and a mercury lamp of the present invention.

【図2】本発明の水銀ランプの説明図である。FIG. 2 is an explanatory diagram of a mercury lamp of the present invention.

【図3】本発明の水銀ランプの波長200nm〜波長2
80nmの範囲の放射効率の測定結果の説明図である。
FIG. 3 shows a wavelength of the mercury lamp of the present invention from 200 nm to 2
It is explanatory drawing of the measurement result of the radiation efficiency in the range of 80 nm.

【図4】本発明の水銀ランプの波長200nm〜波長2
80nmの範囲の放射効率を、発光管の内径について詳
しく調べた結果を示す説明図である。
FIG. 4 shows a wavelength of the mercury lamp of the present invention from 200 nm to 2
It is explanatory drawing which shows the result of having investigated the radiation efficiency in the range of 80 nm in detail about the inner diameter of an arc tube.

【符号の説明】[Explanation of symbols]

1 発光管 2 封止部 3 モリブデン箔 4 電極 5 外部リード棒 6 水銀 1 Arc Tube 2 Sealing Part 3 Molybdenum Foil 4 Electrode 5 External Lead Rod 6 Mercury

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年2月1日[Submission date] February 1, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図5】本発明の水銀ランプと従来の高圧水銀ランプを
用いて、紫外線による有機物の分解による処理効果を調
べた結果を示す説明図である。
FIG. 5 is an explanatory diagram showing the results of examining the treatment effect by decomposition of organic substances by ultraviolet rays using the mercury lamp of the present invention and a conventional high pressure mercury lamp.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 両端に電極を封止した石英ガラス製発光
管内に、水銀と希ガスを封入する水銀ランプにおいて、
封入水銀量をランプ発光管内容積1cm3 当たり1.0
mgから5.0mgの範囲に規定し、且つ発光管内径が
3.0mmから20.0mmの範囲であることを特徴と
する水銀ランプ。
1. A mercury lamp in which mercury and a rare gas are enclosed in a quartz glass arc tube having electrodes sealed at both ends,
The amount of enclosed mercury is 1.0 per 1 cm 3 of the internal volume of the lamp arc tube.
A mercury lamp characterized in that the inner diameter of the arc tube is in the range of 3.0 mm to 20.0 mm and is defined in the range of mg to 5.0 mg.
【請求項2】 発光管が筒状に長い合成石英ガラスであ
ることを特徴とする請求項1に記載の水銀ランプ。
2. The mercury lamp according to claim 1, wherein the arc tube is a cylindrical long synthetic quartz glass.
【請求項3】 波長200nmから波長280nmの波
長範囲の光を受けて酸化性活性物質を生成する物質を添
加した流体を、請求項1に記載の水銀ランプで照射し
て、該流体自体を処理するかもしくは該流体で他の物質
を処理することを特徴とする物質処理方法。
3. The mercury-containing lamp according to claim 1 is irradiated with a fluid to which a substance that produces an oxidative active substance upon receiving light in the wavelength range of 200 nm to 280 nm is added to treat the fluid itself. Or a method of treating a substance, which comprises treating another substance with the fluid.
【請求項4】 物質が、オゾン、過酸化水素、次亜塩素
酸もしくは塩素から選択された物質であり、流体が水も
しくは空気であることを特徴とする請求項3に記載され
た流体処理方法。
4. The method for treating fluid according to claim 3, wherein the substance is a substance selected from ozone, hydrogen peroxide, hypochlorous acid or chlorine, and the fluid is water or air. .
JP27432194A 1994-10-14 1994-10-14 Mercury lamp and substance treatment method using the mercury lamp Pending JPH08115705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27432194A JPH08115705A (en) 1994-10-14 1994-10-14 Mercury lamp and substance treatment method using the mercury lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27432194A JPH08115705A (en) 1994-10-14 1994-10-14 Mercury lamp and substance treatment method using the mercury lamp

Publications (1)

Publication Number Publication Date
JPH08115705A true JPH08115705A (en) 1996-05-07

Family

ID=17540025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27432194A Pending JPH08115705A (en) 1994-10-14 1994-10-14 Mercury lamp and substance treatment method using the mercury lamp

Country Status (1)

Country Link
JP (1) JPH08115705A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002304971A (en) * 2001-04-06 2002-10-18 Harison Toshiba Lighting Corp High pressure discharge lamp and ultraviolet ray irradiating device
JP2007005588A (en) * 2005-06-24 2007-01-11 Ushio Inc Ultraviolet irradiation device and optical irradiation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002304971A (en) * 2001-04-06 2002-10-18 Harison Toshiba Lighting Corp High pressure discharge lamp and ultraviolet ray irradiating device
JP2007005588A (en) * 2005-06-24 2007-01-11 Ushio Inc Ultraviolet irradiation device and optical irradiation method

Similar Documents

Publication Publication Date Title
US6633109B2 (en) Dielectric barrier discharge-driven (V)UV light source for fluid treatment
JPH08115705A (en) Mercury lamp and substance treatment method using the mercury lamp
JPH09237608A (en) Electrodeless discharge lamp, light treating device, sterilizer device and water treating device
TW570816B (en) Ultraviolet ray irradiation device and operation method thereof
JP3291809B2 (en) Processing method using dielectric barrier discharge lamp
RU2142915C1 (en) Method of treatment of aqueous media containing organic admixtures
JP3815503B2 (en) Processing method using dielectric barrier discharge lamp
JP3702852B2 (en) Processing method using dielectric barrier discharge lamp
US20200165144A1 (en) Ultraviolet treatment method and system
JP4865965B2 (en) Liquid treatment apparatus and method using ultraviolet rays
JP6728962B2 (en) Water treatment equipment
JP3303389B2 (en) Processing method using dielectric barrier discharge lamp
WO2002024587A1 (en) Quartz glass for short wave length ultraviolet ray, discharge lamp using the same, container therefor and ultraviolet irradiation apparatus
JP3815502B2 (en) Processing method using dielectric barrier discharge lamp
JP2022071472A (en) Liquid treatment apparatus
JP2005235607A (en) Optical processor
JP2003059453A5 (en)
JP3778210B2 (en) Processing method using dielectric barrier discharge lamp
JP2007518236A (en) High pressure mercury vapor lamp
RU2031851C1 (en) Method of purifying sewage against organic compounds
JP2537586B2 (en) Advanced treatment method of organic matter and its equipment
JPH05198283A (en) Ultraviolet lamp
RU2225225C2 (en) Device for inactivating microorganisms with ultraviolet radiation
JP2002304971A (en) High pressure discharge lamp and ultraviolet ray irradiating device
JPH09234237A (en) Sterilizer and water treatment equipment