JPH08113860A - Production of water-resistant polyvinyl alcohol-based nonwoven fabric - Google Patents

Production of water-resistant polyvinyl alcohol-based nonwoven fabric

Info

Publication number
JPH08113860A
JPH08113860A JP6251720A JP25172094A JPH08113860A JP H08113860 A JPH08113860 A JP H08113860A JP 6251720 A JP6251720 A JP 6251720A JP 25172094 A JP25172094 A JP 25172094A JP H08113860 A JPH08113860 A JP H08113860A
Authority
JP
Japan
Prior art keywords
melting point
polymer
pressure
web
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6251720A
Other languages
Japanese (ja)
Inventor
Koichi Tejima
宏一 手島
Masaji Asano
正司 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP6251720A priority Critical patent/JPH08113860A/en
Publication of JPH08113860A publication Critical patent/JPH08113860A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE: To obtain nonwoven fabric suitable as agricultural and horticultural materials and materials related to life, having excellent strength and less fluffs, by subjecting a web of sea-island type polyvinyl alcohol-based conjugate fibers to thermal contact bonding. CONSTITUTION: A polyvinyl alcohol polymer having >=220 deg.C melting point as an island component and a water-resistant polymer such as an ethylene/vinyl acetate copolymer having <210 deg.C meting point or fusing temperature as a sea component are used to form sea-island type polyvinyl alcohol-based conjugate fibers in the weight ratio of (98:2)-(55:45). Then a web comprising the fibers is treated by a heat calendering roll having a pressure bonding face in a continuous phase and then by a heat calendering roll having a pressure bonding face in a discontinuous phase to give nonwoven fabric of thermal pressure bonding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐水性ポリビニルアルコ
ール(以下PVAと略記)系不織布を製造する方法に関
するもので、特に強度を向上させ、毛羽立ちを減少させ
る不織布の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a water resistant polyvinyl alcohol (hereinafter abbreviated as PVA) type nonwoven fabric, and more particularly to a method for producing a nonwoven fabric which improves strength and reduces fuzz.

【0002】[0002]

【従来の技術】PVA系繊維は、高い強度、優れた耐候
性、吸水性、吸湿性、保温性等の点で、ポリエステル、
ポリオレフィン、ナイロン等の溶融紡糸繊維に勝る性能
を有する事から、織編物や不織布として種々製造され、
産業資材分野等を中心に広く使用されている。
2. Description of the Related Art PVA-based fiber is a polyester, in terms of high strength, excellent weather resistance, water absorption, moisture absorption, heat retention, etc.
Since it has performance superior to melt-spun fibers such as polyolefin and nylon, it is manufactured as various woven and knitted fabrics and non-woven fabrics.
Widely used mainly in the field of industrial materials.

【0003】本発明者等は、特願平6−68543号、
特願平5−265022号において、融点が220℃以
上であるポリビニルアルコール系ポリマー(A)及び融
点または融着温度が210℃未満である耐水性ポリマー
(B)からなり、(A)と(B)の重量比が98:2〜
55:45の範囲であり、(A)が海成分で(B)が島
成分である海島構造ポリビニルアルコール系繊維(以下
熱圧着PVA系繊維と略記)を使用しウェブを作製し
て、熱圧着方法により接着してPVA系不織布を製造す
る方法について提案している。
The present inventors have filed Japanese Patent Application No. 6-68543,
In Japanese Patent Application No. 5-265022, a polyvinyl alcohol-based polymer (A) having a melting point of 220 ° C. or higher and a water-resistant polymer (B) having a melting point or a fusion temperature of less than 210 ° C. are used. ) Weight ratio is 98: 2 to
55:45, wherein (A) is a sea component and (B) is an island component, and a sea-island structure polyvinyl alcohol fiber (hereinafter abbreviated as thermocompression bonding PVA fiber) is used to prepare a web, and thermocompression bonding is performed. A method for producing a PVA-based nonwoven fabric by adhering by a method is proposed.

【0004】[0004]

【発明が解決しようとする課題】不織布の強度を向上さ
せるためには圧着部分を連続にすることによって、また
圧着部分を増やすことによって達成される。しかしなが
ら、熱プレス、熱カレンダーによる圧着面積増加には技
術的に上限がある。これは、圧着面積が広いほど、処理
幅が広いほど不織布の熱圧着処理はウェブ自体のムラ、
金属部の歪等のためクリアランス調整が微妙なものとな
るため困難になるためである。また、圧着面積増加に伴
い、また圧着部分を連続相にすると不織布は薄く紙状の
ものとなり、厚みのあるものは作製できない。逆に厚み
のあるものを作製させるには、圧着部分を少なくし不連
続相にすればよいが、作製した布は非常に毛羽立ちが多
くなる。毛羽立ちを減少させるためにはバインダー樹脂
付与、熱圧着面積増加、圧着部分の連続化を行うことに
よって達成される。しかしながら、バインダー樹脂付与
にたよればノーバインダー樹脂品は作製できなくなる
し、熱圧着面積増加、圧着部分の連続化の方法では上記
同様の問題点がある。
In order to improve the strength of the non-woven fabric, it is achieved by making the crimped portions continuous and by increasing the crimped portions. However, there is a technical upper limit to the increase in pressure-bonding area by hot pressing and thermal calendering. This means that the larger the pressure-bonding area and the wider the treatment width, the more the non-woven fabric is subjected to thermo-compression bonding, which causes unevenness of the web itself.
This is because the clearance adjustment becomes delicate due to the distortion of the metal part, which makes it difficult. Further, as the pressure-bonding area increases, and when the pressure-bonding portion is made into a continuous phase, the nonwoven fabric becomes thin and paper-like, and a thick one cannot be manufactured. On the contrary, in order to produce a thick product, it is sufficient to reduce the pressure-bonded portion to form a discontinuous phase, but the produced fabric has a large amount of fuzz. In order to reduce the fuzz, it is achieved by adding a binder resin, increasing the thermocompression bonding area, and making the pressure bonding portion continuous. However, if a binder resin is applied, a non-binder resin product cannot be produced, and the methods of increasing the thermocompression bonding area and making the pressure bonding portion continuous have the same problems as described above.

【0005】[0005]

【課題を解決するための手段】本発明は、融点が220
℃以上であるPVA系ポリマー(A)及び融点または融
着温度が210℃未満である耐水性ポリマー(B)から
なり、(A)と(B)の重量比が98:2〜55:45
の範囲であり、(A)が海成分で(B)が島成分である
海島構造PVA系繊維からなる不織布の製造方法に関す
るもので、特に強度を向上させ、毛羽立ちを減少させる
方法に関するものである。
The present invention has a melting point of 220.
A PVA-based polymer (A) having a melting point or fusion temperature of less than 210 ° C., and a weight ratio of (A) to (B) of 98: 2 to 55:45.
The present invention relates to a method for producing a non-woven fabric composed of a sea-island structure PVA-based fiber in which (A) is a sea component and (B) is an island component, and particularly to a method for improving strength and reducing fuzz. .

【0006】具体的には、圧着面が連続相となっている
圧着装置と圧着面が不連続相となっている圧着装置を併
用して熱カレンダー接着処理を行うものであり、好まし
くは、上記記述の海島構造PVA系繊維からなるウェブ
を温度80〜230℃、線圧1kg/cm以上または面
圧2kg/cm2以上、圧着部の面積割合が10%〜4
0%でかつ圧着部が連続相である圧着装置と、圧着部の
面積割合が10〜40%でかつ圧着部が不連続相の圧着
装置を組み合わせて2〜4回熱圧着する耐水性PVA不
織布の製造方法である。
[0006] Specifically, the heat calender adhesion treatment is carried out by using both a pressure bonding device having a continuous pressure bonding surface and a pressure bonding device having a discontinuous pressure bonding surface. A web made of the described PVA-based sea-island structure is used at a temperature of 80 to 230 ° C., a linear pressure of 1 kg / cm or more or a surface pressure of 2 kg / cm 2 or more, and the area ratio of the crimping portion is 10% to 4%.
A water-resistant PVA non-woven fabric which is thermocompression bonded 2 to 4 times by combining a crimping device having 0% and a crimping part in a continuous phase and a crimping device having a crimping part area ratio of 10 to 40% and a crimping part in a discontinuous phase Is a manufacturing method.

【0007】本発明のPVA系繊維は、特願平6−68
543号、特願平5−265022号に記載の通り海島
構造を有する多成分繊維である。融点が220℃以上で
あるPVA系ポリマー(A)が海成分である。マトリッ
クスとなる海成分PVA系ポリマー(A)の融点が22
0℃未満では本発明繊維の耐熱性、耐水性が不十分とな
り実用に耐える繊維を得ることができない。また高強度
繊維を得ることができない。海成分PVA系ポリマー
(A)の融点が225℃以上であるとさらに好ましい。
海成分ポリマー(A)の融点の上限に特別な限定はない
が、融点が260℃以上であるPVAは一般的ではな
い。
The PVA fiber of the present invention is disclosed in Japanese Patent Application No. 6-68.
It is a multi-component fiber having a sea-island structure as described in Japanese Patent Application No. 543 and Japanese Patent Application No. 5-265022. The PVA-based polymer (A) having a melting point of 220 ° C. or higher is a sea component. The melting point of the PVA-based polymer (A), which is the sea component, is 22
If it is less than 0 ° C, the heat resistance and water resistance of the fiber of the present invention are insufficient, and a fiber that can be used practically cannot be obtained. Also, high strength fibers cannot be obtained. It is more preferable that the melting point of the sea component PVA-based polymer (A) is 225 ° C. or higher.
There is no particular limitation on the upper limit of the melting point of the sea component polymer (A), but PVA having a melting point of 260 ° C. or higher is not common.

【0008】海成分PVA系ポリマー(A)の具体例を
あげると、重合度500〜24000で、鹸化度が99
〜100モル%の高鹸化度PVAである。重合度150
0〜4000、鹸化度が99.5〜100モル%である
と耐水性および熱圧着性の点でさらに好ましい。またエ
チレン、アリルアルコール、イタコン酸、アクリル酸、
無水マイレン酸とその開環物、アリールスルホン酸、ピ
バリン酸ビニルのごとく炭素数が4以上の脂肪酸ビニル
エステル、ビニルピロリドンおよび上記イオン性基の1
部また全量中和物などの変性ユニットにより変性したP
VAも包含される。変性ユニットの量は1モル%未満、
好ましくは0.5モル%以下である。変性ユニットの導
入法は、共重合でも後反応でも特別な限定はない。変性
ユニットの分布はランダムでも、ブロックでも限定はな
い。ブロック的に分布させると結晶化阻害効果が小さ
く、ランダムより多く変性しても高融点を保ちうる。高
鹸化度の高融点PVA系ポリマーを連続相とすることに
より高融点ポリマー単独繊維に近い性能を得ることがで
き、また繊維の最表層を高融点ポリマーとすることによ
り、繊維製造工程における膠着とそれによる不織布製造
時の開繊不良発生を防止することが可能となる。
Specific examples of the sea component PVA polymer (A) include a polymerization degree of 500 to 24000 and a saponification degree of 99.
Highly saponified PVA of ˜100 mol%. Degree of polymerization 150
0 to 4000 and a saponification degree of 99.5 to 100 mol% are more preferable from the viewpoint of water resistance and thermocompression bonding property. In addition, ethylene, allyl alcohol, itaconic acid, acrylic acid,
Maleic anhydride and its ring-opened product, arylsulfonic acid, fatty acid vinyl ester having 4 or more carbon atoms such as vinyl pivalate, vinylpyrrolidone and 1 of the above ionic groups
Part or the total amount of P modified by a modification unit such as neutralized product
VA is also included. The amount of denaturing unit is less than 1 mol%,
It is preferably 0.5 mol% or less. The method of introducing the modifying unit is not particularly limited, whether it is copolymerization or a post reaction. The distribution of the denaturing unit is not limited to random or block. When distributed in blocks, the crystallization-inhibiting effect is small, and the high melting point can be maintained even if it is modified more than randomly. By using a high melting point PVA polymer having a high degree of saponification as a continuous phase, it is possible to obtain a performance close to that of a single fiber having a high melting point, and by using a high melting point polymer as the outermost layer of the fiber, it is possible to prevent sticking in the fiber manufacturing process. This makes it possible to prevent the occurrence of defective opening during the production of the nonwoven fabric.

【0009】本発明のPVA系不織布を構成する海島繊
維の島成分として融点または融着温度が210℃未満の
耐水性ポリマー(B)を用いる。融点が210℃以上で
あると熱圧着温度が高くなりすぎ、熱圧着時海成分のP
VA系ポリマー(A)の配向性、結晶性を破壊しやすい
ので好ましくない。なお融点を持たない耐水性の非晶ポ
リマーであっても、その非晶性ポリマーチップを所定温
度に加熱し、0.1kg/cm2の圧力を10分間印加
した際チップ同志が融着する最低温度を融着温度とした
時、融着温度が210℃未満の耐水性非晶ポリマーは耐
水性ポリマー(B)に包含され、島成分耐水性ポリマー
(B)の融点、あるいは融着温度(以下この温度も融点
という語に含めて使用する)が200℃以下であると好
ましく、190℃以下であるとさらに好ましい。さらに
海成分と島成分の融点差が15℃以上であると、熱圧着
時の繊維寸法変化が小さくなるので好ましい。融点差が
30℃以上であるとより好ましく、50℃以上であると
さらに好ましい。融点が210℃未満の耐水性ポリマー
(B)は通常低配向、低結晶性であるため、繊維のマト
リックスである海成分に用いると、低強度、低耐熱性と
なるので不都合である。また低融点ポリマー(B)が繊
維最表面に存在すると繊維製造工程において膠着しやす
く不織布製造工程での開繊不良の原因となる。この点か
らも低融点ポリマー(B)は島成分とすることが必要で
ある。
A water-resistant polymer (B) having a melting point or a fusion temperature of less than 210 ° C. is used as the island component of the sea-island fiber constituting the PVA-based nonwoven fabric of the present invention. If the melting point is 210 ° C or higher, the thermocompression bonding temperature becomes too high, and the P of the sea component during thermocompression bonding is used.
It is not preferable because the orientation and crystallinity of the VA polymer (A) are easily destroyed. Even if a water-resistant amorphous polymer having no melting point is used, the amorphous polymer chip is heated to a predetermined temperature, and a pressure of 0.1 kg / cm 2 is applied for 10 minutes. When the temperature is the fusion temperature, the water-resistant amorphous polymer having a fusion temperature of less than 210 ° C. is included in the water-resistant polymer (B), and the melting point of the island component water-resistant polymer (B) or the fusion temperature (hereinafter This temperature is also included in the term melting point) and is preferably 200 ° C. or lower, and more preferably 190 ° C. or lower. Furthermore, it is preferable that the difference in melting point between the sea component and the island component is 15 ° C. or more because the fiber dimensional change during thermocompression bonding becomes small. The difference in melting point is more preferably 30 ° C. or higher, and further preferably 50 ° C. or higher. Since the water-resistant polymer (B) having a melting point of less than 210 ° C. usually has low orientation and low crystallinity, it is disadvantageous when it is used as a sea component which is a matrix of fibers because it has low strength and low heat resistance. Further, when the low melting point polymer (B) is present on the outermost surface of the fiber, it easily sticks in the fiber manufacturing process, which causes a failure of opening in the nonwoven fabric manufacturing process. From this point as well, the low melting point polymer (B) needs to be an island component.

【0010】本発明にいう融点210℃未満の耐水性ポ
リマー(B)の具体例としては、エチレン/ビニルアル
コールコポリマー(モル組成比50/50〜20/8
0)、エチレン/酢酸ビニルコポリマー(モル組成比9
2/8〜20/80)、ポリビニルブチラール、ポリビ
ニルホルマール、炭素数3〜20の脂肪酸のビニルエス
テルで変性されたPVA(変性ユニットの量は1モル%
以上、好ましくは2モル%以上である)、変性アクリル
樹脂、ポリイソプレンなどの炭化水素系エラストマー、
ポリウレタン系エラストマーなどがあげられる。とりわ
け、熱接着性、性能再現性(安定性)、コストの点で、
エチレン/ビニルアルコールコポリマー(モル組成比5
0/50〜20/80)、エチレン/酢酸ビニルコポリ
マー(モル組成比92/8〜20/80)のPVA系ポ
リマーは本発明のPVA系不織布を構成する繊維の島成
分として有用である。島成分ポリマーの重合度に特別な
限定はないが、島成分は繊維強度に寄与せず、接着性に
寄与することが重要であるから、熱圧着時流動性のよい
低重合度、例えば100〜1000が好ましい。本発明
で言う耐水性ポリマーとしては、水又は熱水により溶解
することのない常温、好ましくは100℃以下の温度条
件下で固体のポリマーのことで、耐水性を有していない
場合には、不織布化したのちにおいて、水に触れると繊
維間の固定が外れ、不織布形態が崩れることとなる。
Specific examples of the water resistant polymer (B) having a melting point of less than 210 ° C. according to the present invention include ethylene / vinyl alcohol copolymer (molar composition ratio 50/50 to 20/8).
0), ethylene / vinyl acetate copolymer (molar composition ratio 9
2/8 to 20/80), polyvinyl butyral, polyvinyl formal, PVA modified with a vinyl ester of a fatty acid having 3 to 20 carbon atoms (the amount of the modifying unit is 1 mol%
Or more, preferably 2 mol% or more), modified acrylic resin, hydrocarbon elastomer such as polyisoprene,
Examples include polyurethane elastomers. Above all, in terms of heat adhesion, performance reproducibility (stability), and cost,
Ethylene / vinyl alcohol copolymer (molar composition ratio 5
PVA-based polymers of 0/50 to 20/80) and ethylene / vinyl acetate copolymer (molar composition ratio of 92/8 to 20/80) are useful as island components of fibers constituting the PVA-based nonwoven fabric of the present invention. There is no particular limitation on the degree of polymerization of the island component polymer, but it is important that the island component does not contribute to the fiber strength and contributes to the adhesiveness. 1000 is preferred. The water-resistant polymer referred to in the present invention is a solid polymer at room temperature which does not dissolve in water or hot water, preferably at a temperature of 100 ° C. or lower, and when it does not have water resistance, After being made into a non-woven fabric, when it comes into contact with water, the fixation between the fibers is released and the form of the non-woven fabric is destroyed.

【0011】本発明のPVA系不織布を構成する海島繊
維の海成分/島成分のブレンド比[(A)/(B)]は
重量比で98/2〜55/45の範囲である。海成分の
高融点PVAポリマー(A)が55%より少ないと高強
度繊維が得られない。またこの高融点PVA系ポリマー
(A)が55%より少なくなり、低融点耐水性ポリマー
(B)が45%より多くなると、低融点耐水性ポリマー
(B)が海成分となる傾向になり、膠着の点で好ましく
ない。一方、低融点耐水性ポリマー(B)が2%より少
ないと、実用に耐える熱圧着性能を得ることができな
い。強度、膠着と熱圧着性のバランスより、海成分/島
成分のブレンド比が95/5〜60/40であるとより
好ましく、92/8〜70/30であるとさらに好まし
い。
The sea component / island component blending ratio [(A) / (B)] of the sea-island fiber constituting the PVA-based nonwoven fabric of the present invention is in the range of 98/2 to 55/45 by weight. If the high melting point PVA polymer (A) as a sea component is less than 55%, a high strength fiber cannot be obtained. When the high melting point PVA-based polymer (A) is less than 55% and the low melting point water resistant polymer (B) is more than 45%, the low melting point water resistant polymer (B) tends to become a sea component, resulting in sticking. Is not preferable. On the other hand, if the low-melting point water-resistant polymer (B) is less than 2%, the thermocompression bonding performance that can withstand practical use cannot be obtained. From the balance of strength, adhesion and thermocompression bonding property, the blending ratio of sea component / island component is more preferably 95/5 to 60/40, and further preferably 92/8 to 70/30.

【0012】また本発明のPVA系不織布を構成する繊
維において島成分となる低融点ポリマー(B)は繊維最
表面に存在することは好ましくないが、最表面近くに存
在することが好ましい。最表面近辺での海成分の最小厚
み(島成分の低融点ポリマーの繊維最表面までの最近接
距離)は、熱圧着時最表面の高融点PVAポリマー
(A)が破れ、島成分の低融点耐水性ポリマー(B)が
表面に押し出され接着力を得るために重要である。最表
面より0.01〜2μの内側に島成分を存在させること
が好ましい。島成分は繊維断面方向に均一に分布させて
もよいが、表面側により集中して分布させることが好ま
しい。また島成分は繊維軸方向に連続であってもよい
が、必ずしも連続である必要はなく、球状あるいは断続
した細長い棒状あるいはラグビーボール状であってもよ
い。
Further, the low melting point polymer (B) which is an island component in the fibers constituting the PVA type nonwoven fabric of the present invention is not preferably present on the outermost surface of the fiber, but is preferably present near the outermost surface. The minimum thickness of the sea component near the outermost surface (closest distance to the fiber outermost surface of the low melting point polymer of the island component) is that the high melting point PVA polymer (A) on the outermost surface is broken during thermocompression bonding and the low melting point of the island component It is important for the water resistant polymer (B) to be extruded on the surface and to obtain an adhesive force. It is preferable that the island component is present within 0.01 to 2 μm from the outermost surface. The island component may be uniformly distributed in the fiber cross-sectional direction, but it is preferable to distribute it more concentratedly on the surface side. Further, the island component may be continuous in the fiber axis direction, but it is not necessarily continuous, and may be a spherical shape or an interrupted elongated rod shape or a rugby ball shape.

【0013】本発明を構成する海島繊維には、前記高融
点PVA系ポリマー(A)および低融点耐水性ポリマー
(B)の他に、上記した性能を大きく損なわない範囲内
で各種の安定剤、添加剤、その他のポリマー等が添加さ
れてもよい。
The sea-island fibers constituting the present invention include, in addition to the high-melting point PVA-based polymer (A) and the low-melting point water-resistant polymer (B), various stabilizers within a range that does not significantly impair the above-mentioned performance, Additives and other polymers may be added.

【0014】また、本発明を構成する海島繊維の形は、
ウェブ化ができるものなら制限はなく、具体的にいうと
長繊維でも、短繊維でもよい。
The shape of the sea-island fiber which constitutes the present invention is
There is no limitation as long as it can be made into a web, and specifically, long fibers or short fibers may be used.

【0015】本発明のPVA系不織布において重要な点
として、前記のごときPVA系繊維からなるウェブ中の
繊維の交点、接触点の少なくとも1部が融着によって接
着することがあげられる。すなわち、本発明のPVA系
不織布は、熱圧着によって繊維間が接着することが重要
である。
An important point in the PVA-based nonwoven fabric of the present invention is that at least a part of the intersections and contact points of the fibers in the web of PVA-based fibers as described above are bonded by fusion. That is, in the PVA-based nonwoven fabric of the present invention, it is important that the fibers are bonded by thermocompression bonding.

【0016】次に本発明の不織布を構成するPVA系繊
維の製造方法について記載する。前記の高融点PVA系
ポリマー(A)と低融点耐水性ポリマー(B)を98/
2〜55/45の割合で溶媒に溶解して紡糸原液を得
る。ここにいう溶媒とは少なくとも高融点PVA系ポリ
マー(A)を溶解する溶媒でなければならない。低融点
耐水性ポリマー(B)をも溶解する共通溶媒であること
がより好ましいが、必ずしも溶解しなくとも、高融点P
VA系ポリマー溶液中で10μ以下に分散するよう粉砕
分散が可能であれば使用可能である。分散粒径が5μ以
下であると好ましく、1μ以下であるとさらに好まし
い。両ポリマーの共通溶媒に溶解しても両ポリマーの相
溶性によっては均一透明溶液とはならない。むしろ紡糸
原液状態で高融点PVA系ポリマー(A)がマトリック
ス(海)相、低融点耐水性ポリマー(B)の液滴が島相
に微分散したポリマーブレンド溶液となって、濁りのあ
る均一微分散相分離液となることが好ましい。もちろ
ん、両ポリマーの相溶性が良好である場合は均一透明溶
液となり、繊維化時、高融点ポリマー(A)が海成分と
なるよう原液、紡糸条件をとればよい。
Next, a method for producing the PVA-based fiber constituting the nonwoven fabric of the present invention will be described. The high melting point PVA polymer (A) and the low melting point water resistant polymer (B) are 98 /
It is dissolved in a solvent at a ratio of 2 to 55/45 to obtain a spinning dope. The solvent as used herein must be a solvent capable of dissolving at least the high melting point PVA-based polymer (A). A common solvent that also dissolves the low melting point water resistant polymer (B) is more preferable, but the high melting point P does not necessarily have to be dissolved.
It can be used if it can be pulverized and dispersed so as to be dispersed to 10 μm or less in a VA polymer solution. The dispersed particle size is preferably 5 μm or less, more preferably 1 μm or less. Even if dissolved in a common solvent for both polymers, a homogeneous transparent solution cannot be obtained depending on the compatibility of both polymers. Rather, in the spinning stock solution, the high melting point PVA-based polymer (A) becomes a matrix (sea) phase, and the low melting point water resistant polymer (B) droplets become a polymer blend solution finely dispersed in the island phase, resulting in a turbid, uniform fine particle. It is preferably a dispersed phase separation liquid. Of course, when the compatibility of both polymers is good, a uniform transparent solution is obtained, and the stock solution and spinning conditions may be set so that the high melting point polymer (A) becomes a sea component during fiber formation.

【0017】次に得られた原液を乾式紡糸、乾湿式紡糸
あるいは湿式紡糸する。乾式紡糸においては、溶媒が蒸
発する間に高融点ポリマー(A)がマトリックス(海成
分)、低融点ポリマー(B)が島となるよう紡糸延伸条
件を選定し、得られた繊維を捲き取る。乾湿式紡糸にお
いては、原液をノズルより一旦不活性気体相に吐出し、
ついで固化液に通し、固化と原液溶媒の抽出を行い、湿
延伸、乾熱延伸を施し捲き取る。または湿式紡糸におい
ては、原液をノズルより直接固化液に吐出し、固化、抽
出を行い、湿延伸、乾熱延伸を施し捲き取る。いずれの
紡糸法においても高融点ポリマー(A)が海成分に低融
点ポリマー(B)が島成分になるように原液および紡糸
条件を配慮する必要がある。
Next, the obtained stock solution is subjected to dry spinning, dry wet spinning or wet spinning. In dry spinning, the spinning and drawing conditions are selected so that the high melting point polymer (A) becomes a matrix (sea component) and the low melting point polymer (B) becomes islands while the solvent evaporates, and the obtained fiber is wound up. In dry-wet spinning, the stock solution is once discharged from a nozzle into an inert gas phase,
Then, the mixture is passed through a solidifying solution to solidify and extract the solvent of the stock solution, and then subjected to wet stretching and dry heat stretching and winding. Alternatively, in wet spinning, the stock solution is directly discharged from a nozzle into a solidifying solution, solidified and extracted, wet-stretched and dry-heat stretched and wound up. In either spinning method, it is necessary to consider the stock solution and spinning conditions so that the high melting point polymer (A) becomes the sea component and the low melting point polymer (B) becomes the island component.

【0018】次にこのようなPVA系繊維から本発明の
不織布を製造する方法について説明する。ウェブ化法に
ついては特に制限はなく、例えば前記繊維を捲縮カット
してステープルにし、カードあるいはランダムウェッバ
ーにかけ短繊維ウェブを得る、また、無撚で捲き取られ
た前記長繊維を特開平5−125648号で提案された
方法、すなわち開繊した繊維束を圧縮空気流とともに噴
射させる多錘よりなるエアガンとその両端に圧縮空気流
のみを噴射させるサイドガンとを一列に並べ、その下流
に四方が平面板で囲まれた、入口部から出口部に向かい
そのスリット幅が狭くなるように調整されたフードを配
置し、該フード内に該エアガンより圧縮空気流とともに
無撚繊維束を噴射、通過させ、隣接エアガンからの開繊
フィラメントが互いに交絡するように、移動する捕集コ
ンベアー上に捕集する方法により、幅方向に目付変動率
の小さい長繊維ウェブを得る等の方法がある。もちろん
ウェブ化の際には、前記したPVA系繊維以外の繊維
を、前記した本発明の効果を著しく損なわない範囲内で
添加することもできる。
Next, a method for producing the nonwoven fabric of the present invention from such PVA type fibers will be described. The web forming method is not particularly limited. For example, the fibers are crimp-cut into staples and subjected to a card or random webber to obtain a short fiber web. No. 125648, that is, an air gun consisting of multiple spindles for injecting an opened fiber bundle together with a compressed air stream and side guns for injecting only a compressed air stream at both ends thereof are arranged in a line, and four sides are provided downstream thereof. A hood surrounded by a flat plate and adjusted so that its slit width is narrowed from the inlet to the outlet is arranged, and a non-twisted fiber bundle is injected and passed together with the compressed air flow from the air gun into the hood. , By the method of collecting on the moving collecting conveyor so that the spread filaments from the adjacent air guns are entangled with each other, the variation of the basis weight is small in the width direction. There is a method such as obtaining a have long fiber web. Needless to say, fibers other than the above-mentioned PVA-based fibers can be added during web-making within a range that does not significantly impair the effects of the present invention.

【0019】次に該ウェブを熱圧着温度80〜230℃
かつ線圧1kg/cmまたは面圧2kg/cm2以上の
条件で1回の圧着部面積が10〜40%である熱圧着装
置で、圧着部(すなわち圧着部分のパターン)が連続相
となっている圧着ロール又は圧着板と、圧着部が不連続
相となっている圧着ロール又は圧着板との組み合わせで
2〜4回熱圧着することでウェブを接着する。温度80
℃未満、線圧1kg/cm未満または面圧2kg/cm
2未満では最表面の高融点ポリマー(A)が破れず、島
成分の低融点耐水性ポリマー(B)が繊維表面に押し出
されてこないので接着力が低い。最表面の高融点ポリマ
ー(A)を昇温し柔らかくなった状態で圧力を加えるこ
とにより最表面のポリマー相を破り、表面近くにある接
着成分の低融点ポリマー(B)が押し出されて接着する
ことが可能となる。熱圧着温度が高すぎると、海成分の
分子配向や結晶までこわれる可能性があり、また熱圧着
時の収縮が大きく、熱圧着後のウェブが固くなるため、
230℃以上とすべきではない。海/島のポリマー仕
様、分布状態および印加圧力等により、適正熱圧着温度
は変わるが、150〜230℃が好ましく、180〜2
20℃であるとさらに好ましい。
Next, the web is thermocompression-bonded at a temperature of 80 to 230 ° C.
Also, in a thermocompression bonding apparatus in which the area of one pressure bonding part is 10 to 40% at a linear pressure of 1 kg / cm or a surface pressure of 2 kg / cm 2 or more, the pressure bonding part (that is, the pattern of the pressure bonding part) becomes a continuous phase. The web is adhered by thermocompression bonding 2 to 4 times with a combination of a pressure-bonding roll or pressure-bonding plate and a pressure-bonding roll or pressure-bonding plate having a pressure-bonding portion in a discontinuous phase. Temperature 80
Less than ℃, linear pressure less than 1kg / cm or surface pressure 2kg / cm
When it is less than 2 , the high melting point polymer (A) on the outermost surface is not broken and the low melting point water resistant polymer (B) as an island component is not extruded onto the fiber surface, resulting in low adhesive strength. By heating the high melting point polymer (A) on the outermost surface and applying pressure in a softened state, the polymer phase on the outermost surface is broken, and the low melting point polymer (B) as an adhesive component near the surface is extruded and adheres. It becomes possible. If the thermocompression bonding temperature is too high, the molecular orientation and crystals of the sea component may break, and the shrinkage during thermocompression bonding is large, and the web after thermocompression bonding becomes hard,
Should not be above 230 ° C. The appropriate thermocompression bonding temperature varies depending on the sea / island polymer specifications, distribution state, applied pressure, etc., but is preferably 150 to 230 ° C, and 180 to 2
More preferably, it is 20 ° C.

【0020】また印加圧力があまり高いと海成分の繊維
構造を必要以上に壊してしまい好ましくない。熱カレン
ダーローラー等による線圧は500kg/cm以下が好
ましい。線圧が200kg/cm以下であるともっと好
ましく、100kg/cm以下であるとさらに好まし
い。熱プレス等による面圧は1000kg/cm2以下
が好ましい。面圧が400kg/cm2以下であるとも
っと好ましく、200kg/cm2以下であるとさらに
好ましい。通常は線圧5〜50kg/cmあるいは面圧
10〜100kg/cm2で使用される。
If the applied pressure is too high, the fiber structure of the sea component will be destroyed more than necessary, which is not preferable. The linear pressure applied by a thermal calendar roller or the like is preferably 500 kg / cm or less. The linear pressure is more preferably 200 kg / cm or less, further preferably 100 kg / cm or less. The surface pressure by hot pressing or the like is preferably 1000 kg / cm 2 or less. The surface pressure is more preferably 400 kg / cm 2 or less, and further preferably 200 kg / cm 2 or less. Usually, it is used at a linear pressure of 5 to 50 kg / cm or a surface pressure of 10 to 100 kg / cm 2 .

【0021】1回の圧着面積は10〜40%が好まし
い。10%未満であると圧着面積が少なすぎて全体の圧
着面積を増加するために熱圧着処理回数が増えることと
なり必要以上に繊維構造を壊してしまったり、余分に熱
圧着処理装置が必要となるためコスト的にも好ましくな
い。圧着面積が40%より大きいと薄い布しか得られず
様々な厚みの布が得られなくなるため好ましくない。ま
た、ウェブ自体のムラ、金属部の歪等のためクリアラン
ス調整が微妙なものとなるため困難となる。したがっ
て、1回の圧着面積は10〜40%が好まく、さらに1
5〜25%でもっと好ましい。
The area of one-time pressure bonding is preferably 10 to 40%. If it is less than 10%, the crimping area is too small and the total crimping area is increased, so that the number of thermocompression bonding treatments is increased and the fiber structure is destroyed more than necessary, and an extra thermocompression bonding treatment device is required. Therefore, it is not preferable in terms of cost. When the pressure-bonding area is larger than 40%, only a thin cloth is obtained and cloths having various thicknesses cannot be obtained, which is not preferable. Further, the clearance adjustment becomes delicate due to unevenness of the web itself, distortion of the metal portion, etc., which makes it difficult. Therefore, 10 to 40% is preferable for one crimping area.
5 to 25% is more preferable.

【0022】熱圧着は圧着部分が連続相のもので最低1
回処理し、非連続相のもので最低1回処理することが重
要である。連続相のものでの処理は主に毛羽立ちの減
少、布強度の向上の目的のためであり、非連続相のもの
での処理は十分接着させる目的のため行う。そのため、
熱圧着は十分行う必要はなく熱圧着処理温度80〜18
0℃、線圧1〜50kg/cmあるいは面圧2〜100
kg/cm2で行う。連続相のものでの処理のみでは布
を十分接着させるまで処理すると布は薄いものしか作製
できなくなる。また、非連続相のものでの処理のみでは
圧着部分が十分接着しても接着部分が非連続なため布強
度は低く毛羽立ちも多い。以上のことより厚みのある毛
羽立ちの少ない布を得るには、圧着部分が連続相のもの
と非連続相のものの組み合わせで処理することが重要で
ある。圧着部分が連続相のものによる処理と非連続相の
ものによる処理の順番は問題ではなくどちらが先でも後
でもよい。圧着部が連続相の圧着装置としては、面積
0.2〜20mm2の独立した非圧着部が均一に分散さ
れている圧着部分面積が10〜40%の圧着ロールまた
は圧着板が好ましく、また圧着部が不連続相の圧着装置
としては、面積0.2〜50mm2の独立した圧着部が
均一に分散されている圧着部分面積が10〜40%の圧
着ロールまたは圧着板が好ましい。
Thermocompression bonding has a minimum of 1 when the pressure bonding portion is a continuous phase.
It is important to process once and at least once with a discontinuous phase. The treatment with the continuous phase is performed mainly for the purpose of reducing fuzz and improving the fabric strength, and the treatment with the discontinuous phase is performed for the purpose of sufficiently adhering. for that reason,
It is not necessary to perform thermocompression bonding sufficiently, and thermocompression treatment temperature is 80 to 18
0 ° C, linear pressure 1-50 kg / cm or surface pressure 2-100
Perform at kg / cm 2 . If only the treatment with the continuous phase is carried out until the cloth is sufficiently adhered, only the thin cloth can be produced. Further, even if only the treatment with the discontinuous phase is performed, even if the pressure-bonded portion is sufficiently adhered, the adhered portion is discontinuous, so that the cloth strength is low and fuzz is large. From the above, in order to obtain a thick cloth with less fluffing, it is important to treat the pressure-bonded portion with a combination of a continuous phase and a discontinuous phase. The order of the treatment with the continuous pressure portion and the treatment with the non-continuous pressure portion does not matter, and either of them may be performed first or later. As a pressure bonding device having a continuous pressure bonding portion, a pressure bonding roll or pressure bonding plate having a pressure bonding portion area of 10 to 40% in which independent non-pressure bonding portions having an area of 0.2 to 20 mm 2 are uniformly dispersed is preferable. As the pressure-bonding device having a discontinuous phase portion, a pressure-bonding roll or pressure-bonding plate having a pressure-bonding portion area of 10 to 40% in which independent pressure-bonding portions having an area of 0.2 to 50 mm 2 are uniformly dispersed is preferable.

【0023】本発明において、実質的に熱圧着されてい
ない部分が30〜80%であることが好ましい。80%
より多いと毛羽立ちが多くて目的の布は作製できない
し、30%より少ないと作製した布は薄い布か十分接着
されていない布かのどちらかしか作製できない。これら
のことより熱圧着されていない部分が30〜80%であ
る必要があり、より好ましくは60%〜80%である。
In the present invention, it is preferable that the portion which is not substantially thermocompression-bonded is 30 to 80%. 80%
If it is more than that, the target fabric cannot be produced due to a large amount of fuzz, and if it is less than 30%, the produced fabric can be either a thin fabric or a fabric not sufficiently adhered. From these things, it is necessary that the portion which is not thermocompression bonded is 30 to 80%, and more preferably 60 to 80%.

【0024】温度180℃〜230℃、線圧5kg/c
mまたは面圧10kg/cm2以上の条件で熱圧着処理
するとその箇所は透明化するため、布の透光率を向上さ
せるためには、非連続相のものでの処理のとき上記の条
件で熱圧着処理を行い、かつ接着部分を多くすることで
透光率をあげることもできる。接着部分を多くする方法
として圧着面積の大きいものの利用、処理回数の増加が
あげられる。本発明の不織布を農業用途等に用いる場合
には、特に透光率が高いということが極めて重要なファ
クターとなる。
Temperature 180 ° C to 230 ° C, linear pressure 5 kg / c
When the thermocompression bonding treatment is performed under m or a surface pressure of 10 kg / cm 2 or more, that portion becomes transparent. Therefore, in order to improve the light transmittance of the cloth, the treatment under the above-mentioned conditions is performed in the case of the treatment with the discontinuous phase. The light transmittance can also be increased by performing thermocompression bonding and increasing the number of bonded portions. As a method for increasing the number of bonded portions, it is possible to use a material having a large pressure bonding area and increase the number of treatments. When the nonwoven fabric of the present invention is used for agricultural purposes and the like, a particularly high light transmittance is a very important factor.

【0025】処理の回数は5回以上では繊維構造を必要
以上に壊してしまうため好ましくない。このことより熱
圧着回数は2〜4回が好ましく、2〜3回であるともっ
と好ましい。また、熱圧着処理を連続で行っても、1回
1回単独で行ってもかなわない。
If the number of treatments is 5 or more, the fiber structure is destroyed more than necessary, which is not preferable. From this, the number of times of thermocompression bonding is preferably 2 to 4 times, and more preferably 2 to 3 times. Further, the thermocompression bonding treatment may be carried out continuously or may be carried out once at a time.

【0026】熱圧着時間は0.01〜10秒程度の短い
時間でも熱圧着可能である。短時間処理で接着しうるこ
とが熱圧着法の極めて重要な特性である。前記繊維の場
合熱圧着時間を10分間以上とするとかえって接着力が
低下する傾向にある。この原因は不明であるが、ポリマ
ーの結晶化に関係すると推測される。このため、処理時
間の長い面圧印加タイプの熱プレス法より処理時間の短
い線圧印加タイプのカレンダーロール法がより好ましく
熱圧着に使用しうる。
The thermocompression bonding time can be as short as 0.01 to 10 seconds or so. The ability to bond in a short time is a very important property of the thermocompression bonding method. In the case of the above fibers, if the thermocompression bonding time is 10 minutes or more, the adhesive force tends to decrease rather. The cause of this is unknown, but it is presumed to be related to crystallization of the polymer. Therefore, the linear pressure application type calender roll method having a shorter treatment time can be more preferably used for thermocompression bonding than the surface pressure application type hot press method having a long treatment time.

【0027】PVA系繊維ウェブの目付は20〜150
g/cm2が好ましい。20g/cm2より小さいと厚み
のある布を得るという目的からはずれる。150g/c
2より大きいとウェブが厚すぎて熱圧着処理が厚さ方
向全体に行うことが困難となるこのことよりPVA系繊
維ウェブの目付は20〜150g/cm2が好ましく、
より好ましくは30〜100g/cm2がよい。
The basis weight of the PVA fiber web is 20 to 150.
g / cm 2 is preferred. If it is less than 20 g / cm 2, the purpose of obtaining a thick cloth will be lost. 150 g / c
If it is larger than m 2 , the web is too thick and it becomes difficult to perform the thermocompression treatment in the entire thickness direction. Therefore, the basis weight of the PVA-based fiber web is preferably 20 to 150 g / cm 2 ,
It is more preferably 30 to 100 g / cm 2 .

【0028】本発明におけるパラメータの定義とその測
定法は次のごとくである。 1.融点 結晶性ポリマーの場合、メトラー社示差走査熱量測定装
置(DSC−20)を用い、試料ポリマーを窒素下20
℃/minの速度で昇温した際、吸熱ピークを示す温度
を測定する。
The definition of the parameter and the measuring method thereof in the present invention are as follows. 1. Melting point In the case of a crystalline polymer, a differential scanning calorimeter (DSC-20) manufactured by METTLER CORPORATION was used, and the sample polymer was placed under nitrogen at 20
When the temperature is raised at a rate of ° C / min, the temperature showing an endothermic peak is measured.

【0029】2.融着温度 非晶性ポリマーの場合、ポリマーチップを所定温度の熱
風乾燥機にいれ、0.1kg/cm2の圧力を10分間
印加した際、チップ間の境界が判定できない程度にチッ
プ同志が融着する最低の温度を測定する。
2. Fusing temperature In the case of an amorphous polymer, when the polymer chips are placed in a hot air dryer at a specified temperature and a pressure of 0.1 kg / cm 2 is applied for 10 minutes, the chips melt to the extent that the boundaries between the chips cannot be determined. Measure the lowest temperature to wear.

【0030】3.耐水性 80℃の水で1時間浸しても溶解しない性質。3. Water resistance A property that does not dissolve even if immersed in 80 ° C water for 1 hour.

【0031】4.毛羽立ちの評価 布を軽く手の親指、人差し指、中指の腹でこすり、毛羽
立ちが全くでないものを◎、糸がばらばらにほつれるも
のを×として◎、○、△、×の4段階で示した。
4. Evaluation of fluff The cloth was lightly rubbed with the belly of the thumb, forefinger and middle finger of the hand, ⊚ indicates that no fluff was present, and x indicates that the thread was loosely scattered.

【0032】[0032]

【実施例】次に本発明を実施例により説明するが、本発
明はこれら実施例によって限定されるものではない。実
施例中、%は特にことわらない限り重量に基ずく値であ
る。実施例、比較例中の繊維の強度および伸度はインス
トロン引張試験機で、試料つかみ間隔10cm、引張速
度5cm/minで測定した。また、不織布の強度およ
び伸度は繊維の場合と同様インストロン引張試験機で試
料つかみ幅を2.5cmとして他は同一条件で測定し
た。引裂強力はシングルタング法で測定した。なお、実
施例、比較例中の不織布の目付、厚さ、強度、伸度、引
裂強力の値、毛羽立ち評価は表1にまとめた。
EXAMPLES The present invention will now be described with reference to examples, but the present invention is not limited to these examples. In Examples,% is a value based on weight unless otherwise specified. The strength and elongation of the fibers in Examples and Comparative Examples were measured with an Instron tensile tester at a sample gripping interval of 10 cm and a tensile speed of 5 cm / min. The strength and elongation of the non-woven fabric were measured under the same conditions except that the sample gripping width was 2.5 cm with an Instron tensile tester as in the case of the fiber. The tear strength was measured by the single tongue method. Table 1 shows the basis weights, thicknesses, strengths, elongations, values of tear strength, and fuzz evaluations of the nonwoven fabrics in Examples and Comparative Examples.

【0033】実施例1 重合度2400、鹸化度99.8モル%で融点が235
℃のPVAをポリマー(A)とし、重合度750で融着
温度が50℃以下のエチレン/酢酸ビニル=32/68
(モル比)コポリマー(35%メタノール溶液)をポリ
マー(B)として、高融点PVA系ポリマー(A)/低
融点耐水性ポリマー(B)のブレンド比が90/10と
なる混合し、全ポリマー濃度が20%となるよう窒素下
90℃でジメチルスルホキシド(以下DMSOと略記)
に加熱撹拌溶解した。得られたブレンド溶液はかなり濁
っていたが、凝集相分離の傾向は見られなかった。
Example 1 Polymerization degree 2400, saponification degree 99.8 mol%, melting point 235
C. PVA as the polymer (A), the degree of polymerization is 750, and the fusion temperature is 50 ° C. or less ethylene / vinyl acetate = 32/68
(Mole ratio) The copolymer (35% methanol solution) is used as the polymer (B), and the blending ratio of the high melting point PVA polymer (A) / low melting point water resistant polymer (B) is 90/10, and the total polymer concentration is Dimethylsulfoxide (hereinafter abbreviated as DMSO) at 90 ° C under nitrogen so that the ratio becomes 20%.
It was dissolved by heating with stirring. The resulting blended solution was fairly turbid, but showed no tendency to aggregate phase separation.

【0034】この紡糸原液を孔径0.12mm、孔数8
0のノズルを通し、メタノール70%とDMSO30%
よりなる3℃の固化液中に湿式紡糸した。得られた固化
糸篠は白濁状であり、両ポリマーが相分離していること
が推定された。またこの時固化液には特別な濁りは発生
しなかった。この固化糸に5.0倍の湿延伸を施し、メ
タノール液に浸して固化糸篠中のDMSOを抽出洗浄
し、鉱物油系油剤を付与し、100℃で乾燥し、次いで
220℃で全延伸倍率が14倍となるよう乾熱延伸し
た。得られた240dr/80fのフィラメントに膠着
はなく、水中溶断温度が128℃で耐水性は良好であっ
た。単糸強度は15.7g/drであった。また断面観
察より、円型断面であり、高融点のPVA(A)が海成
分で、低融点のエチレン/酢酸ビニルコポリマー(B)
が島成分となっており、その島数は少なくとも100ケ
は存在しており、最表面より1μ以内に島成分が多数存
在していることが分かった。
This spinning dope was prepared with a hole diameter of 0.12 mm and a number of holes of 8
70% methanol and 30% DMSO through the No. 0 nozzle
Was wet-spun in a solidifying solution at 3 ° C. The obtained solidified Itoshino was cloudy, and it was presumed that both polymers were phase-separated. At this time, no special turbidity was generated in the solidified liquid. This solidified yarn is wet-stretched by 5.0 times, immersed in a methanol solution to extract and wash DMSO in the solidified yarn, apply a mineral oil-based oil agent, dry at 100 ° C, and then fully stretch at 220 ° C. It was stretched by dry heat so that the magnification was 14 times. The obtained 240 dr / 80f filament had no sticking, and the melting temperature in water was 128 ° C, and the water resistance was good. The single yarn strength was 15.7 g / dr. In addition, from cross-section observation, it is a circular cross-section, high melting point PVA (A) is a sea component, low melting point ethylene / vinyl acetate copolymer (B)
Is an island component, and at least 100 islands are present, and it was found that many island components were present within 1 μ of the outermost surface.

【0035】得られたPVA系繊維を一旦無撚で捲き取
った後、特開平5−125648号で提案の前記方法に
より、開繊、捕集して目付50g/m2のPVA系長繊
維ウェブを作った。ついでこれを圧着面積20%、連続
相のロール(図1)でロール温度110℃、ロール線圧
33kg/cm、処理速度3m/minのカレンダーロ
ール処理を1回行い、続いて圧着面積15%、連続相で
ないロール(図2)で、ロール温度220℃、ロール線
圧33kg/cm、処理速度5m/minのカレンダー
ロール処理を1回行ってウェブを接着させた。熱圧着さ
れていない部分は68%であった。この時のウェブは手
で揉んだりしても単糸へばらけたり毛羽立つ事はなかっ
た。ウェブのタテヨコ平均裂断長は6.6km、厚さは
0.309mmとなった。なお、図1のエンボスパター
ンは織目柄で凹部分最深部と凸部最高部との高度差は
0.42mmであり、凹部の大きさは長径1.5mmで
短径O.8mmである。また図2のエンボスパターン
は、高度差が0.55mmであり、凸部の大きさは頂部
で0.78mm×1.141mm、底部で1.414m
m×1.775mmである。
The PVA-based filament fiber web having a basis weight of 50 g / m 2 is obtained by once winding the obtained PVA-based fiber without twisting, and then opening and collecting it by the above-mentioned method proposed in JP-A-5-125648. made. Then, this was subjected to a calender roll treatment once with a crimping area of 20%, a continuous phase roll (FIG. 1), a roll temperature of 110 ° C., a roll linear pressure of 33 kg / cm, and a treatment speed of 3 m / min. With a roll that is not in the continuous phase (FIG. 2), the web was adhered by performing the calender roll treatment once at a roll temperature of 220 ° C., a roll linear pressure of 33 kg / cm, and a treatment speed of 5 m / min. 68% of the parts were not thermocompression bonded. The web at this time was not broken into single yarn or fluffed even if it was rubbed by hand. The average horizontal breaking length of the web was 6.6 km and the thickness was 0.309 mm. The embossed pattern of FIG. 1 is a weave pattern, and the height difference between the deepest part of the concave part and the highest part of the convex part is 0.42 mm, and the size of the concave part is 1.5 mm in major axis and O. It is 8 mm. In the embossed pattern of FIG. 2, the height difference is 0.55 mm, and the size of the convex portion is 0.78 mm × 1.141 mm at the top and 1.414 m at the bottom.
It is m × 1.775 mm.

【0036】実施例2 実施例1と同様に目付50g/m2の短繊維ウェブを
得、ついでこれを圧着面積20%、連続相のロール(図
1)でロール温度130℃、ロール線圧33kg/c
m、処理速度3m/minのカレンダーロール処理を1
回行い、続いて圧着面積15%、連続相でないロール
(図2)で、ロール温度220℃、ロール線圧33kg
/cm、処理速度5m/minのカレンダーロール処理
を1回行ってウェブを接着させた。熱圧着されていない
部分は68%である。この時のウェブは手で揉んだりし
ても単糸へばらけたり毛羽立つ事はなかった。ウェブの
タテヨコ平均裂断長は7.6km、厚さは0.272m
mとなった。
Example 2 A short fiber web having a basis weight of 50 g / m 2 was obtained in the same manner as in Example 1, and then this was crimped with an area of 20%, a continuous phase roll (FIG. 1) was used, the roll temperature was 130 ° C., and the roll linear pressure was 33 kg. / C
m, processing speed of 3 m / min 1 calender roll processing
Repeatedly, followed by a pressure bonding area of 15%, a roll that is not in continuous phase (Fig. 2), a roll temperature of 220 ° C, and a roll linear pressure of 33 kg.
/ Cm and a processing speed of 5 m / min, the calender roll treatment was performed once to bond the webs. 68% of the portion is not thermocompression bonded. The web at this time was not broken into single yarn or fluffed even if it was rubbed by hand. The average vertical breaking length of the web is 7.6km and the thickness is 0.272m.
It became m.

【0037】実施例3 実施例1と同様に目付50g/m2の短繊維ウェブを
得、ついでこれを圧着面積20%、連続相のロール(図
1)でロール温度150℃、ロール線圧33kg/c
m、処理速度3m/minのカレンダーロール処理を1
回行い、続いて圧着面積15%、連続相でないロール
(図2)で、ロール温度220℃、ロール線圧33kg
/cm、処理速度5m/minのカレンダーロール処理
を1回行ってウェブを接着させた。熱圧着されていない
部分は68%である。この時のウェブは手で揉んだりし
ても単糸へばらけたり毛羽立つ事はなかった。ウェブの
タテヨコ平均裂断長は7.8km、厚さは0.250m
mとなった。
Example 3 A short fiber web having a basis weight of 50 g / m 2 was obtained in the same manner as in Example 1, and then this was crimped with an area of 20%, a continuous phase roll (FIG. 1) was used, the roll temperature was 150 ° C., and the roll linear pressure was 33 kg. / C
m, processing speed of 3 m / min 1 calender roll processing
Repeatedly, followed by a pressure bonding area of 15%, a roll that is not in continuous phase (Fig. 2), a roll temperature of 220 ° C, and a roll linear pressure of 33 kg.
/ Cm and a processing speed of 5 m / min, the calender roll treatment was performed once to bond the webs. 68% of the portion is not thermocompression bonded. The web at this time was not broken into single yarn or fluffed even if it was rubbed by hand. The average vertical breaking length of the web is 7.8km and the thickness is 0.250m.
It became m.

【0038】比較例1 実施例1と同様に目付50g/m2の短繊維ウェブを
得、ついでこれを圧着面積20%、連続相のロール(図
1)でロール温度150℃、ロール線圧33kg/c
m、処理速度3m/minのカレンダーロール処理を1
回行ってウェブを接着させた。この時のウェブは手で揉
むと単糸へばらけたり毛羽立つ事はなかった。ウェブの
タテヨコ平均裂断長は3.5km、厚さは0.329m
mとなった。熱圧着処理を弱く行っているため、厚さは
あり毛羽立ちは少ないが強度が弱い。
Comparative Example 1 A short fiber web having a basis weight of 50 g / m 2 was obtained in the same manner as in Example 1, and then this was bonded with a pressing area of 20% and a continuous phase roll (FIG. 1) at a roll temperature of 150 ° C. and a roll linear pressure of 33 kg. / C
m, processing speed of 3 m / min 1 calender roll processing
The web was glued back in. When the web at this time was rubbed by hand, it did not break up into single yarn or fluff. The average vertical breaking length of the web is 3.5km and the thickness is 0.329m.
It became m. Since the thermocompression bonding process is performed weakly, it is thick and has little fuzz but weak strength.

【0039】比較例2 実施例1と同様に目付50g/m2の短繊維ウェブを
得、ついでこれを圧着面積20%、連続相のロール(図
1)でロール温度220℃、ロール線圧33kg/c
m、処理速度3m/minのカレンダーロール処理を1
回行ってウェブを接着させた。この時のウェブは手で揉
んだりしても単糸へばらけたり毛羽立つ事はなかった。
ウェブのタテヨコ平均裂断長は8.3km、厚さは0.
211mmとなった。カレンダーロールが連続相で熱圧
着処理を強く行っているため、毛羽立ちが少なく強度は
強いが薄く、ペーパーライクなものであった。
Comparative Example 2 A short fiber web having a basis weight of 50 g / m 2 was obtained in the same manner as in Example 1, and then this was crimped with an area of 20%, a continuous phase roll (FIG. 1) was used, the roll temperature was 220 ° C., and the roll linear pressure was 33 kg. / C
m, processing speed of 3 m / min 1 calender roll processing
The web was glued back in. The web at this time was not broken into single yarn or fluffed even if it was rubbed by hand.
The average vertical breaking length of the web is 8.3 km and the thickness is 0.
It became 211 mm. The calender roll was a continuous phase and strongly subjected to thermocompression bonding, so that it was thin and paper-like with little fuzz and strong strength.

【0040】比較例3 実施例1と同様に目付50g/m2の短繊維ウェブを
得、ついでこれを圧着面積15%、連続相でないのロー
ル(図2)でロール温度220℃、ロール線圧33kg
/cm、処理速度5m/minのカレンダーロール処理
を1回行ってウェブを接着させた。この時のウェブは手
で揉むと単糸へばらけたり毛羽立つ事が認められた。ウ
ェブのタテヨコ平均裂断長は4.4km、厚さは0.3
76mmとなった。カレンダーロールが非連続相で行っ
ているため、厚みはあるが毛羽立ちが多く強度弱い。
Comparative Example 3 A short fiber web having a basis weight of 50 g / m 2 was obtained in the same manner as in Example 1, and then this was bonded with a pressing area of 15% and the roll temperature was 220 ° C. with a roll not in continuous phase (FIG. 2) and a roll linear pressure. 33 kg
/ Cm and a processing speed of 5 m / min, the calender roll treatment was performed once to bond the webs. When the web at this time was rubbed by hand, it was found that the web was broken into single yarns or fluffed. The average vertical breaking length of the web is 4.4km and the thickness is 0.3.
It became 76 mm. Since the calender roll is in a discontinuous phase, it is thick but has a lot of fuzz and weak strength.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【発明の効果】融点が220℃以上であるポリビニルア
ルコール系ポリマー(A)及び融点または融着温度が2
10℃未満である耐水性ポリマー(B)からなり、
(A)と(B)の重量比が98:2〜55:45の範囲
であり、(A)が海成分で(B)が島成分である海島構
造ポリビニルアルコール系繊維からなることにより、繊
維の交点及び接触点の少なくとも1部が熱圧着により接
着でき、接着の際、圧着部が連続相の装置と不連続の装
置を組み合わせた熱カレンダー接着処理を、行うことに
より不織布の強度向上、毛羽立ち減少させた不織布を製
造できるようになった。本発明により得られる不織布は
農業園芸用資材として、べたがけ材、ハウス内張カーテ
ン、遮熱材、風よけ材として好適に利用できる。また、
生活関連資材用としてキッチン洗濯用品、ワイパー類に
も好適に利用される。
EFFECT OF THE INVENTION Polyvinyl alcohol polymer (A) having a melting point of 220 ° C. or higher and a melting point or a fusion temperature of 2
Comprising a water resistant polymer (B) having a temperature of less than 10 ° C.,
The weight ratio of (A) and (B) is in the range of 98: 2 to 55:45, (A) is a sea component, and (B) is an island component. At least a part of the intersection points and contact points can be bonded by thermocompression bonding, and at the time of bonding, the strength of the non-woven fabric is improved and the fluffiness is improved by performing a thermal calendar bonding process in which a device having a continuous phase and a device having a discontinuous pressure bonding part are combined. It has become possible to manufacture reduced nonwoven fabrics. The non-woven fabric obtained by the present invention can be suitably used as an agricultural and horticultural material as a covering material, a house lining curtain, a heat shield material, and a windshield material. Also,
It is also suitable for use in kitchen laundry and wipers for life related materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】圧着部が連続相である熱圧着ロールの表面柄の
一例を示す図である。
FIG. 1 is a diagram showing an example of a surface handle of a thermocompression bonding roll in which a pressure bonding portion is a continuous phase.

【図2】圧着部が不連続相である熱圧着ロールの表面柄
の一例を示す図である。
FIG. 2 is a diagram showing an example of a surface handle of a thermocompression bonding roll in which a pressure bonding portion is in a discontinuous phase.

【符号の説明】[Explanation of symbols]

a 凹部 b 凸部 a concave part b convex part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D04H 3/14 A // D01F 6/14 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area D04H 3/14 A // D01F 6/14 Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 融点が220℃以上であるポリビニルア
ルコール系ポリマー(A)及び融点または融着温度が2
10℃未満である耐水性ポリマー(B)からなり、
(A)と(B)の重量比が98:2〜55:45の範囲
であり、(A)が海成分で(B)が島成分である海島構
造ポリビニルアルコール系繊維からなるウェブを熱圧着
することにより繊維を固定して不織布とするに際して、
圧着面が連続相となっている圧着装置と圧着面が不連続
相となっている圧着装置を併用して熱カレンダー接着処
理を行うことを特徴とする不織布の製造方法。
1. A polyvinyl alcohol-based polymer (A) having a melting point of 220 ° C. or higher and a melting point or fusion temperature of 2
Comprising a water resistant polymer (B) having a temperature of less than 10 ° C.,
The weight ratio of (A) and (B) is in the range of 98: 2 to 55:45, (A) is a sea component, and (B) is an island component. When fixing the fibers to make a non-woven fabric,
A method for producing a non-woven fabric, which comprises performing a thermal calender adhesion treatment by using a crimping device having a continuous crimping surface and a crimping device having a discontinuous crimping surface.
JP6251720A 1994-10-18 1994-10-18 Production of water-resistant polyvinyl alcohol-based nonwoven fabric Pending JPH08113860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6251720A JPH08113860A (en) 1994-10-18 1994-10-18 Production of water-resistant polyvinyl alcohol-based nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6251720A JPH08113860A (en) 1994-10-18 1994-10-18 Production of water-resistant polyvinyl alcohol-based nonwoven fabric

Publications (1)

Publication Number Publication Date
JPH08113860A true JPH08113860A (en) 1996-05-07

Family

ID=17226985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6251720A Pending JPH08113860A (en) 1994-10-18 1994-10-18 Production of water-resistant polyvinyl alcohol-based nonwoven fabric

Country Status (1)

Country Link
JP (1) JPH08113860A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061072A (en) * 2000-08-10 2002-02-28 Kuraray Co Ltd Elastic wet sheet
JP2002227030A (en) * 2001-01-31 2002-08-14 Kuraray Co Ltd Fiber suitable for separator
JP2005007268A (en) * 2003-06-18 2005-01-13 Unitika Ltd Nonwoven fabric for filter and method for manufacturing the same
JP2008002037A (en) * 2006-06-26 2008-01-10 Kuraray Co Ltd Fibrous structure containing ethylene-vinyl alcohol-based copolymer nano-fiber
JP2008542568A (en) * 2005-06-03 2008-11-27 ザ プロクター アンド ギャンブル カンパニー Fibrous structures including polymer structures
CN104640438A (en) * 2012-09-19 2015-05-20 三井化学株式会社 Covering material for agricultural use, and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061072A (en) * 2000-08-10 2002-02-28 Kuraray Co Ltd Elastic wet sheet
JP4536229B2 (en) * 2000-08-10 2010-09-01 株式会社クラレ Elastic wet sheet
JP2002227030A (en) * 2001-01-31 2002-08-14 Kuraray Co Ltd Fiber suitable for separator
JP2005007268A (en) * 2003-06-18 2005-01-13 Unitika Ltd Nonwoven fabric for filter and method for manufacturing the same
JP4522671B2 (en) * 2003-06-18 2010-08-11 ユニチカ株式会社 Nonwoven fabric for filter and method for producing the same
JP2008542568A (en) * 2005-06-03 2008-11-27 ザ プロクター アンド ギャンブル カンパニー Fibrous structures including polymer structures
JP2008002037A (en) * 2006-06-26 2008-01-10 Kuraray Co Ltd Fibrous structure containing ethylene-vinyl alcohol-based copolymer nano-fiber
CN104640438A (en) * 2012-09-19 2015-05-20 三井化学株式会社 Covering material for agricultural use, and method for producing same

Similar Documents

Publication Publication Date Title
CA2292234C (en) Thermoplastic polyvinyl alcohol fibers and method for producing them
KR880000386B1 (en) Heating attatched non-woven fabric&#39;s making method
TWI357943B (en) High resistant light tufting carrier and process f
CN103562446B (en) Polyphenylene sulfide fibre and nonwoven fabric
CN103328704A (en) Polyphenylene sulfide composite fiber and nonwoven fabric
JPH08113860A (en) Production of water-resistant polyvinyl alcohol-based nonwoven fabric
JPH07107217B2 (en) Melt blown nonwoven
JP4368490B2 (en) Nonwoven fabric composed of multicomponent long fibers and method for producing the same
JP3101414B2 (en) Stretchable polyester-based elastic nonwoven fabric and method for producing the same
JPH08144128A (en) Conjugate fiber and nonwoven fabric and knitted fabric
JP3150218B2 (en) Biodegradable short fiber non-woven fabric
JPS581228B2 (en) KaishitsufukugosenIseihinno Seizouhou
JP3235908B2 (en) Composite fibers and non-woven fabrics made therefrom
JP3102450B2 (en) Three-layer nonwoven fabric and method for producing the same
JP2002088630A (en) Weather-resistant filament nonwoven fabric
JP3135054B2 (en) Method for producing stretchable nonwoven fabric
JP7107343B2 (en) Long-fiber nonwoven fabric and method for producing long-fiber nonwoven fabric
CN116324066B (en) Long fiber nonwoven fabric and method for producing long fiber nonwoven fabric
JPH07279026A (en) Thermally contact bonded water-soluble polyvinyl alcohol-based continuous filament nonwoven fabric and its production
JPH02112415A (en) Heat bonding conjugate fiber and nonwoven fabric thereof
JPH07279025A (en) Thermally contact bonded water-resistant polyvinyl alcohol-based continuous filament nonwoven fabric and its production
JPH0881868A (en) Water-resistant polyvinyl alcohol-based nonwoven fabric and its production
JP2001279569A (en) Polyvinyl alcohol-based water-resistant filament nonwoven fabric
JPH0261156A (en) Nonwoven fabric comprising hot adhesive filaments
JP2530599B2 (en) Shrinkable non-woven sheet