JPH08110254A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter

Info

Publication number
JPH08110254A
JPH08110254A JP6244991A JP24499194A JPH08110254A JP H08110254 A JPH08110254 A JP H08110254A JP 6244991 A JP6244991 A JP 6244991A JP 24499194 A JP24499194 A JP 24499194A JP H08110254 A JPH08110254 A JP H08110254A
Authority
JP
Japan
Prior art keywords
ultrasonic
ultrasonic wave
pipe
flow velocity
receivers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6244991A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakurai
洋 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6244991A priority Critical patent/JPH08110254A/en
Publication of JPH08110254A publication Critical patent/JPH08110254A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE: To provide an ultrasonic flowmeter which can measure the flow rate highly accurately even when set in the vicinity of a bent part of a piping where the flow velocity distribution is disturbed. CONSTITUTION: A flow rate detection part of the ultrasonic flowmeter is constituted of a pair of stators 3a, 3b corresponding to ultrasonic wave transmitters/ receiver 10a, 10b, an arm 8 and a driving means. The pair of stators 3a, 3b coupled acoustically to a piping guide the wave transmitters/receivers 10a, 10b to rotate about an axis of the piping. The arm 8 couples the pair of ultrasonic wave transmitters/receivers 10a, 10b at a position to transmit/receive ultrasonic waves from each other, and the driving means moves the coupled transmitters/receivers 10a, 10b along the stators 3a, 3b. A measuring/controlling part measures the flow velocity at each of a plurality of positions preliminarily set around the axis of the piping by moving the coupled ultrasonic wave transmitters/receivers 10a, 10b via the driving means, operates an average value of tone flow velocities measured at the respective positions and outputs as an average value of the flow rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流体の流れによる超音
波の伝搬時間差から流体の流速または流量を計測する超
音波流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flow meter for measuring the flow velocity or flow rate of a fluid based on the difference in the propagation time of ultrasonic waves due to the flow of fluid.

【0002】[0002]

【従来の技術】超音波が流れのある流体中を伝播すると
き、上流から下流に向かう場合と下流から上流に向かう
場合では伝播速度が異なる。この伝播速度の速度差が流
体の流速に比例関係になることを利用して流速を測定す
る従来技術による透過形超音波流量計の原理構成を図3
に示し、この図によって従来技術を説明する。
2. Description of the Related Art When an ultrasonic wave propagates in a flowing fluid, the propagation speed differs depending on whether it travels from upstream to downstream or from downstream to upstream. The principle configuration of a transmission type ultrasonic flowmeter according to the prior art that measures the flow velocity by utilizing the fact that the velocity difference of the propagation velocity has a proportional relationship with the flow velocity of the fluid is shown in FIG.
The conventional technique will be described with reference to FIG.

【0003】図3の超音波流量計において、1aと1b
とは超音波振動子であり、2aと2bとは配管5の中の
流体9と超音波振動子とを音響的に結合する斜角楔であ
り、超音波振動子と斜角楔は音響的に結合して超音波送
受波器10a,10bを構成している。図3の超音波流量計
の上流の超音波送受波器10aに励振パルスを印加して励
振すると超音波が射出され、射出された超音波は斜角楔
2aを経て配管5から配管内の流体9へと伝播する。そ
うして、配管内の流体9へと伝搬した音波は配管の対向
面に到着し、斜角楔2bに案内されて受波モードとなっ
ている超音波送受波器10bに導かれて受信される。この
上流の超音波送受波器10aから下流の超音波送受波器10
bに到着するまでの音波の伝搬時間をT12とし、逆に下
流の超音波送受波器10bを励振して上流の超音波送受波
器10aで音波を受信する場合の伝播時間をT21とする
と、それぞれの伝播時間T12とT21とは、下記の式
(1)および式(2)で表される。
In the ultrasonic flowmeter of FIG. 3, 1a and 1b
Is an ultrasonic transducer, 2a and 2b are oblique wedges that acoustically couple the fluid 9 in the pipe 5 and the ultrasonic transducer, and the ultrasonic transducer and the oblique wedge are acoustic. To form ultrasonic wave transmitters / receivers 10a and 10b. When an excitation pulse is applied to the ultrasonic transducer 10a upstream of the ultrasonic flowmeter of FIG. 3 to excite it, ultrasonic waves are emitted, and the emitted ultrasonic waves pass from the pipe 5 to the fluid inside the pipe via the bevel wedge 2a. Propagate to 9. Then, the sound wave propagating to the fluid 9 in the pipe arrives at the facing surface of the pipe, is guided by the bevel wedge 2b, is guided to the ultrasonic transducer 10b in the receiving mode, and is received. It From the upstream ultrasonic transducer 10a to the downstream ultrasonic transducer 10a
The propagation time of the sound wave until reaching b is T 12, and conversely, the propagation time when the downstream ultrasonic transducer 10b is excited and the sound wave is received by the upstream ultrasonic transducer 10a is T 21 . Then, the respective propagation times T 12 and T 21 are expressed by the following equations (1) and (2).

【0004】[0004]

【数1】 [Equation 1]

【0005】[0005]

【数2】 [Equation 2]

【0006】ここにD; 配管の内径 τ; 配管、斜角楔での伝搬時間 C; 流体中での音速 V; 流体の流速 θ; 流体中への超音波の入射角 上式より明らかなように、流速があるとT12、T21に時
間差が発生する。
Where D is the inner diameter of the pipe, τ is the propagation time in the pipe and the oblique wedge, C is the sound velocity in the fluid, V is the flow velocity of the fluid, and θ is the incident angle of the ultrasonic wave in the fluid. In addition, when there is a flow velocity, there is a time difference between T 12 and T 21 .

【0007】超音波流量計では、式(1)で与えられる
流れに沿う方向の超音波の伝播時間T12と、式(2)で
与えられる流れに逆方向の超音波の伝播時間T21を計測
して連立方程式に代入、流速Vを演算によって求めてい
る。超音波流量計を構成するに当たって、超音波送受波
器を図3の原理説明図の通り、流体配管5をはさんで両
側に超音波の伝播経路がZ字形になるよう配置して構成
する場合と、配管の管壁で反射されて音波打出し側と同
側に戻った反射超音波をとらえるよう、超音波送受波器
を配管の同側に超音波の伝播経路がV字形になるように
配置して図4に例示のように構成する場合とがある。
In the ultrasonic flow meter, an ultrasonic wave propagation time T 12 in the direction along the flow given by the equation (1) and an ultrasonic wave propagation time T 21 in the opposite direction to the flow given by the equation (2) are provided. The flow velocity V is calculated by measuring and substituting in the simultaneous equations. In constructing the ultrasonic flowmeter, the ultrasonic transducer is arranged by sandwiching the fluid pipe 5 on both sides so that the ultrasonic propagation path is Z-shaped as shown in the principle explanatory diagram of FIG. In order to capture the reflected ultrasonic waves reflected by the pipe wall of the pipe and returned to the same side as the sound wave ejection side, the ultrasonic transducer is arranged on the same side of the pipe so that the propagation path of the ultrasonic wave is V-shaped. In some cases, they are arranged and configured as illustrated in FIG.

【0008】図4に例示のように超音波送受波器を流体
配管の同側に配置すると、超音波は配管の直径方向を往
復して受信されるので、式(1)と(2)中の配管内径
Dを2Dとすることによって伝波時間T12,T21と流速
Vの関係が与えられ、図3の構成の超音波流量計と原理
的には全く同等である。図4のように超音波送受波器を
配管の同側に配置してV方式の超音波流量計を構成する
と、超音波送受波器の取付機構部をコンパクト簡素に構
成でき、超音波送受波器の配管への取付と位置の調整が
容易になる。
When the ultrasonic wave transmitter / receiver is arranged on the same side of the fluid pipe as illustrated in FIG. 4, the ultrasonic wave is reciprocally received in the diameter direction of the pipe, and therefore, in the formulas (1) and (2). By setting the inner diameter D of the pipe to 2D, the relationship between the propagation times T 12 and T 21 and the flow velocity V is given, which is completely the same in principle as the ultrasonic flowmeter configured as shown in FIG. When the ultrasonic wave transmitter / receiver is arranged on the same side of the pipe as shown in FIG. 4 to configure a V type ultrasonic flow meter, the mounting mechanism portion of the ultrasonic wave transmitter / receiver can be made compact and simple, and the ultrasonic wave transmitter / receiver can be transmitted and received. It becomes easy to attach the device to the piping and adjust its position.

【0009】ところで、実際の流体は多少とも粘性を有
しているので配管中を流れるとき、管壁付近では流速が
低下し、管の中心部で最大流速となる図5の(a)に例
示のような流速分布U(X) をもつこととなる。このた
め、図3の測定原理の超音波流量計が検出する流速は、
超音波送受波器1aと1bとを結ぶ直線が乗る平面上で
流速分布U(X) を積分平均した式(3)で表される平均
流速となる。
By the way, since the actual fluid is somewhat viscous, when flowing through the pipe, the flow velocity decreases near the pipe wall and reaches the maximum flow velocity at the center of the pipe, as shown in FIG. 5 (a). Therefore, the flow velocity distribution U (X) is as follows. Therefore, the flow velocity detected by the ultrasonic flowmeter of the measurement principle of FIG.
The average flow velocity is represented by the equation (3) obtained by integrating and averaging the flow velocity distribution U (X) on the plane on which the straight line connecting the ultrasonic transducers 1a and 1b lies.

【0010】[0010]

【数3】 (Equation 3)

【0011】配管の直管部が十分に長い場合には、配管
中で流体は配管軸に関して軸対称に流れることとなるの
で、管内の流速分布U(X) は管軸に関し軸対称となり、
超音波送受波器1aと1bとを結ぶ線が配管軸を横切る
配置関係にあるかぎり、管軸に対する超音波送受波器の
取付方位に依存せずに平均流速が検出される。一方、配
管が屈曲している部位あるいは口径が急に大きくなって
いるような部位では流れは屈曲によって乱され、流速分
布は図5の(b)に例示のように配管軸に関して軸対称
でなくなり、管の軸方向断面における平均流速は断面の
軸に関する回転方位で異なることとなる。このため流管
の屈曲部分近辺に超音波送受波器を配置すると、検出さ
れる平均流速は管軸に対する超音波送受波器の取付方位
に依存し、流量計測の誤差が超音波送受波器取付方位に
大きく存在することとなる。
When the straight pipe portion of the pipe is sufficiently long, the fluid flows in the pipe in axial symmetry with respect to the pipe axis, so the flow velocity distribution U (X) in the pipe is in axial symmetry with respect to the pipe axis.
As long as the line connecting the ultrasonic wave transmitters / receivers 1a and 1b is in a positional relationship across the pipe axis, the average flow velocity is detected independently of the mounting orientation of the ultrasonic wave transmitter / receiver with respect to the pipe axis. On the other hand, the flow is disturbed by bending at the part where the pipe is bent or where the diameter is suddenly increased, and the flow velocity distribution is no longer axially symmetric with respect to the pipe axis as illustrated in Fig. 5 (b). The mean flow velocity in the axial cross section of the pipe will differ depending on the rotational orientation about the axis of the cross section. Therefore, if an ultrasonic transducer is placed near the bent portion of the flow tube, the average velocity detected will depend on the mounting orientation of the ultrasonic transducer with respect to the tube axis, and the error in flow rate measurement will cause the ultrasonic transducer to be mounted. There will be a large azimuth.

【0012】配管の屈曲部で乱されて流速分布が管軸に
関して軸対称でなくなった流れは、十分に長い直管部を
流れる間に流体が有する粘性を介する相互作用の結果平
均化され、その位置で流速分布U(X) は再び管軸に関し
軸対称となる。このため従来技術による超音波流量計に
おいては超音波送受波器を十分な直管部を設けて配置す
るよう要請されている。
The flow disturbed at the bent portion of the pipe so that the flow velocity distribution is not axisymmetric with respect to the pipe axis is averaged as a result of the interaction through the viscosity of the fluid while flowing in the straight pipe portion, which is sufficiently long. At the position, the velocity distribution U (X) is again axisymmetric with respect to the tube axis. Therefore, in the ultrasonic flowmeter according to the related art, it is required to arrange the ultrasonic wave transmitter / receiver with a sufficient straight pipe portion.

【0013】[0013]

【発明が解決しようとする課題】超音波流量計を設置し
ようとするプラント施設の状況によっては、十分な直管
長を確保できない場合がある。このような場合、図6に
例示のように配管の管軸に直交する複数の測線上に超音
波送受波器を配置し、複数の流量計による流量測定値の
平均値を求める計測装置システムを構成すれば、配管の
屈曲部の直近であっても高精度の測定が原理的には可能
である。
A sufficient straight pipe length may not be ensured depending on the situation of the plant facility where the ultrasonic flowmeter is to be installed. In such a case, as illustrated in FIG. 6, an ultrasonic wave transmitter / receiver is arranged on a plurality of survey lines orthogonal to the pipe axis of the pipe, and a measuring device system for obtaining an average value of flow rate measurement values by a plurality of flow meters is provided. With this configuration, in principle, highly accurate measurement is possible even near the bent portion of the pipe.

【0014】しかしながら、実際に複数対の超音波送受
波器を屈曲部近くの流管に配置し取付けることは困難で
あり、装置システムの構成は複雑となり設置接続の調
整、さらには保守の作業も面倒なものとなり、更に費用
も過大となる。本発明は、管内の流速分布が乱れていて
もその影響を測線の数を増やすことなく回避して測定す
る配管の屈曲部近くに配置しても高精度の流量測定が可
能な超音波流量計を提供することを目的とする。
However, it is difficult to actually arrange and attach a plurality of pairs of ultrasonic wave transmitters / receivers to the flow tube near the bent portion, the configuration of the apparatus system becomes complicated, and adjustment of installation connection and maintenance work are also performed. It becomes troublesome, and the cost becomes excessive. The present invention is an ultrasonic flowmeter capable of highly accurate flow rate measurement even if the flow velocity distribution in a pipe is disturbed and the influence thereof is avoided without increasing the number of measurement lines and the measurement is performed near a bent portion of the pipe. The purpose is to provide.

【0015】[0015]

【課題を解決するための手段】流体の流れ方向とその逆
方向に、それぞれ超音波を伝搬させたときの各々の伝搬
時間に基づいて計測制御部が流体の流速流量を演算して
出力する超音波流量計が流量測定に要する時間間隔は、
配管中の流体の流量時間変動に比べ通常十分に早い。そ
こで、本発明においては、超音波流量計の流量検出部
を、配管に音響的に結合して設けられ、かつ超音波送受
波器の配管の管軸回りの周回移動を案内する超音波送受
波器のそれぞれに対応する一対のステーと、一対の超音
波送受波器を超音波を送波して受波する位置に配置して
結合するアームと、一体に結合された超音波送受波器を
前記ステーに沿って移動させる駆動手段とによって構成
し、計測制御部を、駆動手段を通じて一体に結合された
超音波送受波器を配管軸の回りの予め定めた複数位置に
移動させて各位置で流速を測定し、各位置で測定した流
速の平均値を演算して平均流量値として出力するように
する。
A measurement control unit calculates and outputs a flow velocity flow rate of a fluid based on each propagation time when an ultrasonic wave is propagated in a fluid flow direction and an opposite direction. The time interval required for the ultrasonic flowmeter to measure the flow rate is
It is usually sufficiently fast compared to the time variation of the flow rate of the fluid in the pipe. Therefore, in the present invention, the flow rate detecting unit of the ultrasonic flowmeter is provided so as to be acoustically coupled to the pipe, and the ultrasonic wave transmitting / receiving unit that guides the circular movement of the pipe of the ultrasonic wave transmitter / receiver around the pipe axis. A pair of stays corresponding to each of the vessels, an arm that couples a pair of ultrasonic transducers at a position for transmitting and receiving ultrasonic waves, and an arm that integrally couples the ultrasonic transducers. And a drive means for moving along the stay, and the measurement control unit moves the ultrasonic transducers integrally coupled through the drive means to a plurality of predetermined positions around the pipe axis and at each position. The flow velocity is measured, and the average value of the flow velocity measured at each position is calculated and output as the average flow rate value.

【0016】[0016]

【作用】アームによって一体に結合された一対の超音波
送受波器は、駆動手段によって配管の管軸の回りに音響
的に結合して設けられたステーに沿って移動し、移動し
た位置において配管中流体を伝播する超音波の伝播時間
が測定され、計測制御部は各位置で測定された流速の平
均値を演算して平均流量値を求めて出力する。
The pair of ultrasonic wave transmitters / receivers integrally connected by the arm moves along the stay acoustically connected around the pipe axis of the pipe by the driving means, and the pipe is placed at the moved position. The propagation time of the ultrasonic wave propagating through the medium fluid is measured, and the measurement control unit calculates the average value of the flow velocity measured at each position to obtain and output the average flow rate value.

【0017】[0017]

【実施例】本発明にもとづいてV方式の超音波流量計を
構成する場合の超音波送受波器取付機構部の1実施例の
構造を図1に示し本発明を説明する。図1において1a
と1bとは超音波振動子であり、2a,2bは超音波振
動子を配管5を流れる流体9と音響的に結合する斜角楔
であり、超音波振動子と斜角楔は音響的に結合して超音
波送受波器10a,10bを構成している。そして、3a,
3bは、超音波送受波器10a,10bを配管5の外周に沿
って音響結合を保ちながら移動させるにあたってガイド
となるステーである。このステー3には斜角楔2から突
出させたキー21が嵌挿される案内溝31が周設されてお
り、ステー3aと3bとは、可塑性部剤からなるコンパ
ウンド4を介して配管5に音響的に結合固着されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of one embodiment of the ultrasonic wave transmitter / receiver mounting mechanism portion in the case of constructing a V type ultrasonic flowmeter according to the present invention will be described with reference to FIG. 1a in FIG.
And 1b are ultrasonic transducers, 2a and 2b are oblique wedges that acoustically couple the ultrasonic transducers with the fluid 9 flowing in the pipe 5, and the ultrasonic transducers and oblique wedges acoustically The ultrasonic wave transmitters / receivers 10a and 10b are formed by coupling. And 3a,
Reference numeral 3b is a stay that serves as a guide for moving the ultrasonic wave transmitters / receivers 10a and 10b along the outer circumference of the pipe 5 while maintaining acoustic coupling. The stay 3 is provided with a guide groove 31 around which a key 21 protruding from the beveled wedge 2 is fitted. It is firmly fixed.

【0018】8は、一対の超音波送受波器10a,10bが
配管軸に平行にステー3a,3bのそれぞれに沿って同
時に一体となって摺動周回するように両送受波器を結合
固定するアームであり、両超音波送受波器の固定間隔
は、一方の超音波送受波器10aの超音波振動子1aから
放射された超音波が配管5中の流体9を伝播して配管の
他端で反射され、入射側の配管壁に戻って再度配管に侵
入して伝播する超音波をとらえる位置に、もう一方の超
音波送受波器10bの超音波振動子1bが配置されるよう
に定められている。
Numeral 8 fixes and fixes a pair of ultrasonic wave transmitters / receivers 10a and 10b so as to simultaneously slide integrally along the stays 3a and 3b in parallel with the pipe axis, respectively. The ultrasonic waves emitted from the ultrasonic transducer 1a of one ultrasonic wave transmitter / receiver 10a propagate through the fluid 9 in the pipe 5 and the other end of the pipe is fixed. The ultrasonic transducer 1b of the other ultrasonic transmitter / receiver 10b is arranged at a position where the ultrasonic wave that is reflected by the other ultrasonic wave transmitter / receiver 10b is captured at a position where it returns to the incident side pipe wall and enters the pipe again and propagates. ing.

【0019】配管5と斜角楔2および配管中を流れる流
体9の材質から、これらの部材中での音速の値が既知で
ある場合、各部材の境界面における超音波の屈折角は音
響原理にもとづく計算式によって求められるので、斜角
楔2,ステー3,配管5の肉厚と内径などの各部材の寸
法が与えられればアーム8の検出器取付間隔は計算によ
って定めることができる。
When the values of the speed of sound in these members are known from the materials of the pipe 5, the bevel wedge 2 and the fluid 9 flowing in the pipe, the refraction angle of ultrasonic waves at the interface between the members is the acoustic principle. Since it is obtained by a calculation formula based on the above, the detector mounting interval of the arm 8 can be determined by calculation if the dimensions of each member such as the bevel wedge 2, stay 3, and pipe 5 are given.

【0020】一方、7は、上記アーム8に配管5の外壁
面を押圧するように回転可能に取付られた弾性部材から
なる、または弾性部材を周設した厚い円板状のローダで
あり、このローダ7は同じくアーム8に取りつけられた
ステップモータ6と共に一体に結合された超音波送受波
器10a,10bとを、ステー3a,3bに沿って移動させ
る駆動手段を構成する。すなわち、ローダ7がステップ
モータ6で回転駆動されると、この回転にともない、ア
ーム8に固着された2つの超音波送受波器10a,10bと
が、ステー3a,3bに案内されて音響的結合を保って
配管5の外周を摺動回転する。
On the other hand, 7 is a thick disk-shaped loader composed of an elastic member rotatably attached to the arm 8 so as to press the outer wall surface of the pipe 5, or having an elastic member provided around the elastic member. The loader 7 constitutes driving means for moving the ultrasonic wave transmitters / receivers 10a, 10b integrally coupled with the step motor 6 mounted on the arm 8 along the stays 3a, 3b. That is, when the loader 7 is rotationally driven by the step motor 6, the two ultrasonic transducers 10a and 10b fixed to the arm 8 are guided by the stays 3a and 3b and acoustically coupled with this rotation. While keeping the above, the outer circumference of the pipe 5 is slidably rotated.

【0021】以上に説明の図1の構成の超音波送受波器
取付機構部を備えた超音波流速検出部10を測定対象の配
管に配置し、パルスモータ6を通じて配管5の管軸の回
りの異なる方位に超音波送受波器10a,10bを配向させ
て各配向での管内流速を測定すると、それぞれの配向に
おいて配管内の超音波伝播方向の直線が乗る平面上の平
均流速が計測される。ところで、V方式の超音波流量計
では、超音波送受波器10a,10bは配管の同側に配管軸
に平行に配置して配置対向管壁からの反射超音波を受波
しているので、超音波送受波器を配管の半周範囲を移動
させれば等価的に全周を移動させたことなる。それゆ
え、超音波送受波器10a,10bを配管5の外周に沿って
案内するステー3a,3bは配管半周の範囲に設け、こ
の範囲内で超音波送受波器を移動させればよい。
The ultrasonic flow velocity detecting section 10 having the ultrasonic wave transmitter / receiver mounting mechanism section having the structure shown in FIG. 1 described above is arranged in the pipe to be measured, and the pulse motor 6 is used to connect the ultrasonic flow velocity detecting section 10 around the pipe axis. When the ultrasonic wave transmitters / receivers 10a and 10b are oriented in different directions and the in-pipe flow velocity in each orientation is measured, the average flow velocity on the plane on which the straight line of the ultrasonic wave propagation direction in the pipe rides is measured in each orientation. By the way, in the V type ultrasonic flowmeter, the ultrasonic wave transmitters / receivers 10a and 10b are arranged on the same side of the pipes in parallel with the pipe axis and receive the reflected ultrasonic waves from the opposing pipe wall. If the ultrasonic wave transmitter / receiver is moved within the half circumference range of the pipe, it means that the entire circumference is equivalently moved. Therefore, the stays 3a and 3b for guiding the ultrasonic wave transmitters / receivers 10a and 10b along the outer circumference of the pipe 5 may be provided in the half circumference of the pipe, and the ultrasonic wave transmitter / receiver may be moved within this range.

【0022】上記図1の構成の超音波流速検出部10を、
配管の曲管部位近くで管内流速分布が管軸に関して軸対
称となっていない部位に配置して計測を実行すると、超
音波流速検出部10の超音波送受波器10a,10bと管軸を
結ぶ直線を乗せる面における平均流速として計測される
流速値は、超音波流速検出部10の管軸に対する配位方向
に依存して変動するが、多数の方位に超音波流速検出部
10を設定して得た流速値の平均値を求めれば管内の総平
均流速が得られることとなる。
The ultrasonic flow velocity detecting section 10 having the structure shown in FIG.
When the measurement is performed by arranging in a portion near the curved pipe portion of the pipe where the flow velocity distribution in the pipe is not axially symmetrical with respect to the pipe axis, the ultrasonic transducers 10a and 10b of the ultrasonic flow velocity detection unit 10 are connected to the pipe axis. The flow velocity value measured as the average flow velocity on the surface on which the straight line is placed varies depending on the orientation direction of the ultrasonic flow velocity detection unit 10 with respect to the tube axis, but the ultrasonic flow velocity detection unit has many directions.
If the average value of the flow velocity values obtained by setting 10 is obtained, the total average flow velocity in the pipe can be obtained.

【0023】図2は、上記図1の構成の超音波流速検出
部10を備え、この超音波流速検出部を配管軸に関し異な
る方位に配向させて得た個別の流速計測値の平均値を求
めて流量値に換算して出力する本発明による計測制御回
路の1実施例の構成を示すブロック図である。図2にお
いて40は図1の構成の超音波流速検出部10を駆動して各
配位に対応の平均流速を求める演算処理を行う個別流速
演算部である。
FIG. 2 is provided with the ultrasonic flow velocity detecting section 10 having the configuration shown in FIG. 1, and the average value of the individual flow velocity measurement values obtained by orienting the ultrasonic flow velocity detecting section in different directions with respect to the pipe axis is obtained. FIG. 3 is a block diagram showing a configuration of an embodiment of a measurement control circuit according to the present invention for converting into a flow rate value and outputting. In FIG. 2, reference numeral 40 denotes an individual flow velocity calculation unit that drives the ultrasonic flow velocity detection unit 10 having the configuration of FIG. 1 to perform calculation processing for obtaining an average flow velocity corresponding to each configuration.

【0024】この個別流速演算部40は、超音波流速検出
部10における超音波送受波器10a,10bの超音波送波受
波の状態を交互に切替える順逆切替器41、送受信回路4
2、超音波送受波器10aから送波されて10bで受波され
る超音波の伝播時間T12と、上記とは逆方向に送受波さ
れる超音波の伝播時間T21との差を検出する時間差検出
回路43および時間差検出回路43で検出された時間差をも
とにする演算処理によって流速値を求める流速演算プロ
グラム44とから構成されている。
The individual flow velocity calculation unit 40 includes a forward / reverse switching unit 41 for alternately switching the ultrasonic transmission / reception states of the ultrasonic transmission / reception units 10a and 10b in the ultrasonic flow velocity detection unit 10 and a transmission / reception circuit 4.
2. Detect the difference between the propagation time T 12 of the ultrasonic wave transmitted from the ultrasonic wave transmitter / receiver 10a and received by 10b, and the propagation time T 21 of the ultrasonic wave transmitted / received in the opposite direction. And a flow velocity calculation program 44 for obtaining a flow velocity value by a calculation process based on the time difference detected by the time difference detection circuit 43.

【0025】一方、60は個別流速演算部40における流速
の演算処理が修了したとき駆動回路61を通じて超音波流
速検出部10のステップモータ6に駆動電力を与えて超音
波送受波器10a,10bとを所定の方位に配向させる制御
を行う検出部方位制御部であり、この検出部方位制御部
60、また、個別流速演算部40と、次に説明の平均流速演
算部50の起動リセットの制御を併せて行うものである。
On the other hand, reference numeral 60 designates the ultrasonic wave transmitters / receivers 10a, 10b by giving driving power to the step motor 6 of the ultrasonic flow velocity detecting section 10 through the drive circuit 61 when the calculation processing of the flow velocity in the individual flow velocity calculating section 40 is completed. Is a detection unit azimuth control unit for performing control for orienting the
In addition, 60, the individual flow velocity calculation unit 40, and the startup reset control of the average flow velocity calculation unit 50 described below are performed together.

【0026】平均流量演算部50は、個別流速演算部40で
得られた複数の流速データの平均値を求めて平均流量値
を出力する処理を行う演算部であり、個別流速演算部40
が出力する流速演算データの複数データを格納しておく
流速値メモリ51と、流速値メモリ51に格納された流速デ
ータの平均値を求めて平均流量値として出力する処理を
行う平均流量値演算プログラム52とで構成されており、
検出部方位制御部60が超音波送受波器10a,10bの方位
を設定する毎に、個別流速演算部40で計測演算されて出
力される流速値は流速値メモリ51に格納され、予め定め
た各方位への超音波送受波器10a,10bの設定が一巡し
て修了したことが検出部方位制御60から通知されると、
平均流量値演算プログラム52は流速値メモリ51に格納の
データの平均値を求め、配管の断面積の値を乗じて平均
流量値として出力する。
The average flow rate calculation unit 50 is a calculation unit that calculates the average value of a plurality of flow velocity data obtained by the individual flow velocity calculation unit 40 and outputs the average flow rate value.
Flow rate value memory 51 for storing a plurality of flow rate calculation data output by the CPU and an average flow rate value calculation program for performing a process of obtaining an average value of the flow rate data stored in the flow rate value memory 51 and outputting it as an average flow rate value. It consists of 52 and
Each time the detection unit azimuth control unit 60 sets the azimuth of the ultrasonic wave transmitters / receivers 10a, 10b, the flow velocity value measured and calculated by the individual flow velocity calculation unit 40 is stored in the flow velocity value memory 51 and is set in advance. When the detection unit azimuth control 60 notifies that the setting of the ultrasonic wave transmitters / receivers 10a and 10b to each direction has completed one cycle,
The average flow rate value calculation program 52 obtains the average value of the data stored in the flow velocity value memory 51, multiplies the value by the cross-sectional area of the pipe, and outputs the average flow rate value.

【0027】ところで、配管の注目する部分における流
体流の流速分布は、注目部分の配管の前後、特に前側の
部分の流路の形状に依存して定まり、形状が固定されて
いれば、分布の形態も一定に定まる。それゆえ、曲管部
の近くに本発明による超音波流量計検出部10を設置して
流速を測定する場合、超音波送受波器10a,10bの各配
位において測定される流速値のゆらぎは同一のパターン
を示すこととなり、各配位における測定値の平均値に一
致または近い流速値を与える配置を選択することができ
る。したがって、流量計検出部10を設置したときに、超
音波送受波器10a,10bの各方位における流速測定値を
調べて平均値に最も近い計測値を与える方位を選びだ
し、この方位に超音波送受波器10a,10bの設定を固定
して、検出部の配管軸のまわりの周回走査を行わなくて
も平均流速を代表しうる計測値を得ることができ、この
ようにすれば超音波送受波器を移動させて複数回を測定
を繰返して得た値の平均値を演算する処理は不要となり
流速測定の応答速度を大きく早めることができる。
By the way, the flow velocity distribution of the fluid flow in the portion of interest of the pipe is determined depending on the shape of the flow passage before and after the pipe of the interest, particularly in the front portion, and if the shape is fixed, the distribution of The form is also fixed. Therefore, when the ultrasonic flowmeter detection unit 10 according to the present invention is installed near the curved pipe section to measure the flow velocity, the fluctuation of the flow velocity value measured in each configuration of the ultrasonic transducers 10a and 10b is Since the same pattern is shown, it is possible to select an arrangement that gives a flow velocity value that is close to or close to the average value of the measured values in each coordination. Therefore, when the flowmeter detection unit 10 is installed, the flow velocity measurement value in each direction of the ultrasonic transducers 10a and 10b is checked, and the direction giving the measured value closest to the average value is selected. By fixing the settings of the transducers 10a and 10b, it is possible to obtain a measured value that can represent the average flow velocity without performing a circular scan around the pipe axis of the detection unit. The process of calculating the average value of the values obtained by moving the wave device and repeating the measurement a plurality of times is unnecessary, and the response speed of the flow velocity measurement can be greatly accelerated.

【0028】さらに、常時は超音波送受波器10a,10b
の配位の方向を固定して使用することが明らかな場合に
は、超音波送受波器10a,10bとを、ステー3a,3b
に沿って移動させる駆動手段であるローダ7とステップ
モータ6とを動作させずに超音波送受波器10a,10bを
予め選定した方位に設定してステー3a,3bに固定す
る手段を設けるようにしてもよい。
Further, the ultrasonic wave transmitters / receivers 10a and 10b are normally operated.
When it is clear that the orientation of the robot is fixed and used, the ultrasonic transducers 10a and 10b are connected to the stays 3a and 3b.
A means for fixing the ultrasonic transducers 10a, 10b to the stays 3a, 3b by setting the ultrasonic transducers 10a, 10b in a preselected orientation without operating the loader 7 and the step motor 6 which are driving means for moving along May be.

【0029】[0029]

【発明の効果】本発明による超音波流速計測装置では、
配管周囲に音響的に密着して設けられた一対のステーの
上を一体に結合された一対の超音波送受波器が移動して
配管軸に関して異なる複数の方位に超音波送受波器が設
定されたときの流速値を検出測定し、各方位における流
速検出測定値の平均値を求めて出力しているので、配管
手流体の流速分布が配管軸に関して対称でない場合でも
平均の流速値の計測が可能となり、配管の屈曲部の近く
で流速分布が軸対称とならないような配管部でも本発明
による超音波流量計検出部を設置して正確な流量計の測
定が可能になるという効果が得られる。
According to the ultrasonic velocity measuring device of the present invention,
A pair of ultrasonic transducers, which are integrally coupled, move on a pair of stays that are acoustically closely attached to the periphery of the pipe, and the ultrasonic transducers are set in different directions with respect to the pipe axis. The flow velocity value is measured and the average value of the flow velocity detection measurement values in each direction is obtained and output, so even if the flow velocity distribution of the pipe hand fluid is not symmetrical with respect to the pipe axis, the average flow velocity value can be measured. Even if the flow rate distribution is not axisymmetric near the bent portion of the pipe, the ultrasonic flowmeter detection unit according to the present invention can be installed to obtain an effect of enabling accurate flowmeter measurement. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超音波流計の超音波流速検出部の
1実施例構成図
FIG. 1 is a configuration diagram of an embodiment of an ultrasonic flow velocity detection unit of an ultrasonic flow meter according to the present invention.

【図2】本発明による超音波流計の計測制御部の1実施
例のブロック図
FIG. 2 is a block diagram of an embodiment of a measurement control unit of an ultrasonic flow meter according to the present invention.

【図3】超音波流量計の原理説明図FIG. 3 is an explanatory view of the principle of the ultrasonic flowmeter.

【図4】V形超音波流量計の検出器配置説明図FIG. 4 is an explanatory view of a detector arrangement of a V-type ultrasonic flowmeter.

【図5】配管内流体流速分布説明図[Fig. 5] Explanatory drawing of fluid flow velocity distribution in piping

【図6】超音波送受波器配置方位と誤差の関係の例を示
す図
FIG. 6 is a diagram showing an example of a relationship between an ultrasonic transducer arrangement direction and an error.

【符号の説明】[Explanation of symbols]

10 超音波計測部 10a,10b 超音波送受波器 1a,1b 超音波振動子 2a,2b 斜角楔 3a,3b ステー 4 コンパウンド 5 配管 6 ステップモータ 7 駆動輪 8 アーム 9 流体 40 個別流速演算部 50 平均流量演算部 60 検出部方位制御部 10 Ultrasonic Measuring Unit 10a, 10b Ultrasonic Transducer 1a, 1b Ultrasonic Transducer 2a, 2b Oblique Wedge 3a, 3b Stay 4 Compound 5 Piping 6 Step Motor 7 Drive Wheel 8 Arm 9 Fluid 40 Individual Velocity Calculation Unit 50 Average flow rate calculation unit 60 Detection unit Direction control unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一対の超音波送受波器からなる超音波検出
部を流体の流れる配管の外周に設置し、流体の流れ方向
と逆方向に超音波を伝搬させたときそれぞれの伝播時間
を計測し、伝播時間に基づいて計測制御部が流体の流量
を演算して出力する超音波流量計において、 超音波検出部が、配管に音響的に結合して設けられ、か
つ超音波送受波器の配管の管軸回りの周回移動を案内す
る超音波送受波器のそれぞれに対応する一対のステー
と、 前記一対の超音波送受波器を超音波を送波して受波する
位置に配置して結合するアームと、 一体に結合された超音波送受波器を前記ステーに沿って
移動させる駆動手段と、を備え、 計測制御部が、前記駆動手段を通じて一体に結合された
超音波送受波器の配管軸に対する位置を制御する検出部
方位制御部と、 超音波送受波器の各配置位置において超音波を発信受信
して各配位に対応の平均流速を求める演算処理を行う個
別流速演算部と、 前記個別流速演算部で超音波送受波器の各配置位置に対
応して得られた複数の流速データを一時格納し、格納値
の平均値を求めて平均流量値を演算出力する平均流量演
算部と、 を備えたことを特徴とする超音波流量計。
1. An ultrasonic wave detection unit consisting of a pair of ultrasonic wave transmitters / receivers is installed on the outer circumference of a pipe through which a fluid flows, and the propagation time of each ultrasonic wave is measured when the ultrasonic wave is propagated in the direction opposite to the direction of the fluid flow. In the ultrasonic flow meter in which the measurement control unit calculates and outputs the flow rate of the fluid based on the propagation time, the ultrasonic detection unit is provided acoustically coupled to the pipe, and the ultrasonic transducer A pair of stays corresponding to each of the ultrasonic wave transmitters / receivers for guiding the circular movement of the pipe around the pipe axis, and the pair of ultrasonic wave transmitters / receivers are arranged at positions for transmitting and receiving ultrasonic waves. An ultrasonic wave transmitter / receiver integrally connected through the drive means, and an arm to be connected, and a drive means for moving the integrally connected ultrasonic wave transmitter / receiver along the stay. Detecting unit Direction control unit that controls the position with respect to the pipe axis And an individual flow velocity calculation unit that performs calculation processing for transmitting and receiving ultrasonic waves at each arrangement position of the ultrasonic wave transceiver to obtain an average flow velocity corresponding to each configuration, and an ultrasonic wave transceiver in the individual flow velocity calculation unit. An average flow rate calculation unit that temporarily stores a plurality of flow velocity data obtained corresponding to the respective arrangement positions, calculates the average value of the stored values, and outputs the average flow rate value. Sonic flow meter.
【請求項2】流量検出部が、超音波送受波器をステーに
沿う任意に選定した位置に固着する締結手段を備えたこ
とを特徴とする請求項1に記載の超音波流量計。
2. The ultrasonic flowmeter according to claim 1, wherein the flow rate detector comprises a fastening means for fixing the ultrasonic wave transmitter / receiver at an arbitrarily selected position along the stay.
JP6244991A 1994-10-11 1994-10-11 Ultrasonic flowmeter Pending JPH08110254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6244991A JPH08110254A (en) 1994-10-11 1994-10-11 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6244991A JPH08110254A (en) 1994-10-11 1994-10-11 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JPH08110254A true JPH08110254A (en) 1996-04-30

Family

ID=17126960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6244991A Pending JPH08110254A (en) 1994-10-11 1994-10-11 Ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JPH08110254A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216034A (en) * 2007-03-05 2008-09-18 Takasago Thermal Eng Co Ltd Method and tool for measuring flow rate
KR101254649B1 (en) * 2011-08-02 2013-04-23 한국표준과학연구원 Installation zig for ultrasonic flow meter
CN117516650A (en) * 2024-01-08 2024-02-06 张家港市浦尔环保机械有限公司 Intelligent sewage flow measuring device and early warning communication system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216034A (en) * 2007-03-05 2008-09-18 Takasago Thermal Eng Co Ltd Method and tool for measuring flow rate
KR101254649B1 (en) * 2011-08-02 2013-04-23 한국표준과학연구원 Installation zig for ultrasonic flow meter
CN117516650A (en) * 2024-01-08 2024-02-06 张家港市浦尔环保机械有限公司 Intelligent sewage flow measuring device and early warning communication system
CN117516650B (en) * 2024-01-08 2024-03-12 张家港市浦尔环保机械有限公司 Intelligent sewage flow measuring device and early warning communication system

Similar Documents

Publication Publication Date Title
US9097567B2 (en) Ultrasonic, flow measuring device
US7469599B2 (en) Flowmeter mounted on a containment
US4610167A (en) Apparatus for measuring flow velocity of fluids
EP2366097B1 (en) Ultrasonic flow meter and method of measuring a flow rate
JP2008134267A (en) Ultrasonic flow measurement method
JP2001356034A (en) Method and apparatus for ultrasonic flow measurement
US9140594B2 (en) Ultrasonic, flow measuring device
CZ188195A3 (en) Flow meter
CN104236648B (en) Ultrasonic flowmeter
US5583301A (en) Ultrasound air velocity detector for HVAC ducts and method therefor
JPH06249690A (en) Ultrasonic flowmeter
JP2001304931A (en) Clamping-on ultrasonic flow rate measuring method and multipath ultrasonic flow rate measuring method as well as clamping-on ultrasonic flowmeter and multipath ultrasonic flowmeter
KR101513697B1 (en) Ultrasonic transducing apparatus for measuring pipe thickness and apparatus for measuring flow velocity using the same
JPH08110254A (en) Ultrasonic flowmeter
JPH1048009A (en) Ultrasound temperature current meter
JP3136002B2 (en) Ultrasonic flow meter
US20230243682A1 (en) Ultrasonic flow measurement
JP2011038870A (en) Ultrasonic flow meter and flow rate measuring method using the same
JP5858227B2 (en) Ultrasonic flow meter positioning bracket
JP3535612B2 (en) Ultrasound transceiver
JP7151311B2 (en) ultrasonic flow meter
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
JP2000329597A5 (en)
JPH06103206B2 (en) Ultrasonic velocity measuring method and apparatus
JP6187661B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091013

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees