JP4536229B2 - Elastic wet sheet - Google Patents

Elastic wet sheet Download PDF

Info

Publication number
JP4536229B2
JP4536229B2 JP2000242394A JP2000242394A JP4536229B2 JP 4536229 B2 JP4536229 B2 JP 4536229B2 JP 2000242394 A JP2000242394 A JP 2000242394A JP 2000242394 A JP2000242394 A JP 2000242394A JP 4536229 B2 JP4536229 B2 JP 4536229B2
Authority
JP
Japan
Prior art keywords
fiber
liquid
mass
sheet
wet sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000242394A
Other languages
Japanese (ja)
Other versions
JP2002061072A (en
Inventor
一男 松田
純一 谷口
彰治 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2000242394A priority Critical patent/JP4536229B2/en
Publication of JP2002061072A publication Critical patent/JP2002061072A/en
Application granted granted Critical
Publication of JP4536229B2 publication Critical patent/JP4536229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、弾性、柔軟性、保液性、機械的性能等の諸性能に優れた弾性湿潤シート、さらに含液させることにより弾性・柔軟性・保液性等の諸性能に優れた弾性湿潤シートとなる硬質成形体及びその製造方法に関し、また該弾性湿潤シートを用いてなる保液材及び拭浄材に関する。
【0002】
【従来の技術】
従来、保液材等に好適な高吸液性素材として、種々のフィルム、多孔性物質、ハイドロゲル等が提案されている。しかしながら、これらは柔軟性及び風合に劣り、しかも十分な保液性が得られない問題があった。
一方、特開平2―200232号公報には、不織布にポリビニルアルコール(PVA)水溶液を塗布した後に凝固させ、次いで得られた多孔質シートをアセタール化する高抱水性拭浄材の製造法が開示されている。該方法により得られるシートは保液性に優れるものであるが、不織布表面が樹脂に被覆されるために不織布本来の柔軟性は損われてしまう。柔軟性・風合等に劣るシートは人肌等に接触させる用途には不適であり、また屈曲面等に沿わせて使用したり種々の形状に加工して使用することが困難となる。
【0003】
さらに特開平2―112407号公報、特開平2―145809号公報には、PVA系重合体及びポリアクリル酸を含む水溶液(紡糸原液)を芒硝浴に吐出して得られた含水繊維に、凍結・乾燥処理を繰り返して高含水ゲル繊維を製造することが開示され、該繊維を用いて不織布等の布帛とすることも示されている。不織布は、フィルム等に比して柔軟性及び風合に優れているものの、単にPVA系繊維を不織布化しただけでは柔軟性及び風合を十分に改善することはできず、また保液性の点でも満足するものは得られない。
【0004】
【発明が解決しようとする課題】
本発明の目的は、弾性、柔軟性、保液性、機械的性能等の諸性能に優れた弾性湿潤シート、さらに該弾性湿潤シートから得られ、かつ再度含液させることにより弾性、柔軟性、保液性等の諸性能に優れた弾性湿潤シートとなる硬質成形体及びその製造方法に関し、さらに該弾性湿潤シートを用いてなる保液材及び拭浄材を提供することにある。
【0005】
【問題を解決するための手段】
本発明は、
(1) 不織布に温度50℃以下の液体を50質量%以上含液させてなる弾性湿潤シートであって、50%伸長回復率60%以上、裂断長3km以上、保液率100〜500%、乾燥時嵩密度0.5g/cm3以下であり、かつ該シートを構成する繊維の30質量%以上が水中溶解温度60℃以上のポリビニルアルコール系繊維であり、しかも該ポリビニルアルコール系繊維がケン化度98モル%以上のビニルアルコール系ポリマーを海成分、ケン化度97モル%以下のビニルアルコール系ポリマーを島成分とする海島構造を有していることを特徴とする弾性湿潤シート、
(2) 嵩密度0.5g/cm3以下の不織布に温度50℃以下の液体を50質量%以上含液させて得られる弾性湿潤シートであって、該不織布を構成する繊維の30質量%以上が水中溶解温度60℃以上のポリビニルアルコール系繊維であり、しかも該ポリビニルアルコール系繊維がケン化度98モル%以上のビニルアルコール系ポリマーを海成分、ケン化度97モル%以下のビニルアルコール系ポリマーを島成分とする海島構造を有していることを特徴とする弾性湿潤シート、
(3) (1)又は(2)に記載の弾性湿潤シートを乾燥及び/又は加熱して得られる硬質成形体、
(4) (1)又は(2)に記載の弾性湿潤シートを乾燥及び/又は加熱する硬質成形体の製造方法、
(5) (3)に記載の硬質成形体に温度50℃以下の液体を50質量%以上含液させる湿潤弾性シートの製造方法、
(6) (1)又は(2)に記載の弾性湿潤シートを用いてなる保液材、
(7) (1)又は(2)に記載の弾性湿潤シートを用いて得られる拭浄材、
に関する。
【0006】
【発明の実施の形態】
本発明は、特定の不織布に液体を付与することにより柔軟で保液性、弾性、柔軟性、機械的性能等の諸性能に優れた高性能の弾性湿潤シートが得られることを見いだしたものである。
本発明においては、まず嵩密度0.5g/cm3以下、好ましくは0.3g/cm3以下、さらに好ましくは0.25g/cm3以下の不織布を用いる必要がある。該不織布は嵩高で繊維間の空隙が多数形成されていることから優れた吸液性及び柔軟性が奏される。嵩密度の高い不織布を用いた場合には吸液性、柔軟性等に優れた湿潤シートは得られない。しかしながら、嵩密度が低すぎるとシートの機械的性能が不十分になり、しかも含液後における空隙サイズが大きすぎるために外部応力により脱液しやすくなる。よって、嵩密度は0.05g/cm3以上、特に0.08g/cm3以上であるのが好ましい。嵩密度は用いる繊維の繊度、不織布の製造方法、熱圧着条件等を変更することにより調整できる。
本発明に用いられる不織布の目付は、取扱性、柔軟性、機械的性能等の点から10〜500g/m2程度、特に50〜300g/m2程度であるのが好ましい。
【0007】
けれども、単に上記のような嵩高な不織布を用いるだけでは所望の湿潤弾性シートは得られない。すなわち、嵩高不織布は柔軟性が高く、しかも繊維間の空隙を多数有するために多量の液体を吸液できる反面、繊維間の絡み合いが少ないためにシート強力が不十分になりやすく、また外部圧力が加わると容易に変形して容易に脱液してしまう。しかしながら、シート強力を高めるためにバインダー樹脂等を付与するとシートの柔軟性及び吸液性等が損われる。
本発明は、以上の問題を解決するために、特定のポリビニルアルコール(PVA)系繊維を配合することを見出したものである。具体的には、水中溶解温度60℃以上の特定のPVA系海島構造繊維を配合することにより、吸液性、保液性、柔軟性等を損うことなくシート強力を顕著に高めるものである。
【0008】
すなわち、不織布が吸液すると、該不織布を構成するPVA系繊維が膨潤し、その結果、繊維同士がより密着して繊維相互の絡み合いが強固になる。よって、本発明のシートは吸液しても機械的性能が低下せず、むしろ吸液によりシートの機械的性能が向上することから、樹脂状バインダー等を付与することなく所望の機械的性能が得られる。しかも、該PVA系繊維は吸液すると極微量溶解してバインダー能を発揮することから、シートの機械的性能をより高めることが可能になる。特に該湿潤シートを乾燥させることにより、機械的強度に優れた硬質成形体(硬質シート等)を得ることが可能になる。
【0009】
さらに、一般に、繊維間空隙に存在する液体は外部応力により容易に脱液する問題があるが、本発明においてはシートが吸液するとPVA系繊維が膨潤して繊維間空隙サイズが小さくなる。よって、繊維間空隙にフリーの状態で存在する液体は極めて少量となり、大部分は吸液性に優れたPVA系繊維に保液された状態となる。そのため、本発明の湿潤シートは外部応力が加わっても脱液しにくく、優れた液体保持性(保液性)を確保できる。
しかも、本発明に用いられるPVA系繊維は膨潤するとゲル状になるため、本発明の湿潤シートは弾性及び柔軟性に優れたものとなり、ぷりぷりとした触感を示す。よって、本発明の湿潤シートは保液材やパップ材基材に好適な材料となる。
【0010】
本発明においては、該PVA系繊維の水中溶解温度を60℃以上、好ましくは70℃以上とする必要がある。該繊維の水中溶解温度が低すぎると液体を付与すると多量にPVAが溶出するために湿潤シートの保液性や機械的性能が不十分となり、さらに不織布製造工程や保管条件等を厳密に管理する必要が生じる。同理由から該繊維の溶出率は5質量%以下、特に2質量%以下であるのが好ましい。しかしながら、該繊維を極微量に溶出させてバインダー能を発揮させ、弾性シート及び硬質成形体の機械的性能を効率的に高める点からは該繊維の水中溶解温度は100℃以下、特に95℃以下であるのが好ましい。また同理由から、該PVA系繊維の溶出率は0.05質量%以上、特に1質量%以上であるのが好ましい。
【0011】
さらに本発明においては、含液時に繊維を膨潤させて、湿潤シートの保液性、機械的性能等を高め、ぷりぷりとした触感を発現させる点からは特定のPVA系海島構造繊維を用いる必要がある。より具体的には、ケン化度98モル%以上のビニルアルコール系ポリマ-(ポリマ-A)を海成分、ケン化度96モル%以下のビニルアルコール系ポリマ-(ポリマ-B)を島成分とする海島構造繊維とする必要がある。該構成を採用することにより、繊維内部に浸透した液体によりポリマー(ポリマーB)が溶解・膨潤して島成分が柔軟になり、また繊維の膨潤度も向上することから所望の弾性湿潤シートを得ることが可能となる。単にポリマーBのみからなる繊維とした場合には、たとえば常温水に浸漬すると完全に溶出してしまうが、上記繊維の場合には繊維表面が液体浸透性を有するものの耐水性に優れたポリマーAにより被覆されていることから、ポリマーBは必要以上に溶出せず、よって保液性、機械的性能等を損うことなくシートの柔軟性、弾性等を高めることができる。逆にポリマ-Aのみからなる繊維を用いた場合、耐水性には問題ないものの含液させても十分に膨潤しないことから、嵩高不織布を含液させても繊維間空隙は大きく減少せず、よって外部圧力により脱液しやすく機械的性能に劣った湿潤シートになる。また繊維が十分に膨潤しないためにぷりぷりとした触感も発現しない。
【0012】
本発明の効果を得るためには、ポリマ-Aのケン化度を98モル%以上とする必要があるが、繊維の膨潤性を高める点からはケン化度99.5モル%以下、特に99モル%以下とするのが好ましく、耐水性及び膨潤性等の点からは重合度1000〜2000であるのがより好ましい。
また繊維の膨潤度を高める点からポリマーBのケン化度は97モル%以下、好ましくは、特に96モル%以下、さらに80モル%以下であるのが好ましく、繊維の耐水性を確保する点からは60モル%以上、特に65モル%以上であるのが好ましい。また耐水性及び膨潤性等の点からは重合度300〜2000、特に300〜1000であるのがより好ましい。
以上のような海島構造繊維とすることにより、膨潤度100%以上、特に150%以上のような液体保持性に優れたPVA系繊維を得ることが可能となる。しかしながら、PVA系繊維の膨潤度が大きすぎると湿潤時の繊維間空隙が必要以上に少なくなりすぎてシートの柔軟性等が損われやすくなることから、繊維の膨潤度は400%以下、特に300%以下であるのが好ましい。
【0013】
島成分は繊維軸方向に連続していても良いが、必ずしも連続である必要はなく、球状あるいは断続した細長い棒状あるいはラグビーボール状であってもよい。また部分的に島成分が繊維表面に露出していてもかまわない。機械的性能、膨潤性等の点からは、島成分の構成割合を1〜45質量%/繊維、特に10〜35質量%/繊維とするのが好ましい。
【0014】
本発明においては、少なくともPVA系繊維を用いる必要がある。PVA系繊維は吸液性、膨潤性、機械的性能等の諸性能に優れていることから、高性能の湿潤シートを得ることが可能になる。なお本発明にいうPVA系繊維とはビニルアルコール系ポリマーを含む繊維であり、他のポリマーがさらに配合されてもかまわない。繊維の膨潤性及びコスト等の点からはビニルアルコール系ポリマーの構成割合を50質量%以上、特に80〜100質量%とするのが好ましい。
【0015】
本発明に用いられるビニルアルコール系ポリマーは他のユニットにより変性されていてもよく、吸液性の点からは親水性基団が導入されたポリマーが好適に使用できる。具体的にはアリルアルコール、アリールスルホン酸、ビニルピロリドンなどにより変性されたビニルアルコール系ポリマーが挙げられる。しかしながら変性率が大きくなりすぎると機械的性能が低下したり、溶出率が大きくなりすぎることから変性ユニットの割合を10モル%以下、さらに5モル%以下とするのが好ましい。
【0016】
本発明に用いられるPVA系海島構造繊維(繊維X)の製造方法は特に限定されず、たとえば乾式紡糸法、乾湿式紡糸法、湿式紡糸法等の方法により製造できる。なお乾湿式方法とは紡糸ノズルと固化浴間に空気や不活性ガスなど満たした空間(エア−ギャップ)を形成させて紡糸する方法をいう。
製造工程性、コスト等の点から湿式紡糸又は乾湿式紡糸により繊維を製造するのが好ましい。具体的な製造方法としては、たとえばPVAを含む水溶液からなる紡糸原液を紡糸口金から、脱水能を有する無機塩類を含む室温の固化浴中に湿式紡糸する方法が挙げられる。紡糸原液のPVA系ポリマ−の濃度は、その重合度によって異なるが5〜40質量%、特に10〜30質量%とするのが好ましい。
【0017】
固化液としては紡糸原液に対する固化能を有するものであれば特に限定されないが、工程性及びコスト等の点から、水を溶媒とする固化液を用いるのが好ましい。具体的には、硫酸ナトリウム(芒硝)、硫酸アンモニウム、炭酸ナトリウムなど脱水能を有する塩類の水溶液が用いられる。なかでも工程性、コスト等の点から飽和水溶液凝固浴を用いるのが好ましい。またホウ酸を0.1〜3質量%程度含む紡糸原液を、水酸化ナトリウム等を含有するアルカリ性固化浴に吐出する方法も好適に採用できる。固化浴の温度は20〜70℃、特に30〜50℃とするのが好ましい。固化浴から離浴した糸篠を所望により湿熱延伸・乾燥することにより紡糸原糸を容易に製造できる。
【0018】
また繊維間膠着が生じにくく、カード工程性に好適な捲縮を容易に付与できる点からは、PVAを有機溶剤に溶解した液を紡糸原液として固化浴中に湿式吐出する方法によりPVA系繊維を製造するのが好ましい。好適には以下の方法が挙げられる。
紡糸原液を構成する溶媒としてはPVAを溶解する有機溶媒を用いるのが好ましく、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド、ジメチルイミダゾリジンなどの極性溶媒やグリセリン、エチレングリコールなどの多価アルコールなどがあげられる。またこれら2種以上の混合物やこれらと水の混合物なども使用し得る。数多い溶媒の中でもDMSOは比較的低温でPVAを溶解することができPVA溶液の熱劣化、着色を防ぐことができ好ましい溶媒である。このときDMSOは凍結温度が比較的高いことから、メタノール等を低濃度添加して固化液の固化点を降下させるのが好ましい。紡糸原液のPVA濃度はPVAの重合度や溶媒の種類によって異なるが、通常2〜30質量%、好ましくは3〜20質量%とする。
【0019】
固化浴としてはPVAに対して固化能を有する有機溶媒を用いる。例えばメタノール、エタノールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類などPVAに対して固化能を有するものならば特に限定はない。なかでも低コストであり、しかも固化能が比較的緩やかで均一な微結晶構造をつくりやすい点でメタノールが好ましい。高強力繊維を得るために本発明においては固化浴中に原液溶媒を含有してもよい。原液溶媒の含有量は固化能を有する有機溶媒の種類によって変化するが10〜50質量%、特に15〜45質量%とするのが好ましく、マイルドな固化による均一ゲルが得られ易くなる。
【0020】
固化浴温度は20℃以下、特に15℃以下、さらに10℃以下とするのが均一固化糸を得る点で好ましい。ノズルと固化浴の間にエアーギャップ層を介する乾湿式紡糸を採用してもかまわないが、繊維性能、紡糸工程性等の点からノズルが固化浴と直接接触している湿式紡糸法を採用するのが好ましい。
次いで得られた固化糸篠を抽出浴に浸漬して固化糸篠中の原液溶媒などを洗浄除去する。抽出浴は固化能を有する有機溶媒などにより構成するのが好ましく、次いで2〜8倍の湿熱延伸を施すのが好ましい。かかる糸篠を乾燥することにより紡糸原糸が得られる。
【0021】
以上のような種々の方法により紡糸原糸を得られるが、繊維性能を高める点からは高温下で熱延伸して配向結晶化を進行させるのが好ましい。特に有機溶剤からなる紡糸原液を用いる上記の方法を採用した場合には、繊維間の膠着が生じにくく機械的性能に優れる繊維が得られ、具体的には強度5cN/dtex以上の繊維が得られる。
繊維の熱延伸方法は非接触あるいは接触式のヒーター、熱風炉、オイル浴、高温蒸気など特に限定はない。なかでも熱風式延伸炉内で約20秒〜3分間の時間をかけて行うのが好ましく、温度を多段に制御することにより二段以上で熱延伸してもよい。延伸温度は100〜250℃とするのが好ましく、全延伸倍率は8〜25倍、特に9〜18倍となるよう熱延伸を実施するのが好ましい。もちろん場合により110〜230℃で乾燥収縮処理を施すこともできる。
【0022】
繊維の溶出率が大きすぎる場合には、ポリマーの製造工程から不織布製造工程のいずれかの工程で分子内及び/又は分子間の架橋処理を施してもよい。架橋剤としてはホルマール、グルタルアルデヒド、ノナンジアール、テトラメトキシノナン等のアルデヒド又はそのアセタールが好適に使用できる。ただし架橋処理を行うと繊維の膨潤性・吸液性が損われるので架橋の程度等に留意する必要がある。
【0023】
本発明では該PVA系繊維を用いて不織布を得る。もちろん、上記PVA系繊維(繊維X)以外の繊維を併用してもよく、たとえば該PVA系繊維と併用可能な繊維としては、本発明で規定したPVA系繊維(繊維X)以外のPVA系繊維、セルロース系繊維、ポリエステル系繊維、ポリアミド系繊維、ポリ塩化ビニル系繊維、ポリ塩化ビニリデン系繊維、ポリアクリロニトリル系繊維、ポリクラール系繊維、ポリオレフィン系繊維(ポリエチレン系繊維、ポリプロピレン系繊維、プロピレンーエチレン共重合体繊維等)などや、綿、麻、天然パルプ等の天然繊維,ガラス繊維等の無機繊維などが挙げられる。たとえば繊維Xに比して耐水性に優れた繊維を配合することによりシートの寸法安定性、機械的性能等を向上させることができる。また綿等を配合すると保液性を一層高めることができる。湿潤シートの保液性及び機械的性能を保持する点からは、湿潤シートの溶出率が15質量%以下、特に5質量%以下、さらに1〜2質量%となるようにするのが好ましい。また本発明の効果を効率的に得る点からは、上記のPVA系繊維(繊維X)の配合率を30質量%以上、特に60質量%以上、さらに80〜100質量%とするのが好ましい。なお本発明にいう繊維とは、紡糸により得られたものだけでなく、フィルム状物をスリットして得られるものや繊維状物等を叩解して得られる叩解物(パルプ状物)等をも包含する。
【0024】
同様に湿潤シートの保液性及び柔軟性を確保する点からは、不織布を構成する繊維の繊度を10dtex以下、特に5dtex以下とするのが好ましい。繊度が小さいほど風合・柔軟性に優れる湿潤シートが得られやすくなり、また繊維間の空隙サイズが小さくなるため外部応力が加わっても脱液しにくくなる。前述のように、本発明においては特定のPVA系繊維を用いていることから、含液すると繊維が膨潤して繊維間空隙サイズが小さくなり脱液が効果的に抑制されるが、上記のような比較的細径の繊維を用いることにより、該効果を顕著に高めることが可能となる。
しかしながら繊維径が小さすぎると、不織布に形成される繊維間空隙のサイズが小さくなりすぎて吸液性が損われたり、また不織布製造工程性や不織布の強度等も不十分になりやすくなる。よって、繊維の繊度を0.1dtex以上、特に1dtex以上とするのが好ましい。
不織布を構成する繊維の繊維長は適宜設定すれば良いが、シートの柔軟性、製造工程性及び保液性の点からは繊維長1〜200mm、特に30〜120mmの短繊維とするのが好ましい。
【0025】
本発明に用いられる不織布の製造方法は特に限定されないが、風合、柔軟性、保液性等に優れたシートを得る点からは、嵩密度の低い不織布とする必要があり、よって、乾式法により不織布を製造するのが好ましい。湿式抄造法により不織布(紙)を製造してもかまわないが、一般には湿式法により得られる不織布の嵩密度は大きくなることから乾式法により不織布を製造するのが望ましい。
本発明の不織布の製造方法としては、たとえばフィラメントトウを摩擦帯電による反発作用により開繊したり、あるいは繊維を捲縮、カットしたステープルをカードなどで開繊して得られるパラレルウエブ、クリスクロスウエブ、ランダムウエブ等の繊維ウエブに絡合処理及び/又は熱圧着処理を施すことにより不織布を製造する方法が挙げられる。該方法を採用することにより、繊維間膠着が効率的に抑制され、また繊維間空隙が適度に形成されることから一層高品位のシートが得られる。
このときカード通過性を高めるために捲縮を付与した捲縮繊維を用いるのが好ましく、より好適には捲縮数3〜15個/インチ、捲縮率5〜15%、捲縮弾性率1〜5%、特に捲縮数5〜12個/インチ、捲縮率6〜10%、残留捲縮率30〜70%の捲縮繊維を用いるのが好ましい。
【0026】
また絡合処理法としては水流絡合法及び/又はニードルパンチ法等を用いるのが好ましい。ニードルパンチの条件は特に限定されないが、不織布の形態安定性の点からはシート両面に施すのが好ましく、機械的性能、形態安定性、風合、柔軟性等の点からニードルパンチ処理数が150回/cm2以上1000回/cm2以下とするのが好ましい。パンチ回数を増やせば不織布の機械的性能は向上するが、柔軟性や吸液性は低下することとなるので、目的によりパンチ回数を設定するのが好ましい。なおニードルパンチ処理数は、シートがニードルによってウエブ両面から絡合処理される回数であり、ニードルの密度、単位時間内のパンチ回数、ウエブの処理速度等により求めることができる。
ニードルの断面形状は円状又は三角状であるのが好ましく、バーブ数は3〜40程度のものを使用するのが好ましい。不織布の嵩密性、吸液性、機械的性能、風合等の点から、ブレード部のニードル直径は0.10〜0.70mm、特に0.40〜0.65mmとするのが好ましい。
【0027】
また水流絡合法を採用する場合には、直径0.05〜0.3mmのノズルを1列又は2列に配列したノズルプレートを用いるのが好ましく、噴出水流の噴出圧力は5〜50kg/cm2とするのが好ましい。水流絡合処理に用いられる水の温度は0〜50℃とするのが好ましい。
複数の絡合処理法を組み合せて不織布を製造しても構わないが、繊維間の膠着を抑制し、かつ高い保液性及び風合を得る点からは絡合処理法としてニードルパンチ法を採用するのが好ましい。
【0028】
また熱圧着性を有する繊維を用いている場合には、熱圧着処理により不織布を製造することもできる。熱圧着処理を施す場合、熱圧着面積割合を5面積%以上とするのが好ましい。熱圧着された部分では優れた機械的性能及び寸法安定効果が得られる。しかしながら柔軟性及び保液性を確保する点からは、熱圧着面積を抑制するのが好ましくは、具体的には絡合処理及び/または熱圧着性面積50面積%以下の熱圧着処理(特に40面積%以下、さらに30面積%以下の熱圧着処理)により不織布を製造するのが好ましい。熱圧着面積が大きくなりすぎると繊維間が強固に固定されて柔軟性が損われるとともに繊維が十分に膨潤できないという問題も生じる。
熱エンボス柄としては、所望の圧着面積比率を有する変形四角柄や織目柄が好適である。このとき不織布の均質性、柔軟性及び吸液性等の点から、熱圧着処理後の不織布から任意の1cm四方の大きさのものを切り出した時に、切り出されたサンプルのいずれにも圧着部分と非圧着部分が存在しているようなエンボス柄とするのが好ましい。熱ロールとしては金属ロール、ゴムロール等を使用すればよい。
【0029】
熱圧着処理における線圧は45〜1000N/cmの線圧あるいは900〜10000Paの面圧を採用するのがより好ましい。熱圧着時間は、可能な限り短い方が好ましく、具体的には0.01〜10秒程度とするのが好ましい。
なお本発明における熱圧着条件(温度・圧力)はシートに実際にかかる温度及び圧力であって、設定温度や設定圧力ではない。実際の温度及び圧力はサーモラベルや圧力インジケーターなどによって実測することができる。
また熱圧着性繊維を配合している場合には、得られた不織布にヒートシール加工を施すことにより、所望の形状(たとえば袋状物、筒状物等)に簡便に加工することもできる。
【0030】
絡合処理と熱圧着処理を併用して不織布を得ることもできるが、より高度に風合・柔軟性等を得たい場合には実質的に熱圧着処理を施すことなく不織布を得るのが好ましい。絡合不織布は風合及び柔軟性に優れるものであり、しかも繊維の自由度が高いことから繊維の膨潤・収縮等が妨げられず、より優れた効果が得られる。
また本発明の効果を損わない範囲であればバインダー樹脂等をさらに付与してもかまわないが、本発明の効果を効率的に得る点からはバインダー樹脂等を実質的に付与しないのが好ましい。
【0031】
上記の方法により得られた不織布を含液させることによって所望の湿潤弾性シートが得られる。所望の弾性湿潤シートを得る点からは、シートに占める液体の割合(含液率)を50質量%以上、好ましくは100質量%以上、さらに好ましくは120質量%以上となるように含液させるのが好ましい。しかしながら、含液量が多すぎると必要以上に繊維が溶出したり、また外部圧力等により脱液しやすくなることから、含液量500質量%以下、特に400質量%以下、さらに300質量%以下とするのが好ましい。該湿潤シートを再度乾燥させると、含液前の不織布と同程度の嵩比重(たとえば0.5g/m2以下)を有する硬質シートが得られる。
液体の種類は特に限定されず、水、アルコール、有機溶剤などの液体(混合液を含む)や、またはこれらに他の添加剤等を添加した溶液、分散液等が挙げられる。目的に応じて適宜選択すればよい。なかでも水系液体を用いた場合に本発明の効果をより効率的に得ることができる。このとき、湿潤シートが必要以上に溶出したり繊維間膠着が生じるのを抑制する点からは、含液させる液体の温度を50℃以下とする必要があり、好適には40℃以下、なかでも30℃以下とする。湿潤シートの目付(液体をも含めたシートの目付)は20〜500g/m2程度、特に100〜400g/m2程度とするのが好ましく、湿潤シートの嵩密度は2.0g/cm3以下、特に0.6〜1.8g/cm3程度であるのが好ましい。
【0032】
本発明によれば、弾性、柔軟性、機械的性能、触感等の種々の性能に優れた湿潤シートが得られる。具体的には吸液率300質量%以上、特に400質量%以上、さらに保液率100質量%以上、特に200質量%以上の湿潤シートが得られる。なお、吸液率及び保液率は実施例に記載の方法により測定できるが、吸液率は繊維内部及び繊維間の空隙に含まれる液体が占める質量割合を示した値であり、保液率は実質的に繊維内部に含まれる液体(外部応力等により脱液しにくい液体)が占める質量割合を示めした値である。保液材料等には高い吸液率が要求されるが、外部応力により脱液しにくい液体保持性を有することも重要であり、保液率の高いシートほど吸液した液体を脱液しにくく保液材等として優れているといえる。本発明によれば、(保液率/吸液率)が0.3以上、特に0.4以上の湿潤シートが得られる。
【0033】
さらに本発明のシートは、吸液性及び保液性に優れるのみでなく弾性・柔軟性に優れたものであり、たとえば50%伸長回復率60%以上、特に70%以上の湿潤シートが得られ、また伸度80%以上、特に90%以上、さらに100%以上のシートを得ることができる。
その上、本発明の湿潤シートは、保液性及び柔軟性・弾性に優れるだけでなく機械的性能に優れたものである。具体的には裂断長3km以上、特に4km以上、強度18N/25mm以上、さらに25N/25mm以上、特に30N/25mm以上、なかでも35N/25mm以上の湿潤シートが得られる。
【0034】
本発明のシートをそのまま使用することもできるが、所望の形態に加工して使用することもでき、また複合体としてもかまわない。たとえば所望により他の1以上の層を任意の順で積層した積層体とすることも可能である。積層可能な層としては、布帛層(織編物、不織布、ネット状物)、フィルム層、金属箔層等が挙げられ、その種類は目的に応じて適宜選択すればよく、複数種の層を積層することもできる。また本発明の不織布を2層以上積層してもよく、本発明の2つの不織布層の間に他の層が挿入された3層積層体としてもかまわない。層間の接着方法は特に限定されず、ニードルパンチ法、ヒートシール法を採用したり、接着剤により適宜積層一体化すればよい。勿論、不織布の広がり方向に別のシートを接合して使用しても構わない。また目的に応じて他の薬剤、処理剤、樹脂等を塗布・浸漬して用いてもかまわない。
【0035】
本発明により得られる弾性湿潤シートは、吸液性能に優れ外部応力等により脱液が生じにくく、かつ柔軟で機械的強度に優れていることから、あらゆる用途に使用できる。なかでも保液材、拭浄材、湿布基材、防振材、クッション材、保冷材、芳香材等に好適なものである。
また場合によっては、本発明の弾性湿潤シートを乾燥及び/又は加熱して硬質成形体(硬質シート等)としてもかまわない。かかる硬質成形体は機械的性能及び形態安定性に優れていることからあらゆる用途に使用できる。特に該硬質成形体を再度湿潤させると乾燥前の弾性湿潤シートの状態に実質的に戻ることから、硬質成形体として保管、輸送等を行い、湿潤シートが必要となった時点で該硬質成形体を湿潤させて所望の弾性湿潤シートを得ることができる。湿潤成形体を使用再度乾燥して硬質化工程を何度も繰り返すことができることから、極めて効率的に使用及び保管を行うことができる。湿潤シートの乾燥は、常温下で行ってもよく、また高温で乾燥処理を行ってもかまわない。たとえば60℃の乾燥機に24時間放置することにより乾燥することができる。また、所望により任意の形に成形してもかあわない。かかる硬質成形体の含液量は5質量%以下であるのが好ましい。
【0036】
【実施例】
以下に実施例により本発明を説明するが、本実施例により何等限定されるものではない。
[極限粘度 ポイズ]
東京計器製B型粘度計により測定した。
[PVAの平均重合度]
JIS K6726に準拠し、30℃の水溶液の極限粘度[η]の測定値よりlogP=1.63log([η]×104 /8.29)によって算出した。なお、PはPVAの平均重合度である。
【0037】
[繊度 dtex]
JIS−L−1015―7.5.1に準じて測定した。
[繊維強度 cN/dtex]
JIS―L−1095―7.5.1に準じて測定した。
[捲縮数 個/25mm、捲縮率 %、残留捲縮率 %]
それぞれJIS―L―1015―7.12.1,JIS―L―1015―7.12.2に準じて測定した。
【0038】
[繊維の水中溶解温度 ℃]
試料を浴比1/100として0℃の水に浸漬し、攪拌しつつ水を2℃/minの速度で昇温したときに、繊維が実質的に完全に溶解する温度を水中溶解温度として求めた。なお、可能な場合には不織布の形態で繊維の水中溶解温度を測定してもかまわない。
【0039】
[嵩密度 g/cm3
10cm×10cmの大きさに切出した目付(A)g/m2の試料について、JIS−L−1913に準じて任意の10点において厚さを測定し、この相加平均を平均厚さ(B)μmとした。次いでAをBで除して試料の嵩密度を算出した。
なお試料のサイズが10cm×10cmよりも小さい場合には、試料を切り出すことなくそのまま用いて各値を測定することとする。
なお乾燥時嵩密度は、60℃の乾燥機内で24時間乾燥した後に上記と同様の方法で嵩密度を求めた値である。
【0040】
[含液率 質量%]
試料(質量Ag)を遠心脱水機にて3000rpm×10分間の条件で遠心脱水処理を行い、さらに遠心脱水処理後の試料を105℃の乾燥機内で2時間乾燥し、該試料の質量Bgを求め、(A―B)/(A)×100により含液率を求めた。
[吸液率 質量%]
JIS-L−1912 6.12.3に準じて吸液率を算出した。
[膨潤度(保液率) 質量%、溶出率 質量%]
JIS―Z―9703に準じた標準状態の試験室において、JIS―L―1015―7・7・2に準じた水(水温20±2℃)に、試料(A)gを浴比1/100の割合で24時間浸漬した。その後、同試験室室内で試料を取りだして遠心脱水機に回転数3000rpmにて10分間処理後、該試料の質量B(g)を測定した。さらに遠心脱水後の試料を105℃の乾燥機内で2時間乾燥して再度質量C(g)を測定し、下記式により試料の膨潤度及び溶出率を算出した。
膨潤度(質量%)=((B)−(C))/(C)×100
溶出率(質量%)=((A)−(C))/(A)×100
【0041】
[湿潤シートの強度 N/25mm、伸度 %、裂断長 km]
湿潤シートについて、それぞれJIS-L−1913−6.3に準じて測定し、強度を目付及び測定試料巾で除して裂断長を算出した。なお各値はタテ方向及びヨコ方向についてそれぞれ測定し、これを相加平均して求めるものとする。
【0042】
[50%伸長回復率 %]
JIS L 1913 6.3.2 b) 2)に準じて調整した湿潤シートについて、JIS L 1096に準じて巾50mmの試験片をつかみ間隔100mmで把持し、引張速度100mm/分で引張り、破断伸度の50%まで伸長して1分間保持し、これを元のチャック間距離100mmにもどす。次いで再度伸度が50%となるように引張ってこの状態を1分間保持する。この処理を5回くりかえし、5回終了したときの湿潤シートの長さ(A)を測定し、試験前の湿潤シートの長さ(B)を(A)で除した値(百分率)を伸長回復率として評価した。なおタテ方向及びヨコ方向についてそれぞれ伸長回復率を求めてこれの相加平均を回復率として求めた。
【0043】
[参考例1]
重合度1700、ケン化度98.5モル%のPVAと、重合度600、ケン化度73モル%で融点が173℃のPVAを各々15%と5%となるように(ポリマー質量比75/25)、窒素雰囲気下で90℃のDMSOに添加してPVA濃度20質量%の紡糸原液を調製した。この紡糸原液を孔径0.08mm、孔数3000のノズルを通し、4℃のメタノール固化液中に、ケン化度73モル%のPVAが島成分となる海島構造繊維となるように湿式紡糸した。得られた固化糸に5.0倍の湿延伸を施こし、メタノール液に浸漬して固化糸篠中のDMSOを抽出洗浄したのち乾燥して、110℃に加熱して捲縮を付与した後に繊維長51mmにカットして原綿を製造した。
得られた該繊維は単繊維繊度1.3dtex,強度8.2cN/dtex、膨潤度212質量%、水中溶解温度74℃、溶出率1.43質量%のPVA系繊維であった。さらに該捲縮繊維の捲縮数は8.8個/25mm,捲縮率8.6%、残留捲縮率は46.1%であった。
【0044】
[参考例2]
参考例1に記載と同様の手法により単繊維繊度3.3dtex,強度8.8cN/dtex、膨潤度220質量%、水中溶解温度77℃、溶出1.36質量%のPVA系捲縮繊維を製造した。該捲縮繊維の捲縮数は7.8個/25mm,捲縮率8.2%、残留捲縮率は42.5%であった。
[参考例3]
重合度1700、ケン化度98.5モル%のPVA原料を窒素雰囲気下で90℃のDMSOに添加してPVA濃度20質量%の紡糸原液を調製した。この紡糸原液を孔径0.08mm、孔数3000のノズルを通し、4℃のメタノール固化液中に湿式紡糸した。得られた固化糸に5.0倍の湿延伸を施こし、メタノール液に浸漬して固化糸篠中のDMSOを抽出洗浄したのち乾燥して、110℃に加熱して捲縮を付与した後に繊維長51mmにカットして原綿を製造した。得られた該繊維は単繊維繊度1.3dtex,強度9.4cN/dtex、膨潤度36質量%、水中溶解温度87℃、溶出率0.25質量%のPVA系繊維であった。さらに該捲縮繊維の捲縮数は9.1個/25mm,捲縮率8.5%、残留捲縮率は48.6%であった。
【0045】
[参考例4]
重合度1700、ケン化度93.5モル%のPVA原料を窒素雰囲気下で90℃のDMSOに添加してPVA濃度20質量%の紡糸原液を調製した。この紡糸原液を孔径0.08mm、孔数3000のノズルを通し、4℃のメタノール固化液中に湿式紡糸した。得られた固化糸に5.0倍の湿延伸を施こし、メタノール液に浸漬して固化糸篠中のDMSOを抽出洗浄したのち乾燥して、110℃に加熱して捲縮を付与した後に繊維長51mmにカットして原綿を製造した。
得られた該繊維は単繊維繊度1.3dtex,強度5.4cN/dtex、水中溶解温度31℃、溶出率100質量%のPVA系繊維であった。さらに該捲縮繊維の捲縮数は8.5個/25mm,捲縮率8.3%、残留捲縮率は52.6%であった。なお膨潤度は水中溶解性が高すぎて測定不可能であった。
【0046】
[実施例1]
参考例1で得られた原綿をパラレルカード工程(テーカイン150rpmm、シリンダー250rpm、ドッファー7rpm)を通過させて目付150g/m2のウェッブを製造した。次いで、該ウエッブの両面にキック不備でニードルパーブ数が9、ブレード部の直径0.55mmのニードルによりニードルパンチ処理を施し、ニードルパンチ数350/cm2、目付150g/m2、嵩密度0.118g/cm3の絡合不織布を製造した。
【0047】
次いで該不織布に20℃水を付与して弾性湿潤シートを製造した。湿潤シートの性能を表1に示す。得られた弾性湿潤シートは、外部圧力を加えても脱液しにくいものであり保液性に優れたものであった。しかも、機械的強度に優れ、ぷりぷりとした触感とともに高度の柔軟性・弾性を有しており、拭浄材、保液材等として好適なものであった。
さらに該湿潤シートを60℃で24時間乾燥したところ、剛直で機械的性能、形態安定性に優れ、保管・輸送に好適な硬質シート(嵩密度0.21g/cm3)が得られた。また該硬質シートを再度吸液させたところ、乾燥前と同様の湿潤弾性シートが得られた。該湿潤弾性シートの吸液率は507質量%、保液率は234質量%であり、乾燥及び湿潤を繰り返しても問題は生じなかった。
【0048】
[実施例2]
参考例1で得られたポリビニルアルコール系原綿とレーヨン原綿(ダイワボウ社製コロナCD 繊度1.5dtex、繊維長44mm)を質量比で75%/25%混綿した後に、パラレルカード工程(テーカイン150rpmm、シリンダー250rpm、ドッファー7rpm)を通過させて目付200g/m2のウェッブを製造した。次いで、該ウエッブの両面にキック不備でニードルパーブ数が9、ブレード部の直径0.55mmのニードルによりニードルパンチ処理を施し、ニードルパンチ数400/cm2、目付200g/m2、嵩密度0.133g/cm3の絡合不織布を製造した。
【0049】
次いで該不織布に、20℃水を付与して弾性湿潤シートを製造した。性能を表1に示す。得られた弾性湿潤シートは、外部圧力を加えても脱液しにくいものであり保液性に優れたものであった。しかも、機械的強度に優れ、ぷりぷりとした触感とともに高度の柔軟性・弾性を有しており、拭浄材、保液材等として好適なものであった。
さらに該湿潤シートを60℃で24時間乾燥したところ、剛直で機械的性能、形態安定性に優れ、保管・輸送に好適な硬質シート(嵩密度0.18g/cm3)が得られた。また該硬質シートを再度吸液させたところ、乾燥前と同様の湿潤弾性シートが得られた。該湿潤弾性シートの吸液率は546質量%、保液率は266質量%であり、乾燥及び湿潤を繰り返しても問題は生じなかった。
【0050】
[実施例3]
参考例1で得られた原綿をパラレルカード工程(テーカイン150rpmm、シリンダー250rpm、ドッファー7rpm)を通過させて目付100g/m2のウェッブを製造した。次いで、該ウェッブの両面に水絡ノズル径0.1mm,ノズル孔ピッチ0.6mm,孔列2列、の水絡ノズルを用いて、水流圧力50kg/cm2,水温26℃にて水流絡合処理を施して、目付100g/m2、嵩密度0.168g/cm3の不織布を製造した。
次いで該不織布に、20℃水を付与して弾性湿潤シートを製造した。性能を標1に示す。得られた弾性湿潤シートは、外部圧力を加えても脱液しにくいものであり保液性に優れたものであった。しかも、機械的強度に優れ、ぷりぷりとした触感とともに高度の柔軟性・弾性を有しており、拭浄材、保液材等として好適なものであった。
さらに該湿潤シートを60℃で24時間乾燥したところ、剛直で機械的性能、形態安定性に優れ、保管・輸送に好適な硬質シート(嵩密度0.20g/cm3)が得られた。また該硬質シートを再度吸液させたところ、乾燥前と同様の湿潤弾性シートが得られた。該湿潤弾性シートの吸液率は650質量%、保液率は400質量%であり、乾燥及び湿潤を繰り返しても問題は生じなかった。
【0051】
[実施例4]
参考例1により得られた原綿と、(株)クラレ製の複合ポリエステル系捲縮繊維PN720(芯鞘構造、鞘部がイソフタル酸変性ポリエステル、芯部がポリエステル繊維で芯鞘比率が50/50質量%、繊度2.2dtex,繊維長51mm)を質量比で85/15質量%で混綿した後に、パラレルカード工程(テーカイン150rpmm、シリンダー250rpm、ドッファー7rpm)を通過させて目付75g/m2のウェッブを製造した。次いで、一方が125℃に加熱された圧着面積が25面積%、圧着部数が50個/cm2の凹凸表面を有する金属ロールと、もう一方が凹凸の無い125℃に加熱された金属ロールとの間に該繊維ウェッブを挿入し、圧力400N/cmにて連続して熱圧着処理された目付75g/m2、嵩密度0.260g/cm3の不織布を得た。この際、各々の繊維が熱圧着に要した時間は0.15秒間であった。
次いで該不織布に、20℃水を付与して弾性湿潤シートを製造した。湿潤シートの性能を表1に示す。得られた弾性湿潤シートは、外部圧力を加えても脱液しにくいものであり保液性に優れたものであった。しかも、機械的強度に優れ、ぷりぷりとした触感とともに高度の柔軟性・弾性を有しており、拭浄材、保液材等として好適なものであった。
さらに該湿潤シートを60℃で24時間乾燥したところ、剛直で機械的性能、形態安定性に優れ、保管・輸送に好適な硬質シート(嵩密度0.18g/cm3)が得られた。また該硬質シートを再度吸液させたところ、乾燥前と同様の湿潤弾性シートが得られた。該湿潤弾性シートの吸液率は600質量%、保液率は300質量%であり、乾燥及び湿潤を繰り返しても問題は生じなかった。
【0052】
[比較例1]
参考例2に記載のPVA原綿を使用し、パラレルカード工程(テーカイン150rpmm、シリンダー250rpm、ドッファー7rpm)を通過させて目付100g/m2のウェッブを製造した。次いで一方が205℃に加熱された凹凸表面のないフラットな金属ロールと、もう一方が、先の金属製フラットロールからの接触による熱移動によって105℃に加熱された凹凸表面のないゴムロールとの間に該繊維ウェッブを挿入し、圧力400N/cmにて連続して熱圧着された目付75g/m2、密度0.528g/cm3の不織布を得た。この際、繊維が熱圧着に要した時間は0.15秒間であった。
次いで該紙に、20℃水を付与して弾性湿潤シートを製造した。湿潤シートの性能を表1に示す。得られた弾性湿潤シートは乾燥時嵩密度が大きく繊維間空隙のサイズが小さすぎるために繊維が水を十分に吸液・膨潤することができず、よって機械的性能に優れるものの弾性・柔軟性に劣り、ぷりぷりとした触感が乏しく、しかも実施例に比して吸液率及び保液率が小さいものとなった。
【0053】
[比較例2]
参考例3のPVA原綿を用いた以外は実施例1と同様の手法により、目付150g/m2、嵩密度0.078g/cm3の不織布を製造した。
次いで該不織布に、20℃水を付与して湿潤シートを製造した。使用している繊維の保液能が不十分であるため得られた湿潤シートの含液率及び保液率は38質量%と小さく、保液材等として性能の不十分なものであり、しかも湿潤シートの機械的性能は低くぷりぷりとした触感も奏していなかった。
【0054】
[比較例3]
参考例4のPVA原綿を用いた以外は実施例1と同様の手法により、目付150g/cm2、嵩密度0.078g/cm3の不織布を製造した。次いで該不織布に、20℃水を付与して弾性湿潤シートを得ようとしたが、PVA系繊維の水中溶解温度が低いために水を付与すると繊維が溶出してシート形状を保持することが出来ず、保液性、弾性、機械的性能等に優れた湿潤シートは得られなかった。
【0055】
【表1】

Figure 0004536229
[0001]
BACKGROUND OF THE INVENTION
The present invention is an elastic wet sheet excellent in various properties such as elasticity, flexibility, liquid retention, mechanical performance, etc., and further elastic wetting excellent in various properties such as elasticity, flexibility and liquid retention by containing liquid. The present invention relates to a rigid molded body to be a sheet and a method for producing the same, and also relates to a liquid retaining material and a wiping material using the elastic wet sheet.
[0002]
[Prior art]
Conventionally, various films, porous materials, hydrogels, and the like have been proposed as highly liquid-absorbing materials suitable for liquid retaining materials. However, these are inferior in flexibility and texture, and there is a problem that sufficient liquid retention is not obtained.
On the other hand, Japanese Patent Application Laid-Open No. 2-200232 discloses a method for producing a highly water-resistant wiping material in which a polyvinyl alcohol (PVA) aqueous solution is applied to a nonwoven fabric and then solidified, and then the resulting porous sheet is acetalized. ing. Although the sheet obtained by this method is excellent in liquid retention, the inherent flexibility of the nonwoven fabric is impaired because the surface of the nonwoven fabric is coated with resin. Sheets that are inferior in flexibility, texture, etc. are unsuitable for use in contact with human skin and the like, and are difficult to use along curved surfaces or processed into various shapes.
[0003]
Further, JP-A-2-112407 and JP-A-2-145809 disclose freezing and water-containing fibers obtained by discharging an aqueous solution (spinning stock solution) containing a PVA polymer and polyacrylic acid to a salt bath. It is disclosed that a highly hydrogel fiber is produced by repeating the drying treatment, and it is also shown that the fiber is used as a fabric such as a nonwoven fabric. Although the nonwoven fabric is superior in flexibility and texture as compared to a film or the like, the flexibility and texture cannot be sufficiently improved by simply forming the PVA fiber into a nonwoven fabric, and liquid retention I can't get anything that is satisfactory.
[0004]
[Problems to be solved by the invention]
The object of the present invention is to provide an elastic wet sheet excellent in various properties such as elasticity, flexibility, liquid retention, mechanical performance, etc., further obtained from the elastic wet sheet, and re-impregnated for elasticity, flexibility, It is providing the liquid holding material and wiping material which use the elastic wet sheet regarding the hard molded object used as the elastic wet sheet excellent in various performances, such as liquid retention, and its manufacturing method.
[0005]
[Means for solving problems]
The present invention
(1) An elastic wet sheet obtained by impregnating a nonwoven fabric with a liquid having a temperature of 50 ° C. or less at 50 mass% or more, 50% elongation recovery rate 60% or more, tearing length 3 km or more, liquid retention rate 100 to 500% , Dry bulk density 0.5g / cm Three 30% by mass or more of the fibers constituting the sheet are polyvinyl alcohol fibers having a dissolution temperature in water of 60 ° C. or more, and the polyvinyl alcohol fibers have a saponification degree of 98 mol% or more. An elastic wet sheet having a sea-island structure having a sea component and a vinyl alcohol polymer having a saponification degree of 97 mol% or less as an island component,
(2) Bulk density 0.5g / cm Three An elastic wet sheet obtained by impregnating the following non-woven fabric with a liquid having a temperature of 50 ° C. or less in an amount of 50% by mass or more, wherein 30% by mass or more of the fibers constituting the non-woven fabric has a dissolution temperature in water of 60 ° C. or more. The polyvinyl alcohol fiber has a sea-island structure in which a vinyl alcohol polymer having a saponification degree of 98 mol% or more is a sea component and a vinyl alcohol polymer having a saponification degree of 97 mol% or less is an island component. An elastic wet sheet, characterized in that
(3) A hard molded body obtained by drying and / or heating the elastic wet sheet according to (1) or (2),
(4) A method for producing a hard molded body for drying and / or heating the elastic wet sheet according to (1) or (2),
(5) A method for producing a wet elastic sheet, wherein the hard molded body according to (3) contains 50% by mass or more of a liquid having a temperature of 50 ° C. or lower,
(6) A liquid retention material using the elastic wet sheet according to (1) or (2),
(7) A wiping material obtained using the elastic wet sheet according to (1) or (2),
About.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention has been found that by applying a liquid to a specific nonwoven fabric, a high-performance elastic wet sheet that is flexible and excellent in various properties such as liquid retention, elasticity, flexibility, and mechanical performance can be obtained. is there.
In the present invention, first, the bulk density is 0.5 g / cm. Three Or less, preferably 0.3 g / cm Three Or less, more preferably 0.25 g / cm Three It is necessary to use the following nonwoven fabric. Since the nonwoven fabric is bulky and has a large number of voids between the fibers, excellent liquid absorbency and flexibility are exhibited. When a non-woven fabric having a high bulk density is used, a wet sheet excellent in liquid absorbency and flexibility cannot be obtained. However, if the bulk density is too low, the mechanical performance of the sheet becomes insufficient, and the void size after the liquid inclusion is too large, so that the liquid is easily drained by external stress. Therefore, the bulk density is 0.05 g / cm Three Above, especially 0.08g / cm Three The above is preferable. The bulk density can be adjusted by changing the fineness of the fibers used, the method for producing the nonwoven fabric, the thermocompression bonding conditions, and the like.
The basis weight of the nonwoven fabric used in the present invention is 10 to 500 g / m from the viewpoints of handleability, flexibility, mechanical performance and the like. 2 Degree, especially 50-300 g / m 2 It is preferable that it is about.
[0007]
However, the desired wet elastic sheet cannot be obtained simply by using the bulky nonwoven fabric as described above. That is, the bulky nonwoven fabric has high flexibility and can absorb a large amount of liquid because it has a large number of voids between the fibers. On the other hand, the sheet strength tends to be insufficient due to less entanglement between the fibers, and the external pressure is low. If added, it will easily deform and drain easily. However, if a binder resin or the like is added to increase the sheet strength, the sheet flexibility and liquid absorbency are impaired.
In order to solve the above problems, the present invention has been found to blend a specific polyvinyl alcohol (PVA) fiber. Specifically, by blending a specific PVA-based sea-island structure fiber having a dissolution temperature in water of 60 ° C. or higher, the sheet strength is remarkably enhanced without impairing the liquid absorbency, liquid retention, flexibility and the like. .
[0008]
That is, when the nonwoven fabric absorbs liquid, the PVA fibers constituting the nonwoven fabric swell, and as a result, the fibers are more closely adhered to each other and the entanglement between the fibers is strengthened. Therefore, even if the sheet of the present invention absorbs the liquid, the mechanical performance does not decrease. Rather, since the mechanical performance of the sheet is improved by the liquid absorption, the desired mechanical performance can be obtained without adding a resinous binder or the like. can get. Moreover, since the PVA fiber dissolves in a very small amount when it absorbs liquid and exhibits the binder ability, the mechanical performance of the sheet can be further enhanced. In particular, by drying the wet sheet, it becomes possible to obtain a hard molded body (hard sheet or the like) excellent in mechanical strength.
[0009]
Furthermore, in general, there is a problem that the liquid present in the interfiber gap easily drains due to external stress. However, in the present invention, when the sheet absorbs liquid, the PVA fiber swells and the interfiber gap size decreases. Therefore, a very small amount of liquid is present in the interfiber space in a free state, and most of the liquid is in a state of being retained in the PVA fiber excellent in liquid absorbency. Therefore, the wet sheet of the present invention is difficult to drain even when external stress is applied, and can secure excellent liquid retention (liquid retention).
Moreover, since the PVA fiber used in the present invention swells to become a gel, the wet sheet of the present invention is excellent in elasticity and flexibility and exhibits a crisp feel. Therefore, the wet sheet of the present invention is a material suitable for a liquid retaining material and a poultice base material.
[0010]
In the present invention, it is necessary that the dissolution temperature of the PVA fiber in water is 60 ° C. or higher, preferably 70 ° C. or higher. If the fiber dissolution temperature in water is too low, a large amount of PVA will elute if liquid is applied, so that the liquid retention and mechanical performance of the wet sheet will be insufficient, and the nonwoven fabric manufacturing process and storage conditions will be strictly controlled. Need arises. For the same reason, the elution rate of the fibers is preferably 5% by mass or less, particularly preferably 2% by mass or less. However, the dissolution temperature of the fibers in water is 100 ° C. or less, particularly 95 ° C. or less from the standpoint of elution of the fibers in a very small amount to exhibit the binder ability and efficiently increase the mechanical performance of the elastic sheet and the hard molded body. Is preferred. For the same reason, the elution rate of the PVA fiber is preferably 0.05% by mass or more, particularly preferably 1% by mass or more.
[0011]
Furthermore, in the present invention, it is necessary to use a specific PVA-based sea-island structure fiber from the viewpoint of swelling the fiber at the time of liquid containing, improving the liquid retention property, mechanical performance, etc. of the wet sheet, and expressing a crisp feel. is there. More specifically, a vinyl alcohol polymer (polymer A) having a saponification degree of 98 mol% or more is a sea component, and a vinyl alcohol polymer (polymer B) having a saponification degree of 96 mol% or less is an island component. It is necessary to use sea-island structure fiber. By adopting this configuration, the polymer (Polymer B) is dissolved and swollen by the liquid that has penetrated into the inside of the fiber to make the island component flexible, and the degree of swelling of the fiber is improved, so that a desired elastic wet sheet is obtained. It becomes possible. In the case of a fiber made of only polymer B, for example, when it is immersed in room temperature water, it is completely eluted, but in the case of the above fiber, although the fiber surface has liquid permeability, polymer A having excellent water resistance Since it is coated, the polymer B does not elute more than necessary, so that the flexibility, elasticity, etc. of the sheet can be improved without impairing the liquid retention property, mechanical performance, and the like. On the other hand, when fibers consisting only of polymer-A are used, the inter-fiber voids are not greatly reduced even when liquids containing bulky non-woven fabrics, because they do not swell sufficiently even if they are liquid-containing, although there is no problem with water resistance. Therefore, it becomes a wet sheet which is easily drained by external pressure and inferior in mechanical performance. Further, since the fibers do not swell sufficiently, a crisp feel is not exhibited.
[0012]
In order to obtain the effect of the present invention, the saponification degree of the polymer A needs to be 98 mol% or more. However, the degree of saponification is 99.5 mol% or less, particularly 99 from the viewpoint of enhancing the swelling property of the fiber. It is preferable to make it mol% or less, and it is more preferable that it is 1000-2000 degree of polymerization from points, such as water resistance and swelling property.
The saponification degree of the polymer B is 97 mol% or less, preferably 96 mol% or less, more preferably 80 mol% or less from the viewpoint of increasing the degree of swelling of the fiber, from the viewpoint of ensuring the water resistance of the fiber. Is preferably 60 mol% or more, particularly 65 mol% or more. From the viewpoint of water resistance and swelling, the degree of polymerization is preferably 300 to 2000, and more preferably 300 to 1000.
By using the sea-island structure fiber as described above, it becomes possible to obtain a PVA-based fiber having excellent liquid retention such as a swelling degree of 100% or more, particularly 150% or more. However, if the degree of swelling of the PVA fiber is too large, the inter-fiber voids when wet are excessively reduced, and the flexibility of the sheet is liable to be impaired. Therefore, the degree of swelling of the fiber is 400% or less, particularly 300 % Or less is preferable.
[0013]
The island component may be continuous in the fiber axis direction, but is not necessarily continuous, and may be in the shape of a sphere or an intermittent elongated rod or rugby ball. Further, the island component may be partially exposed on the fiber surface. From the viewpoint of mechanical performance, swellability and the like, the constituent ratio of the island component is preferably 1 to 45% by mass / fiber, particularly 10 to 35% by mass / fiber.
[0014]
In the present invention, it is necessary to use at least a PVA fiber. Since the PVA fiber is excellent in various properties such as liquid absorption, swelling, and mechanical performance, a high-performance wet sheet can be obtained. The PVA fiber referred to in the present invention is a fiber containing a vinyl alcohol polymer, and another polymer may be further blended. From the viewpoint of fiber swellability, cost, etc., it is preferable that the vinyl alcohol polymer is made 50% by mass or more, particularly 80 to 100% by mass.
[0015]
The vinyl alcohol polymer used in the present invention may be modified with other units, and a polymer having a hydrophilic group introduced therein can be suitably used from the viewpoint of liquid absorbency. Specific examples include vinyl alcohol polymers modified with allyl alcohol, aryl sulfonic acid, vinyl pyrrolidone and the like. However, if the modification rate becomes too large, the mechanical performance deteriorates or the elution rate becomes too large. Therefore, the proportion of the modification unit is preferably 10 mol% or less, and more preferably 5 mol% or less.
[0016]
The production method of the PVA-based sea-island structure fiber (fiber X) used in the present invention is not particularly limited, and can be produced by, for example, a dry spinning method, a dry wet spinning method, a wet spinning method, or the like. The dry-wet method refers to a method of spinning by forming a space (air-gap) filled with air or inert gas between the spinning nozzle and the solidification bath.
In view of production processability, cost, etc., it is preferable to produce fibers by wet spinning or dry wet spinning. As a specific production method, for example, there is a method in which a spinning stock solution composed of an aqueous solution containing PVA is wet-spun from a spinneret into a solidification bath at room temperature containing inorganic salts having dehydrating ability. The concentration of the PVA polymer in the spinning dope varies depending on the degree of polymerization, but is preferably 5 to 40% by mass, particularly 10 to 30% by mass.
[0017]
The solidifying solution is not particularly limited as long as it has a solidifying ability for the spinning stock solution, but from the viewpoint of processability and cost, it is preferable to use a solidifying solution using water as a solvent. Specifically, an aqueous solution of a salt having a dehydrating ability such as sodium sulfate (sodium sulfate), ammonium sulfate, or sodium carbonate is used. Of these, a saturated aqueous solution coagulation bath is preferably used from the viewpoint of processability and cost. A method of discharging a spinning stock solution containing about 0.1 to 3% by mass of boric acid to an alkaline solidification bath containing sodium hydroxide or the like can also be suitably employed. The temperature of the solidification bath is preferably 20 to 70 ° C, particularly 30 to 50 ° C. The spinning raw yarn can be easily produced by subjecting the yarn from the solidification bath to wet heat drawing and drying as desired.
[0018]
In addition, it is difficult to cause interfiber sticking, and from the viewpoint that crimps suitable for card processability can be easily provided, a PVA fiber is obtained by a wet discharge method into a solidification bath using a solution obtained by dissolving PVA in an organic solvent as a spinning stock solution. Preferably it is manufactured. The following method is preferably used.
As the solvent constituting the spinning dope, an organic solvent that dissolves PVA is preferably used, and examples thereof include polar solvents such as dimethyl sulfoxide (DMSO), dimethylformamide, and dimethylimidazolidine, and polyhydric alcohols such as glycerin and ethylene glycol. . Also, a mixture of two or more of these or a mixture of these with water may be used. Among many solvents, DMSO is a preferable solvent because it can dissolve PVA at a relatively low temperature and can prevent thermal deterioration and coloring of the PVA solution. At this time, since DMSO has a relatively high freezing temperature, it is preferable to add a low concentration of methanol or the like to lower the solidification point of the solidified liquid. The PVA concentration of the spinning dope varies depending on the polymerization degree of PVA and the type of solvent, but is usually 2 to 30% by mass, preferably 3 to 20% by mass.
[0019]
As the solidification bath, an organic solvent having a solidification ability for PVA is used. For example, alcohols such as methanol and ethanol, and ketones such as acetone and methyl ethyl ketone are not particularly limited as long as they have a solidifying ability for PVA. Among these, methanol is preferable because it is low in cost and has a relatively slow solidification ability and easily forms a uniform crystallite structure. In order to obtain high-strength fibers, the present invention may contain a stock solvent in the solidification bath. The content of the undiluted solvent varies depending on the type of organic solvent having solidification ability, but is preferably 10 to 50% by mass, particularly preferably 15 to 45% by mass, and a uniform gel can be easily obtained by mild solidification.
[0020]
The solidification bath temperature is preferably 20 ° C. or less, particularly 15 ° C. or less, and more preferably 10 ° C. or less from the viewpoint of obtaining a uniform solidified yarn. Dry-wet spinning via an air gap layer may be used between the nozzle and the solidification bath, but a wet spinning method is used in which the nozzle is in direct contact with the solidification bath in terms of fiber performance, spinning processability, etc. Is preferred.
Next, the obtained solidified thread is immersed in an extraction bath to wash away the stock solution solvent and the like in the solidified thread. The extraction bath is preferably composed of an organic solvent having a solidifying ability, etc., and is preferably subjected to wet heat stretching 2 to 8 times. A spinning raw yarn can be obtained by drying the yarn.
[0021]
Spinning yarns can be obtained by various methods as described above. However, from the viewpoint of improving fiber performance, it is preferable to proceed with oriented crystallization by hot drawing at a high temperature. In particular, when the above-described method using a spinning stock solution composed of an organic solvent is employed, fibers with less mechanical agglomeration between fibers and excellent mechanical performance can be obtained. Specifically, fibers with a strength of 5 cN / dtex or more can be obtained. .
There are no particular limitations on the method of hot drawing of the fiber, such as non-contact or contact type heaters, hot air furnaces, oil baths, high temperature steam. In particular, it is preferable to carry out a time of about 20 seconds to 3 minutes in a hot-air drawing furnace, and the drawing may be performed in two or more stages by controlling the temperature in multiple stages. The stretching temperature is preferably 100 to 250 ° C., and the total stretching ratio is preferably 8 to 25 times, particularly preferably 9 to 18 times. Of course, depending on circumstances, the drying shrinkage treatment can be performed at 110 to 230 ° C.
[0022]
When the fiber elution rate is too large, intramolecular and / or intermolecular cross-linking treatment may be performed in any step from the polymer production process to the nonwoven fabric production process. As the crosslinking agent, aldehydes such as formal, glutaraldehyde, nonane dial, tetramethoxynonane, or acetals thereof can be preferably used. However, it is necessary to pay attention to the degree of cross-linking and the like because the swelling and liquid absorption properties of the fiber are impaired when the cross-linking treatment is performed.
[0023]
In the present invention, a nonwoven fabric is obtained using the PVA fibers. Of course, fibers other than the PVA fiber (fiber X) may be used together. For example, as a fiber that can be used together with the PVA fiber, a PVA fiber other than the PVA fiber (fiber X) defined in the present invention is used. , Cellulose fiber, polyester fiber, polyamide fiber, polyvinyl chloride fiber, polyvinylidene chloride fiber, polyacrylonitrile fiber, polyclar fiber, polyolefin fiber (polyethylene fiber, polypropylene fiber, propylene-ethylene co-polymer) Polymer fibers, etc.), natural fibers such as cotton, hemp and natural pulp, and inorganic fibers such as glass fibers. For example, the dimensional stability, mechanical performance, and the like of the sheet can be improved by blending a fiber excellent in water resistance as compared with the fiber X. Moreover, when cotton etc. are mix | blended, a liquid retention property can be improved further. From the viewpoint of maintaining the liquid retention and mechanical performance of the wet sheet, it is preferable that the elution rate of the wet sheet is 15% by mass or less, particularly 5% by mass or less, and more preferably 1 to 2% by mass. Moreover, from the viewpoint of obtaining the effect of the present invention efficiently, the blending ratio of the PVA fiber (fiber X) is preferably 30% by mass or more, particularly 60% by mass or more, and more preferably 80 to 100% by mass. The fibers referred to in the present invention include not only those obtained by spinning, but also those obtained by slitting film-like materials, and beating products (pulp-like materials) obtained by beating fiber materials, etc. Include.
[0024]
Similarly, from the viewpoint of ensuring the liquid retention and flexibility of the wet sheet, the fineness of the fibers constituting the nonwoven fabric is preferably 10 dtex or less, particularly 5 dtex or less. The smaller the fineness, the easier it is to obtain a wet sheet with excellent texture and flexibility, and the void size between fibers is small, so that even if external stress is applied, it becomes difficult to drain liquid. As described above, since a specific PVA fiber is used in the present invention, when the liquid is contained, the fiber swells and the inter-fiber void size is reduced, and the drainage is effectively suppressed. By using such relatively thin fibers, the effect can be remarkably enhanced.
However, if the fiber diameter is too small, the size of the inter-fiber gap formed in the nonwoven fabric becomes too small and the liquid absorbency is impaired, and the nonwoven fabric manufacturing processability and the strength of the nonwoven fabric tend to be insufficient. Therefore, the fineness of the fiber is preferably 0.1 dtex or more, particularly 1 dtex or more.
The fiber length of the fibers constituting the nonwoven fabric may be set as appropriate, but from the viewpoint of sheet flexibility, processability and liquid retention, it is preferable to use short fibers with a fiber length of 1 to 200 mm, particularly 30 to 120 mm. .
[0025]
The method for producing the nonwoven fabric used in the present invention is not particularly limited. However, from the viewpoint of obtaining a sheet excellent in texture, flexibility, liquid retention, etc., it is necessary to use a nonwoven fabric having a low bulk density. It is preferable to produce a non-woven fabric. Although a nonwoven fabric (paper) may be produced by a wet papermaking method, it is generally desirable to produce a nonwoven fabric by a dry method because the bulk density of the nonwoven fabric obtained by the wet method increases.
As a method for producing the nonwoven fabric of the present invention, for example, a parallel web obtained by opening a filament tow by a repulsive action by triboelectric charging, or crimping a fiber and opening a cut staple with a card or the like is obtained. And a method of producing a nonwoven fabric by subjecting a fiber web such as a random web to entanglement treatment and / or thermocompression treatment. By adopting this method, inter-fiber sticking is efficiently suppressed, and inter-fiber voids are appropriately formed, so that a higher quality sheet can be obtained.
At this time, it is preferable to use crimped fibers to which the card passing property is imparted. More preferably, the number of crimps is 3 to 15 / inch, the crimp rate is 5 to 15%, and the crimp elastic modulus is 1. It is preferable to use a crimped fiber having ˜5%, particularly 5 to 12 crimps / inch, a crimp rate of 6 to 10%, and a residual crimp rate of 30 to 70%.
[0026]
Further, as the entanglement method, it is preferable to use a water entanglement method and / or a needle punch method. The conditions for needle punching are not particularly limited, but it is preferably applied to both sides of the sheet from the viewpoint of the form stability of the nonwoven fabric, and the number of needle punch treatments is 150 from the viewpoints of mechanical performance, form stability, texture, flexibility and the like. Times / cm 2 1000 times / cm 2 The following is preferable. If the number of punches is increased, the mechanical performance of the nonwoven fabric is improved, but the flexibility and liquid absorbency are lowered. Therefore, it is preferable to set the number of punches according to the purpose. The number of needle punch processes is the number of times the sheet is entangled from both sides of the web by the needle, and can be determined by the density of the needles, the number of punches within a unit time, the web processing speed, and the like.
The cross-sectional shape of the needle is preferably circular or triangular, and the number of barbs is preferably about 3 to 40. The needle diameter of the blade portion is preferably 0.10 to 0.70 mm, particularly preferably 0.40 to 0.65 mm, from the viewpoint of the bulkiness, liquid absorption, mechanical performance, texture, etc. of the nonwoven fabric.
[0027]
When the water entanglement method is employed, it is preferable to use a nozzle plate in which nozzles having a diameter of 0.05 to 0.3 mm are arranged in one or two rows, and the jet pressure of the jet water flow is 5 to 50 kg / cm. 2 It is preferable that The temperature of the water used for the water entanglement treatment is preferably 0 to 50 ° C.
A nonwoven fabric may be manufactured by combining multiple entanglement methods, but the needle punch method is adopted as an entanglement method from the viewpoint of suppressing the sticking between fibers and obtaining high liquid retention and feel. It is preferable to do this.
[0028]
Moreover, when the fiber which has thermocompression bonding is used, a nonwoven fabric can also be manufactured by a thermocompression-bonding process. When the thermocompression treatment is performed, the thermocompression area ratio is preferably 5 area% or more. Excellent mechanical performance and dimensional stability can be obtained at the thermocompression bonded portion. However, from the viewpoint of ensuring flexibility and liquid retention, it is preferable to suppress the thermocompression bonding area. Specifically, the entanglement treatment and / or the thermocompression treatment with a thermocompression bonding area of 50 area% or less (particularly 40 The non-woven fabric is preferably produced by an area% or less, and further 30 area% or less thermocompression treatment. If the thermocompression bonding area becomes too large, the fibers are firmly fixed, the flexibility is impaired, and the fibers cannot be sufficiently swollen.
As the heat embossed pattern, a deformed square pattern or a textured pattern having a desired pressure-bonding area ratio is suitable. At this time, from the point of uniformity, flexibility, liquid absorbency, etc. of the nonwoven fabric, when a 1 cm square size of the nonwoven fabric after the thermocompression treatment was cut out, any of the cut out samples had a crimped portion. It is preferable that the embossed pattern has a non-crimped portion. What is necessary is just to use a metal roll, a rubber roll, etc. as a heat roll.
[0029]
More preferably, the linear pressure in the thermocompression treatment is a linear pressure of 45 to 1000 N / cm or a surface pressure of 900 to 10000 Pa. The thermocompression bonding time is preferably as short as possible, specifically about 0.01 to 10 seconds.
The thermocompression bonding conditions (temperature / pressure) in the present invention are the temperature and pressure actually applied to the sheet, not the set temperature or set pressure. Actual temperature and pressure can be measured by a thermo label or a pressure indicator.
Moreover, when the thermocompression-bonding fiber is blended, the resulting nonwoven fabric can be easily processed into a desired shape (for example, a bag-like product, a cylindrical product, etc.) by subjecting it to a heat seal process.
[0030]
It is also possible to obtain a nonwoven fabric by using both the entanglement treatment and the thermocompression treatment, but it is preferable to obtain the nonwoven fabric without substantially performing the thermocompression treatment when it is desired to obtain a higher feeling and flexibility. . The entangled nonwoven fabric is excellent in texture and flexibility, and further, since the degree of freedom of the fiber is high, the swelling and shrinkage of the fiber is not hindered, and a more excellent effect is obtained.
Further, a binder resin or the like may be further added as long as the effect of the present invention is not impaired. However, from the viewpoint of efficiently obtaining the effect of the present invention, it is preferable that the binder resin or the like is not substantially added. .
[0031]
A desired wet elastic sheet is obtained by impregnating the nonwoven fabric obtained by the above method. From the viewpoint of obtaining a desired elastic wet sheet, the liquid content (liquid content) is 50% by mass or more, preferably 100% by mass or more, and more preferably 120% by mass or more. Is preferred. However, if the liquid content is too large, the fibers will be eluted more than necessary, or the liquid will be easily drained by external pressure or the like, so the liquid content is 500% by mass or less, particularly 400% by mass or less, and further 300% by mass or less. Is preferable. When the wet sheet is dried again, the bulk specific gravity (for example, 0.5 g / m) is the same as that of the non-woven fabric before liquid inclusion. 2 A hard sheet having the following) is obtained.
The type of the liquid is not particularly limited, and examples thereof include liquids (including mixed liquids) such as water, alcohol, and organic solvents, or solutions obtained by adding other additives to these, dispersions, and the like. What is necessary is just to select suitably according to the objective. In particular, the effect of the present invention can be obtained more efficiently when an aqueous liquid is used. At this time, the temperature of the liquid to be contained needs to be 50 ° C. or less, preferably 40 ° C. or less, preferably from the viewpoint of suppressing the elution of the wet sheet more than necessary or the occurrence of interfiber sticking. It shall be 30 degrees C or less. Wet sheet weight (sheet weight including liquid) is 20 to 500 g / m 2 Degree, especially 100-400 g / m 2 The bulk density of the wet sheet is preferably 2.0 g / cm. Three Hereinafter, particularly 0.6 to 1.8 g / cm. Three It is preferable that it is about.
[0032]
According to the present invention, a wet sheet excellent in various performances such as elasticity, flexibility, mechanical performance, and touch feeling can be obtained. Specifically, a wet sheet having a liquid absorption rate of 300% by mass or more, particularly 400% by mass or more, and a liquid retention rate of 100% by mass or more, particularly 200% by mass or more is obtained. The liquid absorption rate and the liquid retention rate can be measured by the method described in the examples, but the liquid absorption rate is a value indicating the mass ratio occupied by the liquid contained in the interior of the fiber and between the fibers, Is a value indicating the mass ratio of the liquid substantially contained in the fiber (liquid that is difficult to drain due to external stress or the like). Liquid retention materials are required to have a high liquid absorption rate, but it is also important to have liquid retention that is difficult to drain due to external stress. It can be said that it is excellent as a liquid retaining material. According to the present invention, a wet sheet having (liquid retention / liquid absorption) of 0.3 or higher, particularly 0.4 or higher can be obtained.
[0033]
Furthermore, the sheet of the present invention is not only excellent in liquid absorption and liquid retention, but also excellent in elasticity and flexibility. For example, a wet sheet having a 50% elongation recovery rate of 60% or more, particularly 70% or more can be obtained. Further, a sheet having an elongation of 80% or more, particularly 90% or more, and further 100% or more can be obtained.
Moreover, the wet sheet of the present invention is excellent not only in liquid retention, flexibility and elasticity, but also in mechanical performance. Specifically, a wet sheet having a breaking length of 3 km or more, particularly 4 km or more, a strength of 18 N / 25 mm or more, further 25 N / 25 mm or more, particularly 30 N / 25 mm or more, especially 35 N / 25 mm or more is obtained.
[0034]
The sheet of the present invention can be used as it is, but it can also be used after being processed into a desired form, or may be a composite. For example, if desired, a laminated body in which one or more other layers are laminated in an arbitrary order is also possible. Examples of the layer that can be laminated include a fabric layer (woven or knitted fabric, nonwoven fabric, net-like material), a film layer, a metal foil layer, and the like. You can also Two or more layers of the nonwoven fabric of the present invention may be laminated, or a three-layer laminate in which other layers are inserted between the two nonwoven fabric layers of the present invention may be used. The method for bonding the layers is not particularly limited, and a needle punch method or a heat seal method may be employed, or lamination may be appropriately integrated using an adhesive. Of course, you may join and use another sheet | seat in the spreading direction of a nonwoven fabric. Further, other chemicals, treatment agents, resins, etc. may be applied and immersed depending on the purpose.
[0035]
The elastic wet sheet obtained according to the present invention is excellent in liquid absorption performance, hardly causes liquid drainage due to external stress, and is flexible and excellent in mechanical strength. Among them, it is suitable for liquid retaining materials, wiping materials, poultice base materials, vibration isolating materials, cushion materials, cold insulating materials, aromatic materials and the like.
In some cases, the elastic wet sheet of the present invention may be dried and / or heated to form a hard molded body (hard sheet or the like). Since such a hard molded body is excellent in mechanical performance and form stability, it can be used for any application. In particular, when the hard molded body is wetted again, it substantially returns to the state of the elastic wet sheet before drying. Therefore, the hard molded body is stored and transported as a hard molded body, and when the wet sheet becomes necessary, the hard molded body Can be moistened to obtain a desired elastic wet sheet. Since the wet molding can be dried again and the hardening process can be repeated many times, it can be used and stored very efficiently. The wet sheet may be dried at room temperature or may be dried at a high temperature. For example, it can be dried by leaving it in a dryer at 60 ° C. for 24 hours. Further, it may be formed into an arbitrary shape as desired. The liquid content of the hard molded body is preferably 5% by mass or less.
[0036]
【Example】
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the examples.
[Intrinsic viscosity poise]
It was measured with a Tokyo Keiki B-type viscometer.
[Average polymerization degree of PVA]
Based on JIS K6726, it calculated by logP = 1.63log ([(eta)] * 104 / 8.29) from the measured value of intrinsic viscosity [(eta)] of 30 degreeC aqueous solution. P is the average degree of polymerization of PVA.
[0037]
[Fineness dtex]
It measured according to JIS-L-1015-7.5.1.
[Fiber strength cN / dtex]
It measured according to JIS-L-1095-7.5.1.
[Number of crimps / 25 mm, Crimp rate%, Residual crimp ratio%]
Measurements were made according to JIS-L-1015-7.12.1 and JIS-L-1015-7.12.2, respectively.
[0038]
[Fiber dissolution temperature in water ℃]
When the sample is immersed in water at 0 ° C. with a bath ratio of 1/100 and the water is heated at a rate of 2 ° C./min while stirring, the temperature at which the fiber is substantially completely dissolved is determined as the water dissolution temperature. It was. If possible, the fiber dissolution temperature in water may be measured in the form of a non-woven fabric.
[0039]
[Bulk density g / cm Three ]
The basis weight cut out to a size of 10cm x 10cm (A) g / m 2 With respect to the sample, the thickness was measured at any 10 points according to JIS-L-1913, and this arithmetic average was defined as the average thickness (B) μm. Next, A was divided by B to calculate the bulk density of the sample.
When the size of the sample is smaller than 10 cm × 10 cm, each value is measured using the sample as it is without being cut out.
The bulk density during drying is a value obtained by drying the bulk density in a dryer at 60 ° C. for 24 hours and then obtaining the bulk density by the same method as described above.
[0040]
[Liquid content% by mass]
The sample (mass Ag) is subjected to centrifugal dehydration treatment at 3000 rpm × 10 minutes in a centrifugal dehydrator, and the sample after centrifugal dehydration treatment is further dried in a dryer at 105 ° C. for 2 hours to obtain the mass Bg of the sample. The liquid content was determined by (AB) / (A) × 100.
[Liquid absorption percentage by mass]
The liquid absorption rate was calculated according to JIS-L-1912 6.12.3.
[Swelling degree (retention rate) mass%, elution rate mass%]
In a standard laboratory according to JIS-Z-9703, water (water temperature 20 ± 2 ° C.) according to JIS-L-1015-7, 7.2, and sample (A) g in a bath ratio of 1/100 For 24 hours. Thereafter, the sample was taken out in the same test chamber, treated in a centrifugal dehydrator at 3000 rpm for 10 minutes, and then the mass B (g) of the sample was measured. Further, the sample after centrifugal dehydration was dried in a dryer at 105 ° C. for 2 hours, the mass C (g) was measured again, and the swelling degree and elution rate of the sample were calculated by the following formulas.
Swelling degree (mass%) = ((B) − (C)) / (C) × 100
Elution rate (mass%) = ((A) − (C)) / (A) × 100
[0041]
[Strength of wet sheet N / 25 mm, elongation%, breaking length km]
The wet sheet was measured according to JIS-L-1913-6.3, and the tear length was calculated by dividing the strength by the basis weight and the measured sample width. In addition, each value shall be calculated | required by measuring each about a length direction and a horizontal direction, and calculating this.
[0042]
[50% elongation recovery rate%]
B) For a wet sheet prepared according to JIS L 1913 6.3.2 b), a test piece having a width of 50 mm was gripped at a grip interval of 100 mm according to JIS L 1096, and pulled at a tensile speed of 100 mm / min. It is stretched to 50% of the degree and held for 1 minute, and this is returned to the original distance between chucks of 100 mm. Subsequently, it is pulled again so that the elongation becomes 50%, and this state is maintained for 1 minute. Repeat this process 5 times, measure the length (A) of the wet sheet when the process is completed 5 times, and recover the elongation (percentage) by dividing the length (B) of the wet sheet before the test by (A). Rated as a rate. In addition, the elongation recovery rate was calculated | required about the length direction and the horizontal direction, respectively, and the arithmetic average of this was calculated | required as a recovery rate.
[0043]
[Reference Example 1]
PVA having a polymerization degree of 1700 and a saponification degree of 98.5 mol%, and a PVA having a polymerization degree of 600 and a saponification degree of 73 mol% and a melting point of 173 ° C. were respectively 15% and 5% (polymer mass ratio 75 / 25) In a nitrogen atmosphere, it was added to DMSO at 90 ° C. to prepare a spinning dope having a PVA concentration of 20% by mass. This spinning stock solution was passed through a nozzle having a pore diameter of 0.08 mm and a pore number of 3000, and wet-spun into a methanol solidified solution at 4 ° C. so that PVA having a saponification degree of 73 mol% became sea-island structure fibers serving as island components. The obtained solidified yarn is subjected to wet stretching of 5.0 times, immersed in a methanol solution, extracted and washed with DMSO in the solidified yarn, dried and heated to 110 ° C. to give crimps. A raw cotton was produced by cutting to a fiber length of 51 mm.
The obtained fiber was a PVA fiber having a single fiber fineness of 1.3 dtex, a strength of 8.2 cN / dtex, a swelling degree of 212 mass%, a dissolution temperature in water of 74 ° C., and an elution rate of 1.43 mass%. Furthermore, the number of crimps of the crimped fiber was 8.8 pieces / 25 mm, the crimp rate was 8.6%, and the residual crimp rate was 46.1%.
[0044]
[Reference Example 2]
A PVA crimped fiber having a single fiber fineness of 3.3 dtex, a strength of 8.8 cN / dtex, a swelling degree of 220% by mass, a dissolution temperature in water of 77 ° C., and an elution of 1.36% by mass is produced in the same manner as described in Reference Example 1. did. The number of crimps of the crimped fiber was 7.8 pieces / 25 mm, the crimp rate was 8.2%, and the residual crimp rate was 42.5%.
[Reference Example 3]
A PVA raw material having a polymerization degree of 1700 and a saponification degree of 98.5 mol% was added to DMSO at 90 ° C. under a nitrogen atmosphere to prepare a spinning dope having a PVA concentration of 20 mass%. The spinning solution was wet-spun into a methanol solidified solution at 4 ° C. through a nozzle having a hole diameter of 0.08 mm and a hole number of 3000. The obtained solidified yarn is subjected to wet stretching of 5.0 times, immersed in a methanol solution, extracted and washed with DMSO in the solidified yarn, dried and heated to 110 ° C. to give crimps. A raw cotton was produced by cutting to a fiber length of 51 mm. The obtained fiber was a PVA fiber having a single fiber fineness of 1.3 dtex, a strength of 9.4 cN / dtex, a swelling degree of 36 mass%, a dissolution temperature in water of 87 ° C., and an elution rate of 0.25 mass%. Further, the number of crimps of the crimped fiber was 9.1 pieces / 25 mm, the crimp rate was 8.5%, and the residual crimp rate was 48.6%.
[0045]
[Reference Example 4]
A PVA raw material having a polymerization degree of 1700 and a saponification degree of 93.5 mol% was added to DMSO at 90 ° C. under a nitrogen atmosphere to prepare a spinning dope having a PVA concentration of 20 mass%. The spinning solution was wet-spun into a methanol solidified solution at 4 ° C. through a nozzle having a hole diameter of 0.08 mm and a hole number of 3000. The obtained solidified yarn is subjected to wet stretching of 5.0 times, immersed in a methanol solution, extracted and washed with DMSO in the solidified yarn, dried and heated to 110 ° C. to give crimps. A raw cotton was produced by cutting to a fiber length of 51 mm.
The obtained fiber was a PVA fiber having a single fiber fineness of 1.3 dtex, a strength of 5.4 cN / dtex, a dissolution temperature in water of 31 ° C., and an elution rate of 100% by mass. Furthermore, the number of crimps of the crimped fiber was 8.5 pieces / 25 mm, the crimp rate was 8.3%, and the residual crimp rate was 52.6%. The degree of swelling was not measurable because the solubility in water was too high.
[0046]
[Example 1]
The raw cotton obtained in Reference Example 1 is passed through a parallel card process (Teccaine 150 rpm, cylinder 250 rpm, doffer 7 rpm), and the basis weight is 150 g / m. 2 The web was manufactured. Next, the needle punching process was performed on both sides of the web with a needle having a kick defect and a needle pub number of 9 and a blade diameter of 0.55 mm. The needle punch number was 350 / cm. 2 , Basis weight 150g / m 2 , Bulk density 0.118 g / cm Three An intertwined nonwoven fabric was produced.
[0047]
Subsequently, 20 degreeC water was provided to this nonwoven fabric, and the elastic wet sheet | seat was manufactured. The performance of the wet sheet is shown in Table 1. The obtained elastic wet sheet was difficult to drain even when external pressure was applied, and was excellent in liquid retention. Moreover, it has excellent mechanical strength and has a high degree of flexibility and elasticity as well as a pleasing tactile sensation, making it suitable as a wiping material, liquid retaining material, and the like.
Further, when the wet sheet was dried at 60 ° C. for 24 hours, it was rigid, excellent in mechanical performance and shape stability, and suitable for storage and transportation (bulk density 0.21 g / cm Three )was gotten. When the hard sheet was again absorbed, a wet elastic sheet similar to that before drying was obtained. The wet elastic sheet had a liquid absorption rate of 507% by mass and a liquid retention rate of 234% by mass, and no problem occurred even after repeated drying and wetting.
[0048]
[Example 2]
After blending the polyvinyl alcohol raw cotton obtained in Reference Example 1 and the rayon raw cotton (Corona CD fineness 1.5 dtex, fiber length 44 mm) manufactured by Daiwabo Co., Ltd. in a mass ratio of 75% / 25%, the parallel card process (Tecine 150 rpmm, cylinder) 250 rpm, doffer 7 rpm) and a basis weight of 200 g / m 2 The web was manufactured. Next, a needle punching process was applied to both surfaces of the web with a needle having a kick defect, a needle pub number of 9 and a blade diameter of 0.55 mm. The needle punch number was 400 / cm. 2 , Basis weight 200g / m 2 , Bulk density 0.133 g / cm Three An intertwined nonwoven fabric was produced.
[0049]
Subsequently, 20 degreeC water was provided to this nonwoven fabric, and the elastic wet sheet | seat was manufactured. The performance is shown in Table 1. The obtained elastic wet sheet was difficult to drain even when external pressure was applied, and was excellent in liquid retention. Moreover, it has excellent mechanical strength and has a high degree of flexibility and elasticity as well as a pleasing tactile sensation, making it suitable as a wiping material, liquid retaining material, and the like.
Further, when the wet sheet was dried at 60 ° C. for 24 hours, it was rigid and excellent in mechanical performance and shape stability, and was suitable for storage and transportation (bulk density 0.18 g / cm Three )was gotten. When the hard sheet was again absorbed, a wet elastic sheet similar to that before drying was obtained. The wet elastic sheet had a liquid absorption rate of 546% by mass and a liquid retention rate of 266% by mass, and no problem occurred even when drying and wetting were repeated.
[0050]
[Example 3]
The raw cotton obtained in Reference Example 1 is passed through a parallel card process (Teccaine 150 rpm, cylinder 250 rpm, doffer 7 rpm), and the basis weight is 100 g / m. 2 The web was manufactured. Next, a water flow pressure of 50 kg / cm is used on both surfaces of the web by using a water nozzle having a nozzle diameter of 0.1 mm, a pitch of nozzle holes of 0.6 mm, and two rows of holes. 2 , Water entanglement treatment is performed at a water temperature of 26 ° C., and the basis weight is 100 g / m. 2 , Bulk density 0.168 g / cm Three A non-woven fabric was produced.
Subsequently, 20 degreeC water was provided to this nonwoven fabric, and the elastic wet sheet | seat was manufactured. The performance is shown in mark 1. The obtained elastic wet sheet was difficult to drain even when external pressure was applied, and was excellent in liquid retention. Moreover, it has excellent mechanical strength and has a high degree of flexibility and elasticity as well as a pleasing tactile sensation, making it suitable as a wiping material, liquid retaining material, and the like.
Further, when the wet sheet was dried at 60 ° C. for 24 hours, it was rigid, excellent in mechanical performance and shape stability, and suitable for storage and transportation (bulk density 0.20 g / cm Three )was gotten. When the hard sheet was again absorbed, a wet elastic sheet similar to that before drying was obtained. The wet elastic sheet had a liquid absorption rate of 650% by mass and a liquid retention rate of 400% by mass, and no problem occurred even after repeated drying and wetting.
[0051]
[Example 4]
The raw cotton obtained in Reference Example 1 and a composite polyester crimped fiber PN720 manufactured by Kuraray Co., Ltd. (core-sheath structure, the sheath is isophthalic acid-modified polyester, the core is a polyester fiber, and the core-sheath ratio is 50/50 mass. %, Fineness 2.2 dtex, fiber length 51 mm) at a mass ratio of 85/15% by mass, and then passed through a parallel card process (Takein 150 rpmm, cylinder 250 rpm, doffer 7 rpm) to give a basis weight of 75 g / m. 2 The web was manufactured. Next, one is heated to 125 ° C., the crimping area is 25% by area, and the number of crimping parts is 50 / cm. 2 The fabric web was inserted between a metal roll having a concavo-convex surface and a metal roll heated to 125 ° C. with no concavo-convex surface, and was continuously thermocompression-bonded at a pressure of 400 N / cm. / m 2 , Bulk density 0.260 g / cm Three A non-woven fabric was obtained. At this time, the time required for each fiber to be thermocompression bonded was 0.15 seconds.
Subsequently, 20 degreeC water was provided to this nonwoven fabric, and the elastic wet sheet | seat was manufactured. The performance of the wet sheet is shown in Table 1. The obtained elastic wet sheet was difficult to drain even when external pressure was applied, and was excellent in liquid retention. Moreover, it has excellent mechanical strength and has a high degree of flexibility and elasticity as well as a pleasing tactile sensation, making it suitable as a wiping material, liquid retaining material, and the like.
Further, when the wet sheet was dried at 60 ° C. for 24 hours, it was rigid and excellent in mechanical performance and shape stability, and was suitable for storage and transportation (bulk density 0.18 g / cm Three )was gotten. When the hard sheet was again absorbed, a wet elastic sheet similar to that before drying was obtained. The wet elastic sheet had a liquid absorption rate of 600% by mass and a liquid retention rate of 300% by mass, and no problem occurred even after repeated drying and wetting.
[0052]
[Comparative Example 1]
The PVA raw cotton described in Reference Example 2 is used, and the basis weight is 100 g / m by passing through a parallel card process (Teccaine 150 rpm, cylinder 250 rpm, doffer 7 rpm). 2 The web was manufactured. Next, between a flat metal roll without an uneven surface heated to 205 ° C. and a rubber roll without an uneven surface heated to 105 ° C. by heat transfer from the previous metal flat roll. The fiber web was inserted into the base, and the basis weight was 75 g / m continuously thermocompression bonded at a pressure of 400 N / cm. 2 , Density 0.528 g / cm Three A non-woven fabric was obtained. At this time, the time required for the thermocompression bonding of the fiber was 0.15 seconds.
Next, 20 ° C. water was applied to the paper to produce an elastic wet sheet. The performance of the wet sheet is shown in Table 1. The resulting elastic wet sheet has a large bulk density when dried and the size of the inter-fiber gap is too small, so that the fiber cannot sufficiently absorb and swell water, and therefore has excellent mechanical performance. Inferior to that of the present invention, the crisp feel was poor, and the liquid absorption rate and the liquid retention rate were small as compared with the Examples.
[0053]
[Comparative Example 2]
A basis weight of 150 g / m was obtained in the same manner as in Example 1 except that the PVA raw cotton of Reference Example 3 was used. 2 , Bulk density 0.078 g / cm Three A non-woven fabric was produced.
Subsequently, 20 degreeC water was provided to this nonwoven fabric, and the wet sheet | seat was manufactured. The liquid content and the liquid retention rate of the wet sheet obtained due to insufficient liquid retention capacity of the fibers used are as small as 38% by mass, and the performance as a liquid retention material is insufficient. The mechanical performance of the wet sheet was low, and no tactile sensation was exhibited.
[0054]
[Comparative Example 3]
A basis weight of 150 g / cm is obtained in the same manner as in Example 1 except that the PVA raw cotton of Reference Example 4 is used. 2 , Bulk density 0.078 g / cm Three A non-woven fabric was produced. Next, an attempt was made to obtain an elastic wet sheet by applying 20 ° C. water to the nonwoven fabric. However, since the water dissolution temperature of the PVA fiber is low, the fiber can be eluted and the sheet shape can be maintained. In addition, a wet sheet excellent in liquid retention, elasticity, mechanical performance and the like was not obtained.
[0055]
[Table 1]
Figure 0004536229

Claims (7)

不織布に温度50℃以下の液体を50質量%以上含液させてなる弾性湿潤シートであって、50%伸長回復率60%以上、裂断長3km以上、保液率100〜500%、乾燥時嵩密度0.5g/cm3以下であり、かつ該シートを構成する繊維の30質量%以上が水中溶解温度60℃以上のポリビニルアルコール系繊維であり、しかも該ポリビニルアルコール系繊維がケン化度98モル%以上のビニルアルコール系ポリマーを海成分、ケン化度97モル%以下のビニルアルコール系ポリマーを島成分とする海島構造を有していることを特徴とする弾性湿潤シート。An elastic wet sheet comprising a nonwoven fabric containing 50% by mass or more of a liquid having a temperature of 50 ° C. or less, 50% elongation recovery rate 60% or more, tearing length 3 km or more, liquid retention rate 100 to 500%, when dried 30% by mass or more of the fibers constituting the sheet having a bulk density of 0.5 g / cm 3 or less are polyvinyl alcohol fibers having a dissolution temperature in water of 60 ° C. or more, and the polyvinyl alcohol fibers have a saponification degree of 98. An elastic wet sheet having a sea-island structure in which a vinyl alcohol polymer of mol% or more is a sea component and a vinyl alcohol polymer having a saponification degree of 97 mol% or less is an island component. 嵩密度0.5g/cm3以下の不織布に温度50℃以下の液体を50質量%以上含液させて得られる弾性湿潤シートであって、該不織布を構成する繊維の30質量%以上が水中溶解温度60℃以上のポリビニルアルコール系繊維であり、しかも該ポリビニルアルコール系繊維がケン化度98モル%以上のビニルアルコール系ポリマーを海成分、ケン化度97モル%以下のビニルアルコール系ポリマーを島成分とする海島構造を有していることを特徴とする弾性湿潤シート。An elastic wet sheet obtained by impregnating a nonwoven fabric having a bulk density of 0.5 g / cm 3 or less with a liquid having a temperature of 50 ° C. or less at 50% by mass or more, wherein 30% by mass or more of the fibers constituting the nonwoven fabric are dissolved in water. A polyvinyl alcohol fiber having a temperature of 60 ° C. or higher, and the polyvinyl alcohol fiber having a saponification degree of 98 mol% or more as a sea component and a vinyl alcohol polymer having a saponification degree of 97 mol% or less as an island component An elastic wet sheet having a sea-island structure. 請求項1又は請求項2に記載の弾性湿潤シートを乾燥及び/又は加熱して得られる硬質成形体。A hard molded body obtained by drying and / or heating the elastic wet sheet according to claim 1. 請求項1又は請求項2に記載の弾性湿潤シートを乾燥及び/又は加熱する硬質成形体の製造方法。The manufacturing method of the hard molding which dries and / or heats the elastic wet sheet | seat of Claim 1 or Claim 2. 請求項3に記載の硬質成形体に温度50℃以下の液体を50質量%以上含液させる湿潤弾性シートの製造方法。A method for producing a wet elastic sheet, wherein the hard molded body according to claim 3 contains 50% by mass or more of a liquid having a temperature of 50 ° C. or lower. 請求項1又は請求項2に記載の弾性湿潤シートを用いてなる保液材。A liquid retaining material using the elastic wet sheet according to claim 1. 請求項1又は請求項2に記載の弾性湿潤シートを用いて得られる拭浄材。A wiping material obtained using the elastic wet sheet according to claim 1.
JP2000242394A 2000-08-10 2000-08-10 Elastic wet sheet Expired - Fee Related JP4536229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000242394A JP4536229B2 (en) 2000-08-10 2000-08-10 Elastic wet sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000242394A JP4536229B2 (en) 2000-08-10 2000-08-10 Elastic wet sheet

Publications (2)

Publication Number Publication Date
JP2002061072A JP2002061072A (en) 2002-02-28
JP4536229B2 true JP4536229B2 (en) 2010-09-01

Family

ID=18733425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000242394A Expired - Fee Related JP4536229B2 (en) 2000-08-10 2000-08-10 Elastic wet sheet

Country Status (1)

Country Link
JP (1) JP4536229B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007188A (en) * 2008-06-24 2010-01-14 Unitika Ltd Method for producing vinylon staple fiber spun lace nonwoven fabric
JP2012052274A (en) * 2010-09-03 2012-03-15 Kuraray Co Ltd Low crystalline high strength polyvinyl alcohol-based fiber and its manufacturing method
JP5586488B2 (en) * 2011-01-11 2014-09-10 大日本除蟲菊株式会社 Carrier for flying pest catcher and flying pest catcher using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082138A (en) * 1994-06-17 1996-01-09 Kuraray Co Ltd Water-soluble nonwoven fabric for backlining of book
JPH08113860A (en) * 1994-10-18 1996-05-07 Kuraray Co Ltd Production of water-resistant polyvinyl alcohol-based nonwoven fabric
JPH08127919A (en) * 1993-10-15 1996-05-21 Kuraray Co Ltd Water-soluble and thermally contact bonding polyvinyl alcohol binder fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127919A (en) * 1993-10-15 1996-05-21 Kuraray Co Ltd Water-soluble and thermally contact bonding polyvinyl alcohol binder fiber
JPH082138A (en) * 1994-06-17 1996-01-09 Kuraray Co Ltd Water-soluble nonwoven fabric for backlining of book
JPH08113860A (en) * 1994-10-18 1996-05-07 Kuraray Co Ltd Production of water-resistant polyvinyl alcohol-based nonwoven fabric

Also Published As

Publication number Publication date
JP2002061072A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
JP4976487B2 (en) Wet nonwovens and filters
TW476826B (en) Porous fibrous structure and process for producing the same
KR101441723B1 (en) Thin paper
JP2004162244A (en) Nano-fiber
KR101254423B1 (en) Semi-permeable membrane support and method for producing the same
JP5405926B2 (en) Textile structures and textile products
JP5284889B2 (en) Fiber products
CN100402714C (en) Microporous super fine fiber base cloth and process for manufacturing the same
JPS63235558A (en) Steaming adhesive nonwoven cloth and its production
JP4536229B2 (en) Elastic wet sheet
JP5401713B2 (en) Non-woven
JP2013256461A (en) Sheet for body skin contact and cosmetic product
JP3725716B2 (en) Ultrafine fiber generation possible fiber, ultrafine fiber generated from this, and fiber sheet using this ultrafine fiber
JP2002180361A (en) Hydrolyzable liquid retaining material
JP4922964B2 (en) Dry nonwoven fabric
JP3856972B2 (en) Split type composite short fiber having heat shrinkability and short fiber nonwoven fabric using the same
JP3860320B2 (en) Ink absorber for inkjet printer
JP2003089955A (en) Ultra fine fiber-made nonwoven fabric and method for manufacturing the same
KR20150105767A (en) Mehtod for manufacturing water dispersible nonwoven
JP3197714U (en) Gloves for cleaning
JPS5831149A (en) Water absorbable acrylonitrile fiber molded article
JP3857056B2 (en) Thermally divided composite fiber and fiber assembly
JP4785659B2 (en) Thermally divided composite fiber and fiber assembly
JP5864212B2 (en) Heat shield sheet
JP2013170340A (en) Fiber for air-laid nonwoven fabric and air-laid nonwoven fabric using the fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4536229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees