JPH08111008A - Thin film magnetic head and its production - Google Patents

Thin film magnetic head and its production

Info

Publication number
JPH08111008A
JPH08111008A JP24590894A JP24590894A JPH08111008A JP H08111008 A JPH08111008 A JP H08111008A JP 24590894 A JP24590894 A JP 24590894A JP 24590894 A JP24590894 A JP 24590894A JP H08111008 A JPH08111008 A JP H08111008A
Authority
JP
Japan
Prior art keywords
gap layer
insulating gap
effect element
magnetoresistive effect
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24590894A
Other languages
Japanese (ja)
Inventor
Toshihiro Okada
智弘 岡田
Takashi Kawabe
隆 川辺
Moriaki Fuyama
盛明 府山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24590894A priority Critical patent/JPH08111008A/en
Publication of JPH08111008A publication Critical patent/JPH08111008A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE: To improve the pressure resistance by making the thickness of the insulating gap layer except in a magnetic sensitive part of a magneto-resistance effect element thicker than that of the insulating gap layer in the magnetic sensitive part of a magneto-resistance effect element. CONSTITUTION: A lower pressure resistant protective insulating gap layer 2 is formed by ion milling with CHF3 or the like after Al2 O3 film forming for the lower pressure resistant protective insulating gap layer on a lower shield 1 and taper etching Al2 O3 on the magnetic sensitive part of the MR element to the end part. Next, a lower insulating gap layer 3 is formed on the layer 2 by Al2 O3 film forming and the MR element and an electrode 5 are formed thereon. An upper pressure resistance protective insulating gap layer 6, an upper insulating gap layer 7 and an upper shield layer 8 are formed successively thereon. As a result, insulating property between the MR element and the shield is improved while the resolution is maintained by thickening the insulating gap layer except in the magnetic sensitive part of the MR element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ディスク装置等に
再生に用いられる磁気抵抗効果型ヘッド(以下、MRヘ
ッドと略す)を有する薄膜磁気ヘッド及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film magnetic head having a magnetoresistive head (hereinafter abbreviated as MR head) used for reproduction in a magnetic disk device or the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】特開平6−52517号公報には、MRヘッド
のギャップ層として、スパッタ法でSiO2 層を、CV
D法でSiN4 層を形成,積層する方法が開示されてい
る。
2. Description of the Related Art Japanese Unexamined Patent Publication (Kokai) No. 6-52517 discloses an SiO 2 layer as a gap layer of an MR head, which is formed by sputtering with a CV
A method of forming and stacking a SiN 4 layer by the D method is disclosed.

【0003】[0003]

【発明が解決しようとする課題】磁気ディスク装置の高
記録密度化に向けてMRヘッドの高分解能化が必要であ
る。この高分解能化のためには、MR素子位置での下部
シールドと上部シールドのシールド間隔を狭くする必要
がある。しかし、シールド間隔を狭くするためにギャッ
プ層を薄くすると、磁気抵抗効果素子(以下、MR素子
と略す)及び電極と上下のシールドとの絶縁性が悪くな
る。特に下部ギャップ層はMR素子及び電極形成時のオ
ーバーエッチングにより膜厚が薄くなるため、絶縁性が
悪くなりやすい。特開平6−52517号公報の発明では、ギ
ャップ層としてSiO2 とSiN4を用い、ギャップ層
の膜厚が100nmまでの耐圧を得ている。しかし、さ
らに膜厚が薄くなった場合、MR素子及び電極の下が均
一の膜厚では、面積が広いため絶縁耐圧が悪くなる。ま
た、CVD装置等の特別の装置も必要である。本発明の
目的は、従来から用いられている成膜法を用いて、十分
な耐圧をもったMRヘッド及びその作製方法を提供する
ことにある。
It is necessary to improve the resolution of the MR head in order to increase the recording density of the magnetic disk device. In order to achieve this high resolution, it is necessary to narrow the shield distance between the lower shield and the upper shield at the MR element position. However, if the gap layer is thinned to reduce the shield distance, the insulation between the magnetoresistive effect element (hereinafter abbreviated as MR element) and the electrode and the upper and lower shields deteriorates. In particular, the lower gap layer is thinned by over-etching during the formation of the MR element and the electrode, so that the insulating property tends to deteriorate. In the invention of Japanese Patent Laid-Open No. 6-52517, SiO 2 and SiN 4 are used as the gap layer, and the breakdown voltage is 100 nm or less. However, when the film thickness is further reduced, if the film thickness under the MR element and the electrode is uniform, the insulation voltage is deteriorated because of the large area. Also, a special device such as a CVD device is required. An object of the present invention is to provide an MR head having a sufficient breakdown voltage and a method for manufacturing the MR head, using a conventionally used film forming method.

【0004】[0004]

【課題を解決するための手段】本発明の薄膜磁気ヘッド
は、磁気抵抗効果素子と磁気抵抗効果素子の両端に設置
した電極が、上下に絶縁体からなる絶縁ギャップ層を介
して上下のシールドにはさまれた薄膜磁気ヘッドであっ
て、磁気抵抗効果素子部での絶縁ギャップ層の厚さよ
り、磁気抵抗効果素子部以外での絶縁ギャップ層の厚さ
が厚いこと、または磁気抵抗効果素子部での絶縁ギャッ
プ層の厚さより、磁気抵抗効果素子部以外での絶縁ギャ
ップ層の厚さが厚いことを特徴とするもの、または、下
部絶縁ギャップ層の厚さが、磁気抵抗効果素子の感磁部
での厚さより、磁気抵抗効果素子の感磁部以外での厚い
こと、または下部絶縁ギャップ層の厚さが、磁気抵抗効
果素子部での厚さより、磁気抵抗効果素子部以外での厚
いことを特徴とするもの、または、上部絶縁ギャップ層
の厚さが、磁気抵抗効果素子の感磁部での厚さより、磁
気抵抗効果素子の感磁部以外での厚いこと、または上部
絶縁ギャップ層の厚さが、磁気抵抗効果素子部での厚さ
より、磁気抵抗効果素子部以外での厚いことを特徴とす
るものである。磁気抵抗効果素子部またはその感磁部よ
りも、その他の部分で上部または下部の絶縁ギャップ層
を厚くするために、上下両方に、またはどちらか一方に
耐圧保護用の絶縁ギャップ層を形成する必要がある。こ
の耐圧保護絶縁ギャップ層は、上下の絶縁ギャップ層と
同じ物質でも良い。下部については、下部シールド上の
磁気抵抗効果素子部または、その感磁部以外に耐圧保護
絶縁ギャップ層を形成後、下部絶縁ギャップ層を形成す
ることによって、下部耐圧保護絶縁ギャップ層のパター
ン端部を下部絶縁ギャップ層によって平坦化でき、この
上に形成する磁気抵抗効果素子の磁気特性を良好に保つ
ことができる。また、上下の耐圧保護絶縁ギャップ層の
形成方法として、リアクティブイオンエッチング法(以
下RIE法と略す),イオンミリング法,ウエットエッ
チング法及びリフトオフ法が使用できる。下部耐圧保護
絶縁ギャップ層の場合、MR膜の磁気特性を安定にする
ためには、パターンの端部形状はテーパ形状であること
が望ましい。下部絶縁ギャップ層として従来から用いら
れているAl23を用いる場合、RIE法で用いるガス
は、例えば、CF4+O2及びSF6 が使用でき、ガス圧
を高めることでテーパエッチングできる。また、イオン
ミリング法では、CF4及びCHF3 等を用いイオンを
斜めから入射させてテーパエッチングをする。ウエット
エッチング法では、KOH,NaOH等のアルカリ水溶
液、また簡便にはフォトレジストの現像に用いられてい
るテトラメチルアンモニウムハイドロオキサイド(TM
AH)の水溶液を用いることができる。ウエットエッチ
ング法では、溶解の進行が等方的なため、端部はテーパ
形状となる。リフトオフ法では、アンダーカット形状を
もったマスク材を下部シールド上に形成し、Al23
をスパッタ法で形成後、溶剤でマスク材と共にAl23
膜の不用な部分をリフトオフすることによってパターン
を形成する。このとき、スパッタ粒子がマスク材のアン
ダーカット部分に入り込むため、膜端部はテーパ形状と
なる。下部耐圧保護絶縁ギャップ層を形成後、下部絶縁
ギャップ層をスパッタ法等で成膜する。このときの成膜
で、リフトオフで形成したパターンの僅かな段差を平坦
にすることができ、この上に形成するMR素子の磁気特
性を良好にすることができる。さらに成膜時に基板にバ
イアスを印加するバイアススパッタ法を用いると、平坦
化の効果が高い。下部絶縁ギャップ層上にMR素子及び
電極を形成後、MR素子部以外に、上部耐圧保護絶縁ギ
ャップ層を下部耐圧保護膜形成時と同様な方法,RIE
法,イオンミリング法,ウエットエッチング法及びリフ
トオフ法で形成する。次に上部絶縁ギャップ層を形成す
るが、下層部と違い、平坦化の効果を期待しなくても良
いので、上部耐圧保護絶縁ギャップ層を形成する前に上
部絶縁ギャップ層を形成してもよい。
In the thin-film magnetic head of the present invention, the magnetoresistive effect element and the electrodes installed at both ends of the magnetoresistive effect element are provided on the upper and lower shields via the insulating gap layers made of an insulating material. In a thin film magnetic head sandwiched, the thickness of the insulating gap layer other than the magnetoresistive effect element is larger than the thickness of the insulating gap layer in the magnetoresistive effect element, or Of the insulating gap layer other than the magnetoresistive effect element portion is thicker than that of the magnetoresistive effect element portion, or the thickness of the lower insulating gap layer is equal to the magnetic sensitive portion of the magnetoresistive effect element. Thicker than the thickness of the magnetoresistive effect element except the magnetic sensitive portion, or the thickness of the lower insulating gap layer is thicker than the thickness of the magnetoresistive effect element portion other than the magnetoresistive effect element portion. Characterizing , Or the thickness of the upper insulating gap layer is thicker than the thickness of the magnetoresistive element of the magnetoresistive effect element at a portion other than the magnetic sensitive portion of the magnetoresistive effect element, or the thickness of the upper insulating gap layer is It is characterized in that it is thicker in portions other than the magnetoresistive effect element portion than in the magnetoresistive effect element portion. In order to thicken the upper or lower insulating gap layer in other parts than the magnetoresistive effect element part or its magnetic sensitive part, it is necessary to form an insulating gap layer for withstand voltage protection on both upper and lower sides or on either side. There is. The breakdown voltage protection insulating gap layer may be made of the same material as the upper and lower insulating gap layers. As for the lower part, after forming the withstand voltage protection insulating gap layer on the part other than the magnetoresistive effect element part on the lower shield or its magnetic sensitive part, the lower insulating gap layer is formed to form the pattern end part of the lower withstand voltage protection insulating gap layer. Can be flattened by the lower insulating gap layer, and the magnetic characteristics of the magnetoresistive effect element formed thereon can be kept good. As a method of forming the upper and lower breakdown voltage protective insulating gap layers, a reactive ion etching method (hereinafter abbreviated as RIE method), an ion milling method, a wet etching method and a lift-off method can be used. In the case of the lower breakdown voltage protection insulating gap layer, in order to stabilize the magnetic characteristics of the MR film, it is desirable that the end shape of the pattern is tapered. When Al 2 O 3 which has been conventionally used as the lower insulating gap layer is used, CF 4 + O 2 and SF 6 can be used as the gas used in the RIE method, and taper etching can be performed by increasing the gas pressure. In the ion milling method, taper etching is performed by using CF 4 and CHF 3 or the like to obliquely enter ions. In the wet etching method, an alkaline aqueous solution such as KOH or NaOH, or simply tetramethylammonium hydroxide (TM) used for developing a photoresist is used.
An aqueous solution of AH) can be used. In the wet etching method, since the dissolution progresses isotropically, the ends are tapered. In the lift-off method, a mask material having an undercut shape is formed on the lower shield, an Al 2 O 3 film is formed by a sputtering method, and then a mask material is used together with the Al 2 O 3 film.
The pattern is formed by lifting off the unwanted part of the film. At this time, since the sputtered particles enter the undercut portion of the mask material, the film end portion has a tapered shape. After forming the lower breakdown voltage protection insulating gap layer, the lower insulating gap layer is formed by a sputtering method or the like. By the film formation at this time, a slight step difference of the pattern formed by lift-off can be made flat, and the magnetic characteristics of the MR element formed thereon can be improved. Further, when the bias sputtering method in which a bias is applied to the substrate during film formation is used, the flattening effect is high. After forming the MR element and the electrode on the lower insulation gap layer, the same method as that for forming the upper breakdown voltage protection insulation gap layer on the upper breakdown voltage protection insulation gap layer except for the MR element section, RIE
Method, ion milling method, wet etching method and lift-off method. Next, the upper insulating gap layer is formed, but unlike the lower layer portion, the flattening effect does not have to be expected, so the upper insulating gap layer may be formed before forming the upper breakdown voltage protecting insulating gap layer. .

【0005】[0005]

【作用】MR素子の感磁部以外での絶縁ギャップ層を厚
くすることで、MR素子及び電極とシールド間の絶縁性
の向上が達成できる。また、下部耐圧保護絶縁ギャップ
層を形成後下部絶縁ギャップ層を形成することで、下部
耐圧保護絶縁ギャップ層の端部の段差を平坦化でき、M
R素子の磁気特性を良好にすることができる。
By increasing the thickness of the insulating gap layer other than the magnetically sensitive portion of the MR element, the insulation between the MR element and the electrode and the shield can be improved. In addition, by forming the lower insulation gap layer after forming the lower breakdown protection insulation gap layer, it is possible to flatten the step at the end of the lower breakdown protection insulation gap layer.
The magnetic characteristics of the R element can be improved.

【0006】[0006]

【実施例】【Example】

(実施例1)以下、図を用いて本実施例を説明する。図
1は本発明により作製されるMRヘッドの磁気媒体に対
向する面からみた拡大断面図(但し、均一倍率ではな
い)である。図2は、図1に示したMRヘッドの作製工
程を磁気媒体に対向する面からみた拡大断面図(但し、
均一倍率ではない)である。
(Embodiment 1) This embodiment will be described below with reference to the drawings. FIG. 1 is an enlarged cross-sectional view (however, not at a uniform magnification) of the MR head manufactured according to the present invention as viewed from the surface facing the magnetic medium. FIG. 2 is an enlarged cross-sectional view of the manufacturing process of the MR head shown in FIG.
It is not a uniform magnification).

【0007】図2(a)に、下部シールド上1にスパッ
タ法で下部耐圧保護絶縁ギャップ層用のAl23を50
nm成膜後、ホトレジストをマスクにCHF3 によるイ
オンミリングを行い、MR素子の感磁部のAl23を端
部にテーパエッチングして、下部耐圧保護絶縁ギャップ
層2を形成したところを示す。図2(b)にAl23
バイアススパッタ法で55nm成膜し、下部絶縁ギャッ
プ層3を形成したところを示す。図2(c)に下部絶縁
ギャップ層3上にMR素子4及び電極5を形成したとこ
ろを示す。図2(d)にAl23を100nm成膜後、
ホトレジストをマスクにホトレジストの現像液NMD−
3(東京応化工業社製)を用いてエッチングし、上部耐
圧保護絶縁ギャップ層6を形成したところを示す。図2
(e)にAl23を90nm成膜し、上部絶縁ギャップ
層7を形成したところを示す。上部絶縁ギャップ層は、
下部絶縁ギャップ層ほど平坦性を必要としないので、上
部絶縁ギャップ層を形成後、上部耐圧保護絶縁ギャップ
層を形成しても良い。図2(f)に上部シールド8を形
成し、感磁部のシールド間隔が0.2μm のMRヘッド
を作製したところを示す。再生特性を見たところ、分解
能を維持したまま、耐圧は良好であった。
In FIG. 2 (a), 50 Al 2 O 3 for the lower withstand voltage protective insulating gap layer is sputtered on the lower shield 1.
After forming a film having a thickness of nm, ion milling with CHF 3 is performed using a photoresist as a mask, and Al 2 O 3 in the magnetic sensitive portion of the MR element is taper-etched at the end portion to form the lower breakdown voltage protective insulating gap layer 2. . FIG. 2B shows that the lower insulating gap layer 3 was formed by depositing Al 2 O 3 to a thickness of 55 nm by the bias sputtering method. FIG. 2C shows a case where the MR element 4 and the electrode 5 are formed on the lower insulating gap layer 3. In FIG. 2 (d), Al 2 O 3 having a thickness of 100 nm is formed,
Photoresist developer NMD-
It shows that the upper breakdown voltage protective insulation gap layer 6 is formed by etching using 3 (manufactured by Tokyo Ohka Kogyo Co., Ltd.). Figure 2
In (e), a 90 nm Al 2 O 3 film is formed and the upper insulating gap layer 7 is formed. The upper insulating gap layer is
Since the flatness is not required as much as the lower insulation gap layer, the upper breakdown voltage protection insulation gap layer may be formed after the upper insulation gap layer is formed. FIG. 2 (f) shows a case where the upper shield 8 is formed and an MR head having a shield interval of the magnetic sensitive portion of 0.2 μm is manufactured. Looking at the reproduction characteristics, the breakdown voltage was good while maintaining the resolution.

【0008】(実施例2)本実施例も実施例1と同じ図
1及び図2を用いて説明する。下部シールド上1にMR
素子の感磁部の部分にアンダーカット形状をもつリフト
オフ用2層マスク材を作製後、スパッタ法で下部耐圧保
護絶縁ギャップ層用のAl23を50nm成膜する。図
3に、2層マスク材の例としてホトレジスト(東京応化
工業製OFPR−8600)ホトレジスト/ポリイミド(Br
ewer Sci.社製ARC)の2層膜を用いて作製し、Al
23をスパッタ法により成膜したところを示す。図2
(a)に、N−メチル−2−ピロリドン等の溶剤を用い
て、マスク材と共に不用部分のAl23をリフトオフ
し、下部耐圧保護絶縁ギャップ層2を形成したところを
示す。図2(b)に、Al23をバイアススパッタ法で
55nm成膜し、下部絶縁ギャップ膜3を形成したとこ
ろを示す。このとき、下部耐圧保護絶縁ギャップ層2の
端部の約3nm段差は完全に平坦化される。図2(c)
に下部絶縁ギャップ層3上にMR素子4及び電極5を形
成したところを示す。図2(d)に再び感磁部に2層マ
スク材を作製し、上部耐圧保護絶縁ギャップ層用のAl
23100nmをスパッタ法で成膜し、マスク材と共に
不用部分をリフトオフすることにより上部耐圧保護絶縁
ギャップ層6を形成したところを示す。図2(e)にAl
23を90nmスパッタ法で成膜し、上部絶縁ギャップ
膜7を形成したところを示す。上部絶縁ギャップ層では
耐圧保護絶縁ギャップ層端部の平坦化は重要でないため
上部絶縁ギャップ層7を形成後、リフトオフ法で耐圧保
護絶縁ギャップ層6を形成しても良い。また、下部と上
部とで耐圧保護絶縁ギャップ層形成法として、リフトオ
フ法とエッチング法の組合せを任意に行って差し支えな
い。図2(f)に、上部絶縁ギャップ膜7上に上部シー
ルド8を形成し、感磁部のシールド間隔が、0.2μm
のMRヘッドを作製したところを示す。再生特性を見た
ところ、分解能を維持したまま、耐圧は良好であった。
(Embodiment 2) This embodiment will also be described with reference to FIGS. MR on the bottom shield 1
After forming a lift-off two-layer mask material having an undercut shape in the magnetically sensitive portion of the element, Al 2 O 3 for the lower breakdown voltage protection insulating gap layer is formed to a thickness of 50 nm by the sputtering method. In FIG. 3, as an example of the two-layer mask material, photoresist (OFPR-8600 manufactured by Tokyo Ohka Kogyo Co., Ltd.) photoresist / polyimide (Br
ewer Sci. Manufactured by using a two-layer film of ARC)
2 shows a film of 2 O 3 formed by a sputtering method. Figure 2
In (a), a solvent such as N-methyl-2-pyrrolidone is used to lift off unnecessary portions of Al 2 O 3 together with the mask material to form the lower breakdown voltage protective insulation gap layer 2. FIG. 2B shows that the lower insulating gap film 3 was formed by depositing Al 2 O 3 to a thickness of 55 nm by the bias sputtering method. At this time, the step difference of about 3 nm at the end of the lower breakdown voltage protection insulation gap layer 2 is completely flattened. Figure 2 (c)
3 shows the MR element 4 and the electrode 5 formed on the lower insulating gap layer 3. In FIG. 2D, a two-layer mask material is again formed on the magnetic sensitive portion, and Al for the upper breakdown voltage protection insulation gap layer is formed.
2 O 3 100 nm is formed by a sputtering method, and the upper breakdown voltage protection insulating gap layer 6 is formed by lifting off unnecessary portions together with the mask material. 2 (e) Al
2 O 3 is formed by the 90 nm sputtering method to form the upper insulating gap film 7. In the upper insulating gap layer, it is not important to flatten the edges of the withstand voltage protective insulating gap layer, and therefore the withstand voltage protective insulating gap layer 6 may be formed by the lift-off method after forming the upper insulating gap layer 7. In addition, as a method for forming the breakdown voltage protection insulating gap layer between the lower portion and the upper portion, the lift-off method and the etching method may be arbitrarily combined. In FIG. 2 (f), the upper shield 8 is formed on the upper insulating gap film 7, and the shield interval of the magnetic sensitive portion is 0.2 μm.
The MR head is manufactured. Looking at the reproduction characteristics, the breakdown voltage was good while maintaining the resolution.

【0009】[0009]

【発明の効果】MR素子部分の感磁部の絶縁ギャップ層
の厚さを変えること無く、上下に耐圧保護絶縁ギャップ
層を挿入することで、シールド間隔の狭いMRヘッドに
おいても、分解能を維持したまま、絶縁性の向上を図る
ことができる。
The resolution is maintained even in an MR head having a narrow shield interval by inserting the withstand voltage protective insulating gap layers above and below without changing the thickness of the insulating gap layer of the magnetic sensitive portion of the MR element portion. As it is, the insulation can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるMRヘッドの磁気媒体
に対向する面からみた断面図。
FIG. 1 is a sectional view of an MR head according to an embodiment of the present invention as viewed from a surface facing a magnetic medium.

【図2】図1のMRヘッドの製造工程を磁気媒体に対向
する面からみた断面図。
FIG. 2 is a cross-sectional view of a manufacturing process of the MR head of FIG. 1 viewed from a surface facing a magnetic medium.

【図3】2層マスク材上にAl23を成膜したところの
拡大断面図。
FIG. 3 is an enlarged cross-sectional view of an Al 2 O 3 film formed on a two-layer mask material.

【符号の説明】[Explanation of symbols]

1…下部シールド、2…下部耐圧保護絶縁ギャップ層、
3…下部絶縁ギャップ層、4…磁気抵抗効果素子、5…
電極、6…上部耐圧保護絶縁ギャップ層、7…上部絶縁
ギャップ層、8…上部シールド。
1 ... bottom shield, 2 ... bottom breakdown voltage protection insulating gap layer,
3 ... Lower insulating gap layer, 4 ... Magnetoresistive effect element, 5 ...
Electrodes, 6 ... Upper breakdown voltage protection insulating gap layer, 7 ... Upper insulating gap layer, 8 ... Upper shield.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】磁気抵抗効果素子と前記磁気抵抗効果素子
の両端に設置した電極が、上下に絶縁体からなる絶縁ギ
ャップ層を介して上下のシールドにはさまれた薄膜磁気
ヘッドにおいて、前記磁気抵抗効果素子の感磁部での前
記絶縁ギャップ層の厚さより、前記磁気抵抗効果素子の
前記感磁部以外での前記絶縁ギャップ層の厚さが厚いこ
とを特徴とする薄膜磁気ヘッド。
1. A thin-film magnetic head in which a magnetoresistive effect element and electrodes provided at both ends of the magnetoresistive effect element are sandwiched by upper and lower shields with an insulating gap layer made of an insulating material interposed between the magnetoresistive effect element and the magnetoresistive effect element. A thin-film magnetic head, wherein the insulating gap layer is thicker in a portion other than the magnetic sensitive portion of the magnetoresistive effect element than in the magnetic sensitive portion of the resistance effect element.
【請求項2】磁気抵抗効果素子と前記磁気抵抗効果素子
の両端に設置した電極が、上下に絶縁体からなる絶縁ギ
ャップ層を介して上下のシールドにはさまれた薄膜磁気
ヘッドにおいて、前記磁気抵抗効果素子部での絶縁ギャ
ップ層の厚さより、前記磁気抵抗効果素子部以外での絶
縁ギャップ層の厚さが厚いことを特徴とする薄膜磁気ヘ
ッド。
2. A thin-film magnetic head in which a magnetoresistive effect element and electrodes provided at both ends of the magnetoresistive effect element are sandwiched by upper and lower shields with an insulating gap layer made of an insulating material interposed therebetween. A thin film magnetic head characterized in that an insulating gap layer other than the magnetoresistive effect element portion is thicker than an insulating gap layer in the resistive effect element portion.
【請求項3】請求項1または2において、前記下部絶縁
ギャップ層の厚さが、前記磁気抵抗効果素子の感磁部で
の厚さより、前記磁気抵抗効果素子の感磁部以外での厚
い薄膜磁気ヘッド。
3. The thin film according to claim 1, wherein the thickness of the lower insulating gap layer is thicker than the thickness of the magnetoresistive effect element in the magnetic sensitive portion except in the magnetic sensitive portion of the magnetoresistive effect element. Magnetic head.
【請求項4】請求項1,2または3において、前記上部
絶縁ギャップ層の厚さが、前記磁気抵抗効果素子の感磁
部での厚さより、前記磁気抵抗効果素子の感磁部以外で
厚い薄膜磁気ヘッド。
4. The thickness of the upper insulating gap layer according to claim 1, wherein the thickness of the upper insulating gap layer is thicker than the thickness of the magneto-sensitive element of the magneto-resistive effect element except the magneto-sensitive element of the magneto-resistive effect element. Thin film magnetic head.
【請求項5】請求項1,2,3または4において、前記
下部絶縁ギャップ層の厚さが、前記磁気抵抗効果素子部
の厚さより、前記磁気抵抗効果素子部以外で厚い薄膜磁
気ヘッド。
5. The thin film magnetic head according to claim 1, wherein the thickness of the lower insulating gap layer is thicker than the thickness of the magnetoresistive effect element portion except the magnetoresistive effect element portion.
【請求項6】請求項1,2,3,4または5において、
前記上部絶縁ギャップ層の厚さが、前記磁気抵抗効果素
子部での厚さより、前記磁気抵抗効果素子部以外で厚い
薄膜磁気ヘッド。
6. The method according to claim 1, 2, 3, 4 or 5.
A thin film magnetic head in which the thickness of the upper insulating gap layer is thicker than the thickness in the magnetoresistive effect element portion except in the magnetoresistive effect element portion.
【請求項7】請求項1,2,3,4,5または6におい
て、前記下部シールド上の前記磁気抵抗効果素子の感磁
部以外に耐圧保護絶縁ギャップ層膜を形成後、下部絶縁
ギャップ層を形成する薄膜磁気ヘッドの製造方法。
7. The lower insulating gap layer according to claim 1, 2, 3, 4, 5 or 6, after forming a withstand voltage protective insulating gap layer film on the lower shield other than the magnetically sensitive portion of the magnetoresistive effect element. Of manufacturing a thin film magnetic head for forming a film.
【請求項8】請求項1,2,3,4,5,6または7に
おいて、前記下部シールド上の前記磁気抵抗効果素子部
以外に耐圧保護絶縁ギャップ層を形成後、下部絶縁ギャ
ップ層を形成する薄膜磁気ヘッドの製造方法。
8. The lower insulating gap layer according to claim 1, 2, 3, 4, 5, 6 or 7, after forming a breakdown voltage protection insulating gap layer other than the magnetoresistive effect element portion on the lower shield. Method for manufacturing thin film magnetic head.
【請求項9】請求項1,2,3,4,5,6,7または
8において、前記耐圧保護絶縁ギャップ層形成に、リフ
トオフ法を用いる薄膜磁気ヘッドの製造方法。
9. A method of manufacturing a thin film magnetic head according to claim 1, 2, 3, 4, 5, 6, 7 or 8, wherein a lift-off method is used for forming said breakdown voltage protection insulating gap layer.
【請求項10】請求項1,2,3,4,5,6,7,8
または9において、前記耐圧保護絶縁ギャップ層が、前
記下部絶縁ギャップ層と同じ物質を用いる薄膜磁気ヘッ
ド。
10. Claims 1, 2, 3, 4, 5, 6, 7, 8
Alternatively, in 9 above, the withstand voltage protection insulating gap layer uses the same material as that of the lower insulating gap layer.
JP24590894A 1994-10-12 1994-10-12 Thin film magnetic head and its production Pending JPH08111008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24590894A JPH08111008A (en) 1994-10-12 1994-10-12 Thin film magnetic head and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24590894A JPH08111008A (en) 1994-10-12 1994-10-12 Thin film magnetic head and its production

Publications (1)

Publication Number Publication Date
JPH08111008A true JPH08111008A (en) 1996-04-30

Family

ID=17140624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24590894A Pending JPH08111008A (en) 1994-10-12 1994-10-12 Thin film magnetic head and its production

Country Status (1)

Country Link
JP (1) JPH08111008A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7280321B2 (en) 2001-12-11 2007-10-09 Hitachi Global Storage Technologies Japan, Ltd. Magnetoresistive head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7280321B2 (en) 2001-12-11 2007-10-09 Hitachi Global Storage Technologies Japan, Ltd. Magnetoresistive head

Similar Documents

Publication Publication Date Title
JP2000331315A (en) Magneto-resistance effect head
JP2000099922A (en) Magnetic tunnel element and its production
US6721140B2 (en) Magnetoresistive device and method of manufacturing same and thin-film magnetic head and method of manufacturing same
JP3635504B2 (en) Magnetoresistive head, manufacturing method thereof, and magnetic recording apparatus
JPH11339223A (en) Etchig method of magnetic layer, formation of magnetic pole for thin-film magnetic head and manufacture of thin-film magnetic head
JP2830559B2 (en) Method of manufacturing composite thin film magnetic head
US5896251A (en) Magnetoresistance effect head with conductor film pair and magnetic field proving film pair disposed between substrate and magnetoresistance effect film
JP2009123818A (en) Method of manufacturing magnetic sensor device
JPH08111008A (en) Thin film magnetic head and its production
JPH10247305A (en) Production of composite type thin-film magnetic head
JP3823882B2 (en) Method for manufacturing thin film magnetic head having magnetoresistive effect element
US6433969B1 (en) Compound magnetoresistive head and method for manufacturing same
JPH08293108A (en) Thin-film magnetic head
JPH0668426A (en) Magnetic-resistance effect head and manufacture thereof
US7141508B2 (en) Magnetoresistive effect thin-film magnetic head and manufacturing method of magnetoresistive effect thin-film magnetic head
JPS6045922A (en) Magneto-resistance effect type magnetic head
KR100203612B1 (en) Magnetoresistive effect head and method of manufacturing the same
JPH09305931A (en) Magnetoresistance effect type element, magneto-resistance effect type head and manufacture of the same
JPH11175915A (en) Thin-film magnetic head and its production
JP2002353538A (en) Magnetic detecting element, manufacturing method therefor, and magnetic head
JP3164050B2 (en) Manufacturing method of magnetoresistive composite head
JPH06267031A (en) Magnetoresistance effect head and manufacture thereof
JP2697979B2 (en) Method for manufacturing thin-film magnetic head
JPH0981919A (en) Manufacturing of thin film magnetic heads
JPH09128712A (en) Magneto-resistive head