JPH08111526A - Power transistor - Google Patents

Power transistor

Info

Publication number
JPH08111526A
JPH08111526A JP6245475A JP24547594A JPH08111526A JP H08111526 A JPH08111526 A JP H08111526A JP 6245475 A JP6245475 A JP 6245475A JP 24547594 A JP24547594 A JP 24547594A JP H08111526 A JPH08111526 A JP H08111526A
Authority
JP
Japan
Prior art keywords
region
type semiconductor
semiconductor region
type
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6245475A
Other languages
Japanese (ja)
Inventor
Tetsuo Iijima
哲郎 飯島
Yoshimi Hagiwara
義美 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6245475A priority Critical patent/JPH08111526A/en
Publication of JPH08111526A publication Critical patent/JPH08111526A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7808Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a breakdown diode, e.g. Zener diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE: To increase the occupied area of a drain region of a vertical MISFET and reduce the on-resistance of a power transistor, by composing a voltage reference diode element of a second conduction type first semiconductor region and a first conduction type second semiconductor region which are sequentially arrayed in a direction of depth of a first conduction type semiconductor layer from the main surface thereof. CONSTITUTION: Each of an anode region and a cathode region of a voltage reference diode element ZD is composed of a p<+> -type semiconductor region 7 and an n<+> -type semiconductor region 6 which are sequentially arrayed in a direction of depth of an n<-> -type epitaxial layer 2B from the main surface thereof. Thus, a pn junction where the p<+> -type semiconductor region 7 and the n+ -type semiconductor region 6 are joined with each other can be set at a position which is shallow in the direction of depth of the n<-> -type epitaxial layer 2B from the main surface thereof. Therefore, the n<-> -type epitaxial layer 2B under the voltage reference diode element ZD can be used as a drain region of a vertical MISFET Q.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パワートランジスタに
関し、特に、縦型MISFET(etal nsulator
emiconductor ield ffect ransistor)に並列に接
続され、かつそのチャネル形成領域に流れる電流の方向
に対して逆方向に接続される定電圧ダイオード素子を有
するパワートランジスタに適用して有効な技術に関する
ものである。
BACKGROUND OF THE INVENTION This invention relates to power transistors, in particular, a vertical MISFET (M etal I nsulator S
emiconductor F ield is connected in parallel with the E ffect T ransistor), and a technique effectively applied to a power transistor having a constant voltage diode connected in reverse direction to the direction of current flowing through the channel formation region Is.

【0002】[0002]

【従来の技術】図7(要部断面図)に示すように、パワー
トランジスタに塔載される例えばnチャネル導電型の縦
型MISFETQは、ゲート絶縁膜3A、ゲート電極3
B、ドレイン領域、チャネル形成領域及びソース領域等
で構成される。ドレイン領域はn+型半導体基板2A及び
その主面上に形成されたn-型エピタキシャル層2Bで構
成される。チャネル形成領域はn-型エピタキシャル層2
Bの主面に形成されたp型半導体領域4で構成される。
ソース領域はp型半導体領域4の主面に形成されたn+型
半導体領域5で構成される。
2. Description of the Related Art As shown in FIG. 7 (a cross-sectional view of a main part), a vertical MISFET Q of, for example, an n-channel conductivity type mounted on a power transistor has a gate insulating film 3A and a gate electrode 3
B, a drain region, a channel forming region, a source region, and the like. The drain region is composed of an n + type semiconductor substrate 2A and an n− type epitaxial layer 2B formed on the main surface thereof. The channel formation region is the n-type epitaxial layer 2
The p-type semiconductor region 4 is formed on the main surface of B.
The source region is composed of the n + type semiconductor region 5 formed on the main surface of the p type semiconductor region 4.

【0003】前記縦型MISFETQには、そのチャネ
ル形成領域に過大な電圧が印加されるのを防止する目的
として、定電圧ダイオード素子ZDが並列に接続され
る。この定電圧ダイオード素子ZDは、縦型MISFE
TQのチャネル形成領域に流れる電流の方向に対して逆
方向に接続される。つまり、nチャネル導電型の場合、
定電圧ダイオード素子ZDのアノード領域(p型領域)は
縦型MISFETQのソース領域に接続され、カソード
領域(n型領域)はドレイン領域に接続される。
A constant voltage diode element ZD is connected in parallel to the vertical MISFET Q for the purpose of preventing an excessive voltage from being applied to its channel forming region. This constant voltage diode element ZD is a vertical MISFE.
The connection is made in the direction opposite to the direction of the current flowing in the TQ channel forming region. That is, in the case of n-channel conductivity type,
The anode region (p-type region) of the constant voltage diode element ZD is connected to the source region of the vertical MISFET Q, and the cathode region (n-type region) is connected to the drain region.

【0004】前記定電圧ダイオート素子ZDのアノード
領域は、n-型エピタキシャル層2Bの主面からその深さ
方向に向ってn+型半導体基板1Aの主面に接触したp+型
半導体領域13で構成され、カソード領域はn+型半導体
基板2Aで構成される。つまり、定電圧ダイオード素子
ZDは、n-型エピタキシャル層1Bとn+型半導体基板1
Aとの界面部にpn接合部を形成している。
The anode region of the constant voltage die auto element ZD is composed of the p + type semiconductor region 13 which is in contact with the main surface of the n + type semiconductor substrate 1A from the main surface of the n− type epitaxial layer 2B in the depth direction thereof. The cathode region is composed of the n + type semiconductor substrate 2A. That is, the constant voltage diode element ZD is composed of the n − type epitaxial layer 1B and the n + type semiconductor substrate 1.
A pn junction is formed at the interface with A.

【0005】なお、前記縦型MISFETQに接続され
る定電圧ダイオード素子ZDについては、例えば特開昭
60−196975号公報に記載されている。
The constant voltage diode element ZD connected to the vertical MISFET Q is described in, for example, Japanese Patent Laid-Open No. 60-196975.

【0006】[0006]

【発明が解決しようとする課題】前記パワートランジス
タの縦型MISFETQに接続される定電圧ダイオード
素子ZDは、n-型エピタキシャル層2Bの主面からその
深さ方向に向ってn+型半導体基板2Aの主面に接触した
p+型半導体領域13及びn+型半導体基板2Aで構成さ
れ、n-型エピタキシャル層2Bとn+型半導体基板2Aと
の界面部にpn接合部を形成している。このため、p+型
半導体領域13の領域に相当する分、n-型エピタキシャ
ル層2Bでの縦型MISFETQのドレイン領域の占有
面積が減少し、パワートランジスタのオン抵抗が増大す
るという問題があった。
The constant voltage diode element ZD connected to the vertical MISFETQ of the power transistor is formed in the n + type semiconductor substrate 2A from the main surface of the n− type epitaxial layer 2B in the depth direction. Touched the main surface
It is composed of the p + type semiconductor region 13 and the n + type semiconductor substrate 2A, and a pn junction is formed at the interface between the n − type epitaxial layer 2B and the n + type semiconductor substrate 2A. For this reason, there is a problem that the area occupied by the drain region of the vertical MISFET Q in the n − type epitaxial layer 2B is reduced by the amount corresponding to the region of the p + type semiconductor region 13 and the on-resistance of the power transistor is increased.

【0007】また、定電圧ダイオード素子ZDのp+型半
導体領域13は熱拡散法でn-型エピタキシャル層2Bの
主面からその深さ方向(縦方向)に向って深く形成される
が、この深さ方向の広がりに伴って平面方向(横方向)に
も広がる。このため、定電圧ダイオード素子ZDの占有
面積が増大し、パワートランジスタのチップサイズが大
型化するという問題があった。
Further, the p + type semiconductor region 13 of the constant voltage diode element ZD is formed deeper in the depth direction (vertical direction) from the main surface of the n− type epitaxial layer 2B by the thermal diffusion method. It also spreads in the plane direction (horizontal direction) as it expands in the vertical direction. Therefore, there is a problem that the area occupied by the constant voltage diode element ZD is increased and the chip size of the power transistor is increased.

【0008】本発明の目的は、縦型MISFETに並列
に接続される定電圧ダイオード素子を有するパワートラ
ンジスタのオン抵抗を低減することが可能な技術を提供
することにある。
An object of the present invention is to provide a technique capable of reducing the on-resistance of a power transistor having a constant voltage diode element connected in parallel with a vertical MISFET.

【0009】また、本発明の他の目的は、前記目的を達
成し、前記パワートランジスタのチップサイズの小型化
を図ることが可能な技術を提供することにある。
Another object of the present invention is to provide a technique capable of achieving the above object and reducing the chip size of the power transistor.

【0010】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述及び添付図面によって明らか
になるであろう。
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0011】[0011]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
下記のとおりである。
Of the inventions disclosed in the present application, a representative one will be briefly described below.
It is as follows.

【0012】(1)第1導電型又は第2導電型の半導体
基板及びその主面上に形成された第1導電型の半導体層
をドレイン領域とする縦型MISFETに並列に接続さ
れ、かつそのチャネル形成領域に流れる電流の方向に対
して逆方向に接続される定電圧ダイオード素子を有する
パワートランジスタにおいて、前記定電圧ダイオード素
子を前記第1導電型の半導体層の主面からその深さ方向
に向って順次配列された第2導電型の第1半導体領域、
第1導電型の第2半導体領域の夫々で構成する。
(1) A semiconductor substrate of the first conductivity type or the second conductivity type and a vertical MISFET having a drain region of the semiconductor layer of the first conductivity type formed on the main surface thereof are connected in parallel and In a power transistor having a constant voltage diode element connected in a direction opposite to a direction of a current flowing in a channel forming region, the constant voltage diode element is provided from a main surface of the first conductivity type semiconductor layer in a depth direction thereof. A first semiconductor region of a second conductivity type sequentially arranged toward
Each of the second semiconductor regions of the first conductivity type is configured.

【0013】(2)前記第2導電型の第1半導体領域、
第1導電型の第2半導体領域の夫々をイオン打込み法で
形成する。
(2) The first semiconductor region of the second conductivity type,
Each of the second semiconductor regions of the first conductivity type is formed by the ion implantation method.

【0014】[0014]

【作用】上述した手段(1)によれば、定電圧ダイオー
ド素子のpn接合部を第1導電型の半導体層の主面から
その深さ方向(縦方向)に向って浅い位置に設定でき、定
電圧ダイオード素子下の第1導電型の半導体層を縦型M
ISFETのドレイン領域として使用することができる
ので、この半導体層での縦型MISFETのドレイン領
域の占有面積を増加できる。この結果、パワートランジ
スタのオン抵抗を低減することができる。
According to the above-mentioned means (1), the pn junction portion of the constant voltage diode element can be set at a shallow position from the main surface of the first conductivity type semiconductor layer in the depth direction (vertical direction) thereof, The first conductive type semiconductor layer below the constant voltage diode element is formed into a vertical type M
Since it can be used as the drain region of the ISFET, the area occupied by the drain region of the vertical MISFET in this semiconductor layer can be increased. As a result, the on resistance of the power transistor can be reduced.

【0015】上述した手段(2)によれば、第2導電型
の第1半導体領域、第1導型の第2半導体領域の夫々の
平面方向(横方向)の広がりを低減でき、定電圧ダイオー
ド素子の占有面積を縮小することができるので、パワー
トランジスタのチップサイズの小型化を図ることができ
る。
According to the above-mentioned means (2), the spread in the plane direction (lateral direction) of each of the second conductive type first semiconductor region and the first conductive type second semiconductor region can be reduced, and the constant voltage diode can be reduced. Since the area occupied by the element can be reduced, the chip size of the power transistor can be reduced.

【0016】[0016]

【実施例】以下、本発明の構成について、nチャネル導
電型の縦型MISFETを塔載するパワートランジスタ
に本発明を適用した実施例とともに説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described below together with an embodiment in which the present invention is applied to a power transistor on which an n-channel conductivity type vertical MISFET is mounted.

【0017】なお、実施例を説明するための全図におい
て、同一機能を有するものは同一符号を付け、その繰り
返しの説明は省略する。
In all the drawings for explaining the embodiments, parts having the same function are designated by the same reference numerals, and the repeated description thereof will be omitted.

【0018】(実施例1)本発明の実施例1であるパワ
ートランジスタの概略構成を図1(チップレイアウト
図)及び図2(図1の要部平面図)に示す。
(Embodiment 1) A schematic configuration of a power transistor which is Embodiment 1 of the present invention is shown in FIG. 1 (chip layout diagram) and FIG. 2 (main part plan view of FIG. 1).

【0019】図1及び図2に示すように、パワートラン
ジスタは平面が方形状に形成された半導体チップ1で構
成される。この半導体チップ1の中央領域1Aには複数
の縦型MISFETQが塔載される。複数の縦型MIS
FETQの夫々は、行列状に規則的に配置され、電気的
に並列に接続される。
As shown in FIGS. 1 and 2, the power transistor is composed of a semiconductor chip 1 having a rectangular plane. In the central region 1A of the semiconductor chip 1, a plurality of vertical MISFETQ are mounted. Multiple vertical MIS
Each of the FETs Q is regularly arranged in a matrix and electrically connected in parallel.

【0020】前記半導体チップ1の中央領域1Aの周囲
には周辺領域1Bが配置される。この周辺領域1Bは、
縦型MISFETQが配置される中央領域1Aの周囲を
囲み、その平面形状がリング形状で構成される。
A peripheral region 1B is arranged around the central region 1A of the semiconductor chip 1. This peripheral area 1B is
The central area 1A in which the vertical MISFET Q is arranged surrounds the periphery of the central area 1A, and its planar shape is a ring shape.

【0021】前記半導体チップ1は、基本的に単層配線
構造(単層アルミニウム配線構造)で構成される。半導体
チップ1の中央領域1Aには、その大半の領域にソース
配線10Aが構成され、その一部の領域にゲート配線1
0Bが構成される。また、半導体チップ1の周辺領域1
Bには、その大半の領域にソース配線10Aと同電位の
ソースフィールドプレート配線10Cが構成され、その
一部の領域にゲート配線10Bが構成される。つまり、
本実施例のパワートランジスタは、ゲート抵抗を低減す
る目的として、ゲート配線10Bを半導体チップ1の周
辺領域1Bにも配置している。
The semiconductor chip 1 basically has a single-layer wiring structure (single-layer aluminum wiring structure). In the central area 1A of the semiconductor chip 1, the source wiring 10A is formed in most of the area and the gate wiring 1 is formed in part of the area.
0B is configured. In addition, the peripheral region 1 of the semiconductor chip 1
In B, the source field plate wiring 10C having the same potential as the source wiring 10A is formed in most of the area, and the gate wiring 10B is formed in part of the area. That is,
In the power transistor of this embodiment, the gate wiring 10B is also arranged in the peripheral region 1B of the semiconductor chip 1 for the purpose of reducing the gate resistance.

【0022】前記半導体チップ1は、図2及び図3(図
2に示すA−A切断線で切った断面図)に示すように、
例えば単結晶珪素からなるn+型半導体基板2Aの主面上
にn-型エピタキシャル層2Bを形成した半導体基板2を
主体に構成される。n+型半導体基板2Aの主面と対向す
るその裏面上にはドレイン電極12が構成される。
The semiconductor chip 1 is, as shown in FIGS. 2 and 3 (a sectional view taken along the line AA shown in FIG. 2),
For example, it is mainly composed of a semiconductor substrate 2 in which an n-type epitaxial layer 2B is formed on the main surface of an n + type semiconductor substrate 2A made of single crystal silicon. The drain electrode 12 is formed on the back surface of the n + type semiconductor substrate 2A, which faces the main surface.

【0023】前記半導体基板1の主面(n-型エピタキシ
ャル層2Bの主面)には縦型MISFETQが構成され
る。この縦型MISFETQは、ゲート絶縁膜3A、ゲ
ート電極3B、ドレイン領域、チャネル形成領域及びソ
ース領域等で構成される。ゲート絶縁膜3Aは、n-型エ
ピタキシャル層2Bの主面上に形成され、例えば酸化珪
素膜で形成される。ゲート電極3Bは、ゲート絶縁膜3
Aの主面上に形成され、例えば多結晶珪素膜で形成され
る。このゲート電極3Bの平面パターンは、網の目状で
構成される。ドレイン領域はn+型半導体基板2A及びそ
の主面上に形成されたn-型エピタキシャル層2Bで構成
される。チャネル形成領域はn-型エピタキシャル層2B
の主面に形成されたp型半導体領域4で構成される。こ
のp型半導体領域4はゲート電極3で周囲を囲まれたn-
型エピタキシャル層2Bの主面に構成される。ソース領
域はp型半導体領域4の主面に形成されたn+型半導体領
域5で構成される。
A vertical MISFET Q is formed on the main surface of the semiconductor substrate 1 (the main surface of the n--type epitaxial layer 2B). The vertical MISFET Q is composed of a gate insulating film 3A, a gate electrode 3B, a drain region, a channel forming region, a source region and the like. The gate insulating film 3A is formed on the main surface of the n − type epitaxial layer 2B, and is formed of, for example, a silicon oxide film. The gate electrode 3B is the gate insulating film 3
It is formed on the main surface of A and is formed of, for example, a polycrystalline silicon film. The plane pattern of the gate electrode 3B is formed in a mesh pattern. The drain region is composed of an n + type semiconductor substrate 2A and an n− type epitaxial layer 2B formed on the main surface thereof. The channel formation region is the n-type epitaxial layer 2B
Of the p-type semiconductor region 4 formed on the main surface. The p-type semiconductor region 4 is surrounded by the gate electrode 3 and is surrounded by n-
It is formed on the main surface of the type epitaxial layer 2B. The source region is composed of the n + type semiconductor region 5 formed on the main surface of the p type semiconductor region 4.

【0024】前記縦型MISFETQのチャネル形成領
域であるp型半導体領域4、ソース領域であるn+型半導
体領域5の夫々には層間絶縁膜8に形成された接続孔9
を通してソース配線10Aが電気的に接続される。この
ソース配線10Aとゲート電極3Bとは層間絶縁膜8で
互いに電気的に分離される。層間絶縁膜8は例えばPS
G(hospho ilicate lass)膜で形成される。ま
た、縦型MISFETQのゲート電極3Bには層間絶縁
膜8に形成された接続孔(図示せず)を通してゲート配線
10Bが接続される。
A connection hole 9 formed in the interlayer insulating film 8 is formed in each of the p-type semiconductor region 4 which is the channel forming region and the n + type semiconductor region 5 which is the source region of the vertical MISFET Q.
The source wiring 10A is electrically connected through the. The source wiring 10A and the gate electrode 3B are electrically separated from each other by the interlayer insulating film 8. The interlayer insulating film 8 is, for example, PS
Formed by G (P hospho S ilicate G lass ) film. Further, the gate electrode 10B is connected to the gate electrode 3B of the vertical MISFET Q through a connection hole (not shown) formed in the interlayer insulating film 8.

【0025】前記ソース配線10A上、ゲート配線10
B上及びソースフィールドプレート配線10C上を含む
半導体基板2の主面上には最終保護膜11が形成され
る。この最終保護膜11は例えばポリイミド系樹脂膜で
形成される。
A gate wiring 10 is formed on the source wiring 10A.
A final protective film 11 is formed on the main surface of the semiconductor substrate 2 including B and the source field plate wiring 10C. The final protective film 11 is formed of, for example, a polyimide resin film.

【0026】前記縦型MISFETQには、そのチャネ
ル形成領域に過大な電圧が印加されるのを防止する目的
として、定電圧ダイオード素子ZDが並列に接続され
る。この定電圧ダイオード素子ZDは、縦型MISFE
TQのチャネル形成領域に流れる電流の方向に対して逆
方向に接続される。つまり、本実施例の定電圧ダイオー
ド素子ZDは、縦型MISFETQがnチャネル導電型
で構成されているので、図4(等価回路図)に示すよう
に、縦型MISFETQのソース領域にアノード領域
(p型領域)が電気的に接続され、縦型MISFETQの
ドレイン領域にカソード領域(n型領域)が電気的に接続
される。
A constant voltage diode element ZD is connected in parallel to the vertical MISFET Q for the purpose of preventing an excessive voltage from being applied to its channel forming region. This constant voltage diode element ZD is a vertical MISFE.
The connection is made in the direction opposite to the direction of the current flowing in the TQ channel forming region. That is, in the constant voltage diode element ZD of the present embodiment, since the vertical MISFET Q is of the n-channel conductivity type, as shown in FIG. 4 (equivalent circuit diagram), the anode region is formed in the source region of the vertical MISFET Q.
The (p-type region) is electrically connected, and the cathode region (n-type region) is electrically connected to the drain region of the vertical MISFET Q.

【0027】前記定電圧ダイオード素子ZDのアノード
領域、カソード領域の夫々は、図3に示すように、n-型
エピタキシャル層2Bの主面からその深さ方向(縦方向)
に向って順次配列されたp+型半導体領域7、n+型半導体
領域6の夫々で構成される。p+型半導体領域7はソース
配線10Aを介して縦型MISFETQのソース領域で
あるn+型半導体領域5に電気的に接続される。n+型半導
導体領域6は縦型MISFETQのドレイン領域である
n-型エピタキシャル層2B及びn+型半導体基板2Aに電
気的に接続される。このp+型半導体領域7、n+型半導体
領域6の夫々はn-型エピタキシャル層2Bの主面からそ
の深さ方向に向って浅い位置に構成され、p+型半導体領
域7とn+型半導体領域6とが接合するpn接合部の位置
(n-型エピタキシャル層2Bの主面からの位置)はp型
半導体領域4の底面とn-型エピタキシャル層2Bとが接
合するpn接合部の位置(n-型エピタキシャル層2Bの
主面からの位置)に比べて浅く構成される。このよう
に、定電圧ダイオード素子ZDをn-型エピタキシャル層
2Bの主面からその深さ方向に向って順次配列されたp+
型半導体領域7、n+型半導体領域6の夫々で構成するこ
とにより、p+型半導体領域7とn+型半導体領域6とが接
合するpn接合部をn-型エピタキシャル層2Bの主面か
らその深さ方向に向って浅い位置に設定することがで
き、定電圧ダイオード素子ZD下のn-型エピタキシャル
層2Bを縦型MISFETQのドレイン領域として使用
することができる。
As shown in FIG. 3, each of the anode region and the cathode region of the constant voltage diode element ZD extends in the depth direction (vertical direction) from the main surface of the n-type epitaxial layer 2B.
Of the p + type semiconductor region 7 and the n + type semiconductor region 6 which are sequentially arranged toward each other. The p + type semiconductor region 7 is electrically connected to the n + type semiconductor region 5, which is the source region of the vertical MISFET Q, via the source wiring 10A. The n + type semiconductor region 6 is the drain region of the vertical MISFET Q.
It is electrically connected to the n-type epitaxial layer 2B and the n + type semiconductor substrate 2A. Each of the p + type semiconductor region 7 and the n + type semiconductor region 6 is formed at a shallow position from the main surface of the n− type epitaxial layer 2B in the depth direction thereof, and the p + type semiconductor region 7 and the n + type semiconductor region 6 are formed. Is the position of the pn junction (the position from the main surface of the n-type epitaxial layer 2B) at which the bottom of the p-type semiconductor region 4 and the n-type epitaxial layer 2B are joined (n-type). It is shallower than the position (from the main surface of the epitaxial layer 2B). In this way, the constant voltage diode elements ZD are sequentially arranged from the main surface of the n-type epitaxial layer 2B in the depth direction to the p +
Since the p-type semiconductor region 7 and the n + -type semiconductor region 6 are respectively formed, the pn junction where the p + -type semiconductor region 7 and the n + -type semiconductor region 6 are joined is formed from the main surface of the n-type epitaxial layer 2B to the depth thereof. It can be set at a shallow position in the direction, and the n − type epitaxial layer 2B under the constant voltage diode element ZD can be used as the drain region of the vertical MISFET Q.

【0028】前記p+型半導体領域7、n+型半導体領域6
の夫々はイオン打込み法で形成される。このイオン打込
み法は、p+型半導体領域7、n+型半導体領域6の夫々の
平面方向(横方向)の拡がりを熱拡散法に比べて抑えるこ
とができ、p+型半導体領域7、n+型半導体領域6の占有
面積を縮小することができる。
The p + type semiconductor region 7 and the n + type semiconductor region 6
Are formed by the ion implantation method. This ion implantation method can suppress the spread of the p + type semiconductor region 7 and the n + type semiconductor region 6 in the plane direction (lateral direction) as compared with the thermal diffusion method, and the p + type semiconductor region 7 and the n + type semiconductor region 6 can be suppressed. The area occupied by 6 can be reduced.

【0029】前記p+型半導体領域7、n+型半導体領域6
の夫々は、縦型MISFETQのチャネル形成領域であ
るp型半導体領域4で周囲を囲まれたn-型エピタキシャ
ル層2Bの主面に構成される。つまり、定電圧ダイオー
ド素子ZDは、p型半導体領域4の占有面積内に構成さ
れる。このように、定電圧ダイオード素子ZDのp+型半
導体領域7、n+型半導体領域6の夫々をp型半導体領域
4で周囲を囲まれたn-型エピタキシャル層2Bの主面に
構成することにより、定電圧ダイオード素子ZDの占有
面積を廃止することができる。
The p + type semiconductor region 7 and the n + type semiconductor region 6
Are formed on the main surface of the n-type epitaxial layer 2B surrounded by the p-type semiconductor region 4 which is the channel forming region of the vertical MISFETQ. That is, the constant voltage diode element ZD is formed within the occupied area of the p-type semiconductor region 4. Thus, by configuring each of the p + type semiconductor region 7 and the n + type semiconductor region 6 of the constant voltage diode element ZD on the main surface of the n − type epitaxial layer 2B surrounded by the p type semiconductor region 4, The occupied area of the constant voltage diode element ZD can be eliminated.

【0030】前記縦型MISFETQのソース領域であ
るn+型半導体領域5は例えば1×1021[atoms/cm3
程度の不純物濃度に設定される。チャネル形成領域であ
るp型半導体領域4は例えば1×1017[atoms/cm3
程度の不純物濃度に設定される。ドレイン領域であるn-
型エピタキシャル層1Bは例えば7×1015[atoms/cm
3]程度の不純物濃度に設定され、n+型半導体基板2A
は例えば2×1018[atoms/cm3]程度の不純物濃度に
設定される。
The n + type semiconductor region 5 which is the source region of the vertical MISFET Q is, for example, 1 × 10 21 [atoms / cm 3 ].
The impurity concentration is set to a level. The p-type semiconductor region 4 which is a channel forming region is, for example, 1 × 10 17 [atoms / cm 3 ].
The impurity concentration is set to a level. Drain region n-
The type epitaxial layer 1B has, for example, 7 × 10 15 [atoms / cm
The impurity concentration is set to about 3 ], and the n + type semiconductor substrate 2A
Is set to an impurity concentration of, for example, 2 × 10 18 [atoms / cm 3 ].

【0031】前記定電圧ダイオード素子ZDのアノード
領域であるp+型半導体領域7は例えば1×1018[atom
s/cm3]程度の不純物濃度に設定される。カソード領域
であるn+型半導体領域6は例えば1×1016[atoms/cm
3]程度の不純物濃度に設定される。なお、定電圧ダイ
オード素子ZDのp+型半導体領域7、n+型半導体領域6
の夫々の不純物濃度は本実施例に限定されるものではな
く、n-型エピタキシャル層2Bとp型半導体層4とが接
合するpn接合部での逆耐圧に比べてp+型半導体領域7
とn+型半導体領域6とが接合するpn接合部での逆耐圧
を小さくできる不純物濃度であれば、p+型半導体領域
7、n+型半導体領域6の夫々をいかなる不純物濃度に設
定してもよい。
The p + type semiconductor region 7 which is the anode region of the constant voltage diode element ZD is, for example, 1 × 10 18 [atom].
The impurity concentration is set to about s / cm 3 ]. The n + type semiconductor region 6 which is the cathode region is, for example, 1 × 10 16 [atoms / cm
The impurity concentration is set to about 3 ]. Incidentally, the p + type semiconductor region 7 and the n + type semiconductor region 6 of the constant voltage diode element ZD.
The impurity concentration of each is not limited to that in the present embodiment, and the p + type semiconductor region 7 is compared with the reverse breakdown voltage at the pn junction where the n − type epitaxial layer 2B and the p type semiconductor layer 4 are joined.
The impurity concentration of each of the p + type semiconductor region 7 and the n + type semiconductor region 6 may be set to any impurity concentration as long as it can reduce the reverse breakdown voltage at the pn junction where the n + type semiconductor region 6 and the n + type semiconductor region 6 are joined.

【0032】以上、nチャネル導電型の縦型MISFE
TQに接続される定電圧ダイオード素子ZDを有するパ
ワートランジスタについて説明したが、本実施例によれ
ば以下の作用効果が得られる。
As described above, the n-channel conductivity type vertical MISFE
Although the power transistor having the constant voltage diode element ZD connected to TQ has been described, the following operational effects can be obtained according to this embodiment.

【0033】n+型半導体基板2A及びその主面上に形成
されたn-型エピタキシャル層2Bをドレイン領域とする
縦型MISFETQに並列に接続され、かつそのチャネ
ル形成領域に流れる電流の方向に対して逆方向に接続さ
れる定電圧ダイオード素子ZDを有するパワートランジ
スタにおいて、前記定電圧ダイオード素子ZDをn-型エ
ピタキシャル層2Bの主面からその深さ方向に向って順
次配列されたp+型半導体領域7、n+型半導体領域6の夫
々で構成することにより、定電圧ダイオード素子ZDの
pn接合部をn-型エピタキシャル層2Bの主面から深さ
方向に向って浅い位置に設定でき、定電圧ダイオード素
子ZD下のn-型エピタキシャル層2Bを縦型MISFE
Tのドレイン領域として使用することができるので、こ
のn-型エピタキシャル層2Bでの縦型MISFETのド
レイン領域の占有面積を増加できる。この結果、パワー
トランジスタのオン抵抗を低減することができる。
The n + type semiconductor substrate 2A and the n-type epitaxial layer 2B formed on the main surface of the n + type semiconductor substrate 2A are connected in parallel to the vertical MISFET Q having a drain region, and the direction of the current flowing in the channel forming region is set. In the power transistor having the constant voltage diode elements ZD connected in the reverse direction, the constant voltage diode elements ZD are sequentially arranged in the depth direction from the main surface of the n-type epitaxial layer 2B. , N + type semiconductor region 6, the pn junction part of the constant voltage diode element ZD can be set at a shallow position in the depth direction from the main surface of the n− type epitaxial layer 2B. The n-type epitaxial layer 2B under the ZD is formed into a vertical MISFE.
Since it can be used as the drain region of T, the area occupied by the drain region of the vertical MISFET in the n − type epitaxial layer 2B can be increased. As a result, the on resistance of the power transistor can be reduced.

【0034】また、p+型半導体領域7、n+型半導体領域
6の夫々をイオン打込み法で形成することにより、p+型
半導体領域7、n+型半導体領域6の夫々の平面方向(横
方向)の広がりを低減でき、定電圧ダイオード素子ZD
の占有面積を縮小することができるので、パワートラン
ジスタの小型化を図ることができる。
Further, by forming each of the p + type semiconductor region 7 and the n + type semiconductor region 6 by the ion implantation method, the p + type semiconductor region 7 and the n + type semiconductor region 6 respectively spread in the plane direction (lateral direction). Constant voltage diode element ZD
Since the area occupied by the power transistor can be reduced, the power transistor can be downsized.

【0035】また、p+型半導体領域7、n+型半導体領域
6の夫々を縦型MISFETQのチャネル形成領域であ
るp型半導体領域4で周囲を囲まれたn-型エピタキシャ
ル層2Bの主面に構成することにより、定電圧ダイオー
ド素子ZDの占有面積を廃止できるので、この占有面積
に相当する分、パワートランジスタの小型化を図ること
ができる。
Further, each of the p + type semiconductor region 7 and the n + type semiconductor region 6 is formed on the main surface of the n − type epitaxial layer 2B surrounded by the p type semiconductor region 4 which is the channel forming region of the vertical MISFET Q. By doing so, the occupied area of the constant voltage diode element ZD can be eliminated, and the power transistor can be miniaturized by the amount corresponding to this occupied area.

【0036】(実施例2)本発明の実施例2であるパワ
ートランジスタの概略構成を図5(要部断面図)に示す。
(Embodiment 2) A schematic configuration of a power transistor which is Embodiment 2 of the present invention is shown in FIG. 5 (main part sectional view).

【0037】図5に示すように、パワートランジスタは
n+型半導体基板2Aの主面上にn-型エピタキシャル層2
Bを形成した半導体基板2を主体に構成される。この半
導体基板2の主面には、前述の実施例1と同様に、nチ
ャネル導電型の縦型MISFETQが構成される。
As shown in FIG. 5, the power transistor is
The n-type epitaxial layer 2 is formed on the main surface of the n + type semiconductor substrate 2A.
The semiconductor substrate 2 on which B is formed is mainly formed. On the main surface of the semiconductor substrate 2, an n-channel conductivity type vertical MISFET Q is formed as in the first embodiment.

【0038】前記縦型MISFETQには定電圧ダイオ
ード素子ZDが並列に接続される。定電圧ダイオード素
子ZDは、n-型エピタキシャル層2Bの主面からその深
さ方向に向って順次配列されたp型半導体領域4、n+型
半導体領域6の夫々で構成される。つまり、定電圧ダイ
オード素子ZDのアノード領域は縦型MISFETQの
チャネル形成領域であるp型半導体領域4で構成され
る。
A constant voltage diode element ZD is connected in parallel with the vertical MISFET Q. The constant voltage diode element ZD is composed of a p-type semiconductor region 4 and an n + -type semiconductor region 6 which are sequentially arranged from the main surface of the n-type epitaxial layer 2B in the depth direction. That is, the anode region of the constant voltage diode element ZD is composed of the p-type semiconductor region 4 which is the channel formation region of the vertical MISFETQ.

【0039】前記定電圧ダイオード素子ZDにおいて、
p型半導体領域4とn+型半導体領域6とが接合するpn
接合部の位置(n-型エピタキシャル層2Bの主面からの
位置)は、p型半導体領域4の底面とn-型エピタキシャ
ル層2Bとが接合するpn接合部の位置(n-型エピタキ
シャル層2Bの主面からの位置)に比べて浅く構成され
る。
In the constant voltage diode element ZD,
pn in which the p-type semiconductor region 4 and the n + -type semiconductor region 6 are joined
The position of the junction (the position from the main surface of the n-type epitaxial layer 2B) is the position of the pn junction where the bottom surface of the p-type semiconductor region 4 and the n-type epitaxial layer 2B are joined (n-type epitaxial layer 2B). The position from the main surface) is shallower than that of the main surface.

【0040】このように、定電圧ダイオード素子ZDを
n-型エピタキシャル層2Bの主面からその深さ方向に向
って順次配列されたp型半導体領域4、n+型半導体領域
6の夫々で構成することにより、前述の実施例1と同様
の効果が得られる。
In this way, the constant voltage diode element ZD is
By configuring the p-type semiconductor region 4 and the n + -type semiconductor region 6 which are sequentially arranged from the main surface of the n-type epitaxial layer 2B in the depth direction, the same effect as that of the first embodiment described above can be obtained. can get.

【0041】また、定電圧ダイオード素子ZDのカソー
ド領域を縦型MISFETQのチャネル形成領域である
p型半導体領域4で構成することにより、定電圧ダイオ
ード素子ZDの製造工程を簡略化することができるの
で、パワートランジスタの歩留まりを高めることができ
る。
Further, by forming the cathode region of the constant voltage diode device ZD by the p-type semiconductor region 4 which is the channel forming region of the vertical MISFET Q, the manufacturing process of the constant voltage diode device ZD can be simplified. The yield of power transistors can be increased.

【0042】(実施例3)本発明の実施例3であるパワ
ートランジスタの概略構成を図6(要部断面図)に示す。
(Embodiment 3) A schematic structure of a power transistor which is Embodiment 3 of the present invention is shown in FIG.

【0043】図6に示すように、パワートランジスタは
n+型半導体基板2Aの主面上にn-型エピタキシャル層2
Bを形成した半導体基板2を主体に構成される。この半
導体基板2の主面には、前述の実施例2と同様に、nチ
ャネル導電型の縦型MISFETQが構成される。
As shown in FIG. 6, the power transistor is
The n-type epitaxial layer 2 is formed on the main surface of the n + type semiconductor substrate 2A.
The semiconductor substrate 2 on which B is formed is mainly formed. On the main surface of the semiconductor substrate 2, an n-channel conductivity type vertical MISFET Q is formed as in the second embodiment.

【0044】前記縦型MISFETQには定電圧ダイオ
ード素子ZDが並列に接続される。定電圧ダイオード素
子ZDは、n-型エピタキシャル層2Bの主面からその深
さ方向に向って順次配列されたp型半導体領域4、n+型
半導体領域6の夫々で構成される。このp型半導体領域
4とn+型半導体領域6とが接合するpn接合部の位置(n
-型エピタキシャル層2Bの主面からの位置)は、p型半
導体領域4の底面とn-型エピタキシャル層2Bとが接合
するpn接合部の位置(n-型エピタキシャル層2Bの主
面からの位置)と同一に構成される。
A constant voltage diode element ZD is connected in parallel to the vertical MISFET Q. The constant voltage diode element ZD is composed of a p-type semiconductor region 4 and an n + -type semiconductor region 6 which are sequentially arranged from the main surface of the n-type epitaxial layer 2B in the depth direction. The position of the pn junction where the p-type semiconductor region 4 and the n + -type semiconductor region 6 are joined (n
The position from the main surface of the − type epitaxial layer 2B is the position of the pn junction where the bottom surface of the p type semiconductor region 4 and the n − type epitaxial layer 2B are joined (the position from the main surface of the n − type epitaxial layer 2B). ) Is configured the same.

【0045】このように、定電圧ダイオード素子ZDを
n-型エピタキシャル層2Bの主面からその深さ方向に向
って順次配列されたp型半導体領域4、n+型半導体領域
6の夫々で構成し、このp型半導体領域4とn+型半導体
領域6とが接合するpn接合部の位置をp型半導体領域
4の底面とn-型エピタキシャル層2Bとが接合するpn
接合部の位置と同一に構成することにより、前述の実施
例2と同様の効果が得られる。
In this way, the constant voltage diode element ZD is
Each of the p-type semiconductor region 4 and the n + -type semiconductor region 6 is sequentially arranged from the main surface of the n-type epitaxial layer 2B in the depth direction, and the p-type semiconductor region 4 and the n + -type semiconductor region 6 are formed. The position of the pn junction where is joined to is the pn where the bottom of the p-type semiconductor region 4 and the n-type epitaxial layer 2B are joined.
By configuring the same as the position of the joining portion, the same effect as that of the above-described second embodiment can be obtained.

【0046】以上、本発明者によってなされた発明を、
前記実施例に基づき具体的に説明したが、本発明は、前
記実施例に限定されるものではなく、その要旨を逸脱し
ない範囲において種々変更可能であることは勿論であ
る。
As described above, the invention made by the present inventor is
Although the present invention has been specifically described based on the above-mentioned embodiments, the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the scope of the invention.

【0047】例えば、本発明は、pチャネル導電型の縦
型MISFETに並列に接続される定電圧ダイオード素
子を有するパワートランジスタに適用できる。この場
合、定電圧ダイオード素子ZDのアノード領域は縦型M
ISFETのドレイン領域に電気的に接続され、カソー
ド領域はソース領域に電気的に接続される。
For example, the present invention can be applied to a power transistor having a constant voltage diode element connected in parallel with a vertical MISFET of p-channel conductivity type. In this case, the anode region of the constant voltage diode element ZD is a vertical M type.
The drain region of the ISFET is electrically connected, and the cathode region is electrically connected to the source region.

【0048】[0048]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば、下
記のとおりである。
The effects obtained by the typical ones of the inventions disclosed in the present application will be briefly described as follows.

【0049】縦型MISFETに並列に接続される定電
圧ダイオード素子を有するパワートランジスタのオン抵
抗を低減することができる。
It is possible to reduce the on-resistance of the power transistor having the constant voltage diode element connected in parallel to the vertical MISFET.

【0050】また、前記パワートランジスタのチップサ
イズの小型化を図ることができる。
Further, the chip size of the power transistor can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1であるパワートランジスタ
の概略構成を示すチップレイアウト図。
FIG. 1 is a chip layout diagram showing a schematic configuration of a power transistor that is Embodiment 1 of the present invention.

【図2】 図1の要部平面図。FIG. 2 is a plan view of a main part of FIG.

【図3】 図2に示すA−A切断線で切った断面図。FIG. 3 is a cross-sectional view taken along the line AA shown in FIG.

【図4】 前記パワートランジスタに塔載される縦型M
ISFET及び定電圧ダイオード素子の等価回路図。
FIG. 4 is a vertical M mounted on the power transistor.
The equivalent circuit diagram of ISFET and a constant voltage diode element.

【図5】 本発明の実施例2であるパワートランジスタ
の要部断面図。
FIG. 5 is a cross-sectional view of essential parts of a power transistor that is Embodiment 2 of the present invention.

【図6】 本発明の実施例3であるパワートランジスタ
の要部断面図。
FIG. 6 is a cross-sectional view of essential parts of a power transistor that is Embodiment 3 of the present invention.

【図7】 従来のパワートランジスタの概略構成を示す
要部断面図。
FIG. 7 is a cross-sectional view of a main part showing a schematic configuration of a conventional power transistor.

【符号の説明】[Explanation of symbols]

1…半導体チップ、2…半導体基板、2A…n+型半導体
基板、2B…n-型エピタキシャル層、3A…ゲート絶縁
膜、3B…ゲート電極、4…p型半導体領域、5…n+型
半導体領域、6…n+型半導体領域、7…p+型半導体領
域、8…層間絶縁膜、9…接続孔、10A…ソース配
線、10B…ゲート配線、11…最終保護膜、12…ド
レイン配線。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor chip, 2 ... Semiconductor substrate, 2A ... n + type semiconductor substrate, 2B ... n- type epitaxial layer, 3A ... Gate insulating film, 3B ... Gate electrode, 4 ... P type semiconductor region, 5 ... N + type semiconductor region, 6 ... N + type semiconductor region, 7 ... P + type semiconductor region, 8 ... Interlayer insulating film, 9 ... Connection hole, 10A ... Source wiring, 10B ... Gate wiring, 11 ... Final protective film, 12 ... Drain wiring.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型又は第2導電型の半導体基板
及びその主面上に形成された第1導電型の半導体層をド
レイン領域とする縦型MISFETに並列に接続され、
かつそのチャネル形成領域に流れる電流の方向に対して
逆方向に接続される定電圧ダイオード素子を有するパワ
ートランジスタにおいて、前記定電圧ダイオード素子を
前記第1導電型の半導体層の主面からその深さ方向に向
って順次配列された第2導電型の第1半導体領域、第1
導電型の第2半導体領域の夫々で構成したことを特徴と
するパワートランジスタ。
1. A semiconductor substrate of a first conductivity type or a second conductivity type and a vertical MISFET having a drain region of a semiconductor layer of the first conductivity type formed on the main surface thereof are connected in parallel,
In a power transistor having a constant voltage diode element connected in the direction opposite to the direction of the current flowing in the channel formation region, the constant voltage diode element is formed from the main surface of the first conductivity type semiconductor layer to the depth thereof. A first semiconductor region of a second conductivity type sequentially arranged in a direction,
A power transistor comprising each of the conductive second semiconductor regions.
【請求項2】 前記第2導電型の第1半導体領域、第1
導電型の第2半導体領域の夫々はイオン打込み法で形成
されることを特徴とする請求項1に記載のパワートラン
ジスタ。
2. A first semiconductor region of the second conductivity type, a first
The power transistor according to claim 1, wherein each of the conductive type second semiconductor regions is formed by an ion implantation method.
【請求項3】 前記第2導電型の第1半導体領域、第1
導電型の第2半導体領域の夫々は、前記縦型MISFE
Tのチャネル形成領域である第2導電型の第3半導体領
域で周囲を囲まれた領域内に構成されることを特徴とす
る請求項1又請求項2に記載のパワートランジスタ。
3. A first semiconductor region of the second conductivity type, a first
Each of the conductive type second semiconductor regions is formed of the vertical MISFE.
3. The power transistor according to claim 1, wherein the power transistor is formed in a region surrounded by a third semiconductor region of the second conductivity type, which is a T channel formation region.
【請求項4】 前記第2導電型の第1半導体領域は、前
記縦型MISFETのチャネル形成領域として構成され
た半導体領域であることを特徴とする請求項1又は請求
項2に記載のパワートランジスタ。
4. The power transistor according to claim 1, wherein the first semiconductor region of the second conductivity type is a semiconductor region configured as a channel formation region of the vertical MISFET. .
JP6245475A 1994-10-11 1994-10-11 Power transistor Pending JPH08111526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6245475A JPH08111526A (en) 1994-10-11 1994-10-11 Power transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6245475A JPH08111526A (en) 1994-10-11 1994-10-11 Power transistor

Publications (1)

Publication Number Publication Date
JPH08111526A true JPH08111526A (en) 1996-04-30

Family

ID=17134219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6245475A Pending JPH08111526A (en) 1994-10-11 1994-10-11 Power transistor

Country Status (1)

Country Link
JP (1) JPH08111526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988690B1 (en) * 2002-07-31 2010-10-18 가부시키가이샤 히타치초엘에스아이시스템즈 A semiconductor memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988690B1 (en) * 2002-07-31 2010-10-18 가부시키가이샤 히타치초엘에스아이시스템즈 A semiconductor memory device

Similar Documents

Publication Publication Date Title
JP2597412B2 (en) Semiconductor device and manufacturing method thereof
US6713794B2 (en) Lateral semiconductor device
US5686750A (en) Power semiconductor device having improved reverse recovery voltage
JPS61182264A (en) Vertical type mos transistor
JPH02275675A (en) Mos type semiconductor device
US6703665B1 (en) Transistor
JP3827954B2 (en) IGBT with PN separation layer
US20120126312A1 (en) Vertical dmos-field effect transistor
JP2001007322A (en) High breakdown strength field-effect transistor
JPH0494576A (en) Vertical power mos fet
JPWO2003075353A1 (en) Semiconductor element
JP3448138B2 (en) Method for manufacturing semiconductor device
JP2723868B2 (en) Semiconductor device
JP3505039B2 (en) Semiconductor device and manufacturing method thereof
JPH08111526A (en) Power transistor
JP3217552B2 (en) Horizontal high voltage semiconductor device
JP3301271B2 (en) Horizontal power MOSFET
JPH11214511A (en) Semiconductor device and wiring method in semiconductor device
JPH07118542B2 (en) Vertical MOSFET
JP2646765B2 (en) MIS gate controlled thyristor semiconductor device
JP2816985B2 (en) Vertical MOS field-effect transistor
JPH118381A (en) Semiconductor device
JPH01290265A (en) Mos type semiconductor device
JP2002373987A (en) Insulated gate field effect transistor
JP3275606B2 (en) Horizontal power MOSFET